1932

Abstract

SERINC genes encode for homologous multipass transmembrane proteins with unknown cellular function, despite being highly conserved across eukaryotes. Among the five SERINC genes found in humans, SERINC5 was shown to act as a powerful inhibitor of retroviruses. It is efficiently incorporated into virions and blocks the penetration of the viral core into target cells, by impairing the fusion process with a yet unclear mechanism. SERINC5 was also found to promote human immunodeficiency virus 1 (HIV-1) virion neutralization by antibodies, indicating a pleiotropic activity, which remains mostly unexplored. Counteracting factors have emerged independently in at least three retrovirus lineages, underscoring their fundamental importance during retrovirus evolution. Nef and S2 of primate and equine lentiviruses, and glycoGag of gammaretroviruses, act similarly by targeting SERINC5 to endosomes and excluding it from virions. Here, we discuss the features that distinguish SERINC5 from other known restriction factors, delineating a yet unique class of antiviral inhibitors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043308
2018-09-29
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043308.html?itemId=/content/journals/10.1146/annurev-virology-092917-043308&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Corbin A, Prats AC, Darlix JL, Sitbon M 1994. A nonstructural gag-encoded glycoprotein precursor is necessary for efficient spreading and pathogenesis of murine leukemia viruses. J. Virol. 68:63857–67
    [Google Scholar]
  2. 2.  Sayah DM, Sokolskaja E, Berthoux L, Luban J 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430:6999569–73
    [Google Scholar]
  3. 3.  Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427:6977848–53
    [Google Scholar]
  4. 4.  Sheehy AM, Gaddis NC, Choi JD, Malim MH 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:6898646–50
    [Google Scholar]
  5. 5.  Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C et al. 2011. Samhd1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:7353654–57
    [Google Scholar]
  6. 6.  Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A et al. 2010. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7:3221–33
    [Google Scholar]
  7. 7.  Neil SJD, Zang T, Bieniasz PD 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:7177425–30
    [Google Scholar]
  8. 8.  Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R et al. 2008. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:4245–52
    [Google Scholar]
  9. 9.  Bailey CC, Zhong G, Huang I-C, Farzan M 2014. IFITM-family proteins: the cell's first line of antiviral defense. Annu. Rev. Virol. 1:261–83
    [Google Scholar]
  10. 10.  Galão RP, Le Tortorec A, Pickering S, Kueck T, Neil SJD 2012. Innate sensing of HIV-1 assembly by tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe 12:5633–44
    [Google Scholar]
  11. 11.  Pertel T, Hausmann S, Morger D, Züger S, Guerra J et al. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:7343361–65
    [Google Scholar]
  12. 12.  Inuzuka M, Hayakawa M, Ingi T 2005. Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J. Biol. Chem. 280:4235776–83
    [Google Scholar]
  13. 13.  Lebel M, Mes-Masson AM 1994. Sequence analysis of a novel cDNA which is overexpressed in testicular tumors from polyomavirus large T-antigen transgenic mice. DNA Seq 5:131–39
    [Google Scholar]
  14. 14.  Morrish DW, Dakour J, Li H 1996. Cloning of PL33: a novel probable serpentine membrane receptor associated with human cytotrophoblast and lineage-specific HL-60 cell differentiation. Mol. Cell Endocrinol. 120:2147–51
    [Google Scholar]
  15. 15.  Bossolasco M, Lebel M, Lemieux N, Mes-Masson AM 1999. The human TDE gene homologue: localization to 20q. 13: .1–13.3 and variable expression in human tumor cell lines and tissue. Mol. Carcinog. 26:3189–200
    [Google Scholar]
  16. 16.  Grossman TR, Luque JM, Nelson N 2000. Identification of a ubiquitous family of membrane proteins and their expression in mouse brain. J. Exp. Biol. 203:Part 3447–57
