1932

Abstract

Maize lethal necrosis (MLN) is a disease of maize caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and one of several viruses from the , such as sugarcane mosaic virus, maize dwarf mosaic virus, Johnsongrass mosaic virus or wheat streak mosaic virus. The coinfecting viruses act synergistically to result in frequent plant death or severely reduce or negligible yield. Over the past eight years, MLN has emerged in sub-Saharan East Africa, Southeast Asia, and South America, with large impacts on smallholder farmers. Factors associated with MLN emergence include multiple maize crops per year, the presence of maize thrips (), and highly susceptible maize crops. Soil and seed transmission of MCMV may also play significant roles in development and perpetuation of MLN epidemics. Containment and control of MLN will likely require a multipronged approach, and more research is needed to identify and develop the best measures.

Keyword(s): MCMVMLNpotyvirusSCMV
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043413
2018-09-29
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043413.html?itemId=/content/journals/10.1146/annurev-virology-092917-043413&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Wangai AW, Redinbaugh MG, Kinyua ZM, Miano DW, Leley PK et al. 2012. First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis 96:1582–83
    [Google Scholar]
  2. 2.  Castillo J, Hebert TT 1974. Nueva enfermedad virosa afectando al máız en el Peru. Fitopatologia 9:79–84
    [Google Scholar]
  3. 3.  Deng TC, Chou CM, Chen CT, Tsai CH, Lin FC 2014. First report of maize chlorotic mottle virus on sweet corn in Taiwan. Plant Dis 98:1748
    [Google Scholar]
  4. 4.  Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kimunye JN et al. 2015. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in Sub-Saharan Africa. Phytopathology 105:956–65
    [Google Scholar]
  5. 5.  Quito-Avila DF, Alvarez RA, Mendoza AA 2016. Occurrence of maize lethal necrosis in Ecuador: A disease without boundaries?. Eur. J. Plant Pathol. 146:705–10
    [Google Scholar]
  6. 6.  Xie L, Zhang J, Wang Q, Meng C, Hong J, Zhou X 2011. Characterization of Maize chlorotic mottle virus associated with maize lethal necrosis disease in China. J. Phytopathol. 159:191–93
    [Google Scholar]
  7. 7.  De Groote H, Oloo F, Tongruksawattana S, Das B 2016. Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. Crop Prot 82:30–35
    [Google Scholar]
  8. 8.  Kagoda F, Gidoi R, Isabirye BE 2016. Status of maize lethal necrosis in eastern Uganda. Afr. J. Agric. Res. 11:652–60
    [Google Scholar]
  9. 9.  Pratt CF, Constantine KL, Murphy ST 2017. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Sec. 14:31–37
    [Google Scholar]
  10. 10.  Vega H, Beillard MJ 2016. Ecuador declares state of emergency in corn production areas Glob. Agric. Inf. Netw. Rep., USDA Foreign Agric. Serv. Quito, Ecuador:
    [Google Scholar]
  11. 11.  Chou CM, Lin FC, Deng TC, Chien YH, Chen CT et al. 2015. The epidemic and transmission studies of Maize chlorotic mottle virus. Proceedings of the Symposium on Important New Emerging Crop Diseases in Taiwan and Their Controls TC Deng, CC Chen, CH Tsai, JN Tsai, TF Hsieh 31–39 Taipei: Taiwan Agric. Res. Inst.
    [Google Scholar]
  12. 12.  Rao Y, You Y, Zhu SF, Yan J, Huang G, Wei G 2010. The loss evaluation index system and the direct economic losses of Maize chlorotic mottle virus invading China. Plant Quar 2010:16–18
    [Google Scholar]
  13. 13.  Niblett CL, Claflin LE 1978. Corn lethal necrosis—new virus disease of corn in Kansas. Plant Dis. Rep. 62:15–19
    [Google Scholar]
  14. 14.  Uyemoto JK 1983. Biology and control of maize chlorotic mottle virus. Plant Dis 67:7–10
    [Google Scholar]
  15. 15.  Teyssandier EE, Nome SF, Dal Bo E 1982. Maize virus diseases in Argentina. Proceedings of the International Maize Virus Disease Colloquium and Workshop DT Gordon, JK Knoke, LR Nault, RM Ritter 93–99 Wooster, OH: Ohio Agric. Res. Dev. Cent.
    [Google Scholar]
  16. 16.  Klinkong T, Sutabutra T 1982. A new virus disease of maize in Thailand. Proceedings of the International Maize Virus Disease Colloquium and Workshop DT Gordon, JK Knoke, LR Nault, RM Ritter 191–93 Wooster, OH: Ohio Agric. Res. Dev. Cent.
    [Google Scholar]
  17. 17.  Scheets K 2004. Maize chlorotic mottle. Virus and Virus Diseases of Poaceae (Gramineae) H Lapierre, P Signoret 642–44 Paris: Inst. Natl. Rech. Agron.
    [Google Scholar]
  18. 18.  Jiang XQ, Meinke LJ, Wright RJ, Wilkinson DR, Campbell JE 1992. Maize chlorotic mottle virus in Hawaiian-grown maize: vector relations, host range and associated viruses. Crop Prot 11:248–54
    [Google Scholar]
  19. 19.  Adams IP, Harju VA, Hodges T, Hany U, Skelton A et al. 2014. First report of maize lethal necrosis disease in Rwanda. New Dis. Rep. 29:22
    [Google Scholar]
  20. 20.  Lukanda M, Owati A, Ogunsanya P, Valimunzigha K, Katsongo K et al. 2014. First report of Maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis 98:1448–49
    [Google Scholar]
  21. 21.  Mahuku G, Wangai A, Sadessa K, Teklewold A, Wegary D et al. 2015. First report of Maize chlorotic mottle virus and maize lethal necrosis on maize in Ethiopia. Plant Dis 99:1870
    [Google Scholar]
  22. 22. CABI (Cent. Agric. Biosci. Int.). 2014. Maize chlorotic mottle virus Rep., Cent. Agric. Biosci. Int. Wallingford, UK: https://www.cabdirect.org/cabdirect/FullTextPDF/2014/20143156821.pdf
    [Google Scholar]
  23. 23.  King AMO, Adams MJ, Carstens EB, Lefkowitz EJ 2012. Family—Tombusviridae. Virus Taxonomy1111–38 San Diego: Elsevier
    [Google Scholar]
  24. 24.  Nutter RC, Scheets K, Panganiban LC, Lommel SA 1989. The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Res 17:3163–77
    [Google Scholar]
  25. 25.  Paul HL, Querfurth G, Huth W 1980. Serological studies on the relationships of some isometric viruses of Gramineae. J. Gen. Virol. 47:67–77
    [Google Scholar]
  26. 26.  Uyemoto JK, Claflin LE, Wilson DL, Raney RJ 1981. Maize chlorotic mottle and maize dwarf mosaic viruses; effect of single and double inoculations on symptomatology and yield. Plant Dis 65:39–41
    [Google Scholar]
  27. 27.  Scheets K 2016. Analysis of gene functions in Maize chlorotic mottle virus. . Virus Res 222:71–79
    [Google Scholar]
  28. 28.  Scheets K 2000. Maize chlorotic mottle machlomovirus expresses its coat protein from a 1.47-kb subgenomic