    [Google Scholar]
  17. 17.  Ren W-H, Yang C-Y, Yang X-M, Yu L 2014. siRNA-mediated knockdown of hTDE2 retards cell cycle progression through transcriptional activation of p21. Oncol. Rep. 31:31314–22
    [Google Scholar]
  18. 18.  Player A, Gillespie J, Fujii T, Fukuoka J, Dracheva T et al. 2003. Identification of TDE2 gene and its expression in non-small cell lung cancer. Int. J. Cancer 107:2238–43
    [Google Scholar]
  19. 19.  Lee NH, Weinstock KG, Kirkness EF, Earle-Hughes JA, Fuldner RA et al. 1995. Comparative expressed-sequence-tag analysis of differential gene expression profiles in PC-12 cells before and after nerve growth factor treatment. PNAS 92:188303–7
    [Google Scholar]
  20. 20.  Aoki S, Su Q, Li H, Nishikawa K, Ayukawa K et al. 2002. Identification of an axotomy-induced glycosylated protein, AIGP1, possibly involved in cell death triggered by endoplasmic reticulum-Golgi stress. J. Neurosci. 22:2410751–60
    [Google Scholar]
  21. 21.  Singh PP, Arora J, Isambert H 2015. Identification of Ohnolog genes originating from whole genome duplication in early vertebrates, based on synteny comparison across multiple genomes. PLOS Comput. Biol. 11:7e1004394
    [Google Scholar]
  22. 22.  Dehal P, Boore JL 2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLOS Biol 3:10e314
    [Google Scholar]
  23. 23.  Zhang X, Zhou T, Yang J, Lin Y, Shi J et al. 2017. Identification of SERINC5–001 as the predominant spliced isoform for HIV-1 restriction. J. Virol. 91:10e00137–17
    [Google Scholar]
  24. 24.  Schulte B, Selyutina A, Opp S, Herschhorn A, Sodroski JG et al. 2017. Localization to detergent-resistant membranes and HIV-1 core entry inhibition correlate with HIV-1 restriction by SERINC5. Virology 515:52–65
    [Google Scholar]
  25. 25.  Michaillat L, Mayer A 2013. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. . PLOS ONE 8:2e54160
    [Google Scholar]
  26. 26.  Chu EPF, Elso CM, Pollock AH, Alsayb MA, Mackin L et al. 2017. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Mol. Immunol. 82:19–33
    [Google Scholar]
  27. 27.  Trautz B, Wiedemann H, Lüchtenborg C, Pierini V, Kranich J et al. 2017. The host-cell restriction factor SERINC5 restricts HIV-1 infectivity without altering the lipid composition and organization of viral particles. J. Biol. Chem. 292:3313702–13
    [Google Scholar]
  28. 28.  Krueger WH, Gonye GE, Madison DL, Murray KE, Kumar M et al. 1997. TPO1, a member of a novel protein family, is developmentally regulated in cultured oligodendrocytes. J. Neurochem. 69:41343–55
    [Google Scholar]
  29. 29.  Bossolasco M, Veillette F, Bertrand R, Mes-Masson AM 2006. Human TDE1, a TDE1/TMS family member, inhibits apoptosis in vitro and stimulates in vivo tumorigenesis. Oncogene 25:334549–58
    [Google Scholar]
  30. 30.  Tay Y, Kats L, Salmena L, Weiss D, Tan SM et al. 2011. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:2344–57
    [Google Scholar]
  31. 31.  Basmaciogullari S, Pizzato M 2014. The activity of Nef on HIV-1 infectivity. Front. Microbiol. 5:232
    [Google Scholar]
  32. 32.  Aiken C, Trono D 1995. Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J. Virol. 69:85048–56
    [Google Scholar]
  33. 33.  Pizzato M 2010. MLV glycosylated-Gag is an infectivity factor that rescues Nef-deficient HIV-1. PNAS 107:209364–69
    [Google Scholar]
  34. 34.  Pereira EA, daSilva LLP 2016. HIV-1 Nef: taking control of protein trafficking. Traffic 17:9976–96
    [Google Scholar]
  35. 35.  Craig HM, Pandori MW, Guatelli JC 1998. Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. PNAS 95:1911229–34
    [Google Scholar]
  36. 36.  Pizzato M, Helander A, Popova E, Calistri A, Zamborlini A et al. 2007. Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. PNAS 104:166812–17
    [Google Scholar]
  37. 37.  Rosa A, Chande A, Ziglio S, De Sanctis V, Bertorelli R et al. 2015. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature 526:7572212–17
    [Google Scholar]
  38. 38.  Usami Y, Wu Y, Göttlinger HG 2015. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature 526:7572218–23
    [Google Scholar]
  39. 39.  Chowers MY, Spina CA, Kwoh TJ, Fitch NJ, Richman DD, Guatelli JC 1994. Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene. J. Virol. 68:52906–14
    [Google Scholar]
  40. 40.  Brügger B, Glass B, Haberkant P, Leibrecht I, Wieland FT Kräusslich H-G 2006. The HIV lipidome: a raft with an unusual composition. PNAS 103:82641–46
    [Google Scholar]
  41. 41.  Trautz B, Pierini V, Wombacher R, Stolp B, Chase AJ et al. 2016. The antagonism of HIV-1 Nef to SERINC5 particle infectivity restriction involves the counteraction of virion-associated pools of the restriction factor. J. Virol. 90:2310915–27
    [Google Scholar]
  42. 42.  Sood C, Marin M, Chande A, Pizzato M, Melikyan GB 2017. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J. Biol. Chem. 292:146014–26
    [Google Scholar]
  43. 43.  Lai RPJ, Yan J, Heeney J, McClure MO, Göttlinger H et al. 2011. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41. PLOS Pathog 7:12e1002442
    [Google Scholar]
  44. 44.  Cohen FS, Melikyan GB 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199:11–14
    [Google Scholar]
  45. 45.  Beitari S, Ding S, Pan Q, Finzi A, Liang C 2017. Effect of HIV-1 Env on SERINC5 antagonism. J. Virol. 91:4e02214–16
    [Google Scholar]
  46. 46.  Chertova E, Bess JW Jr., Crise BJ, Sowder RC II, Schaden TM et al. 2018. Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J. Virol. 76:115315–25
    [Google Scholar]
  47. 47.  Zhu P, Chertova E, Bess J Jr., Lifson JD, Arthur LO et al. 2003. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. PNAS 100:15812–17
    [Google Scholar]
  48. 48.  Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J et al. 2012. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338:6106524–28
    [Google Scholar]
  49. 49.  Chojnacki J, Waithe D, Carravilla P, Huarte N, Galiani S et al. 2017. Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nat. Commun. 8:1545
    [Google Scholar]
  50. 50.  Muranyi W, Malkusch S, Müller B, Heilemann M, Kräusslich HG 2013. Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLOS Pathog 9:2e1003198
    [Google Scholar]
  51. 51.  Matheson NJ, Sumner J, Wals K, Rapiteanu R, Weekes MP et al. 2015. Cell surface proteomic map of HIV infection reveals antagonism of amino acid metabolism by Vpu and Nef. Cell Host Microbe 18:4409–23
    [Google Scholar]
  52. 52.  Chande A, Cuccurullo EC, Rosa A, Ziglio S, Carpenter S, Pizzato M 2016. S2 from equine infectious anemia virus is an infectivity factor which counteracts the retroviral inhibitors SERINC5 and SERINC3. PNAS 113:4613197–202
    [Google Scholar]
  53. 53.  Shi J, Xiong R, Zhou T, Su P, Zhang X et al. 2018. HIV-1 Nef antagonizes SERINC5 restriction by downregulation of SERINC5 via the endosome/lysosome system. J. Virol. 92:11e00196–18
    [Google Scholar]
  54. 54.  Dai W, Usami Y, Wu Y, Göttlinger H 2018. A long cytoplasmic loop governs the sensitivity of the anti-viral host protein SERINC5 to HIV-1 Nef. Cell Rep 22:4869–75
    [Google Scholar]
  55. 55.  Heigele A, Kmiec D, Regensburger K, Langer S, Peiffer L et al. 2016. The potency of Nef-mediated SERINC5 antagonism correlates with the prevalence of primate lentiviruses in the wild. Cell Host Microbe 20:3381–91
    [Google Scholar]
  56. 56.  Takeuchi Y, McClure MO, Pizzato M 2008. Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J. Virol. 82:2412585–88
    [Google Scholar]
  57. 57.  Edwards SA, Fan H 1979. gag-related polyproteins of Moloney murine leukemia virus: evidence for independent synthesis of glycosylated and unglycosylated forms. J. Virol. 30:2551–63
    [Google Scholar]
  58. 58.  Ahi YS, Zhang S, Thappeta Y, Denman A, Feizpour A et al. 2016. Functional interplay between murine leukemia virus glycogag, Serinc5, and surface glycoprotein governs virus entry, with opposite effects on gammaretroviral and Ebolavirus glycoproteins. mBio 7:6e01985–16
    [Google Scholar]
  59. 59.  Usami Y, Popov S, Göttlinger HG 2014. The Nef-like effect of murine leukemia virus glycosylated gag on HIV-1 infectivity is mediated by its cytoplasmic domain and depends on the AP-2 adaptor complex. J. Virol. 88:63443–54
    [Google Scholar]
  60. 60.  Aiken C 1997. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J. Virol. 71:85871–77
    [Google Scholar]
  61. 61.  Pizzato M, Popova E, Göttlinger HG 2008. Nef can enhance the infectivity of receptor-pseudotyped human immunodeficiency virus type 1 particles. J. Virol. 82:2110811–19
    [Google Scholar]
  62. 62.  Chazal N, Singer G, Aiken C, Hammarskjöld ML, Rekosh D 2001. Human immunodeficiency virus type 1 particles pseudotyped with envelope proteins that fuse at low pH no longer require Nef for optimal infectivity. J. Virol. 75:84014–18
    [Google Scholar]
  63. 63.  Campbell EM, Nunez R, Hope TJ 2004. Disruption of the actin cytoskeleton can complement the ability of Nef to enhance human immunodeficiency virus type 1 infectivity. J. Virol. 78:115745–55
    [Google Scholar]
  64. 64.  Kizhatil K, Albritton LM 1997. Requirements for different components of the host cell cytoskeleton distinguish ecotropic murine leukemia virus entry via endocytosis from entry via surface fusion. J. Virol. 71:107145–56
    [Google Scholar]
  65. 65.  McClure MO, Sommerfelt MA, Marsh M, Weiss RA 1990. The pH independence of mammalian retrovirus infection. J. Gen. Virol. 71:Part 4767–73
    [Google Scholar]
  66. 66.  Usami Y, Göttlinger H 2013. HIV-1 Nef responsiveness is determined by Env variable regions involved in trimer association and correlates with neutralization sensitivity. Cell Rep 5:3802–12
    [Google Scholar]
  67. 67.  Nowak SA, Chou T 2009. Mechanisms of receptor/coreceptor-mediated entry of enveloped viruses. Biophys. J. 96:72624–36
    [Google Scholar]
  68. 68.  Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB 2009. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:3433–44
    [Google Scholar]
  69. 69.  Daecke J, Fackler OT, Dittmar MT, Kräusslich H-G 2005. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol. 79:31581–94
    [Google Scholar]
  70. 70.  Herold N, Anders-Ößwein M, Glass B, Eckhardt M, Müller B Kräusslich H-G 2014. HIV-1 entry in SupT1-R5, CEM-ss, and primary CD4+ T cells occurs at the plasma membrane and does not require endocytosis. J. Virol. 88:2413956–70
    [Google Scholar]
  71. 71.  Medjahed H, Pacheco B, Désormeaux A, Sodroski J, Finzi A 2013. The HIV-1 gp120 major variable regions modulate cold inactivation. J. Virol. 87:74103–11
    [Google Scholar]
  72. 72.  Duan L, Du J, Wang X, Zhou J, Wang X, Liu X 2016. Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer. Virology 491:64–72
    [Google Scholar]
  73. 73.  Giannecchini S, Bonci F, Pistello M, Matteucci D, Sichi O et al. 2004. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry. Virology 320:1156–66
    [Google Scholar]
  74. 74.  Langhammer S, Fiebig U, Kurth R, Denner J 2005. Neutralising antibodies against the transmembrane protein of feline leukaemia virus (FeLV). Vaccine 23:253341–48
    [Google Scholar]
  75. 75.  Heng TSP, Painter MW, Immunol. Genome Proj. Consort. 2008. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9:101091–94
    [Google Scholar]
  76. 76.  Münch J, Rajan D, Schindler M, Specht A, Rücker E et al. 2007. Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J. Virol. 81:2413852–64
    [Google Scholar]
  77. 77.  Daugherty MD, Malik HS 2012. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46:677–700
    [Google Scholar]
  78. 78.  Secombes CJ, Zou J 2017. Evolution of interferons and interferon receptors. Front. Immunol. 8:209
    [Google Scholar]
  79. 79.  Murrell B, Vollbrecht T, Guatelli J, Wertheim JO 2016. The evolutionary histories of antiretroviral proteins SERINC3 and SERINC5 do not support an evolutionary arms race in primates. J. Virol. 90:188085–89
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043308
Loading
/content/journals/10.1146/annurev-virology-092917-043308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error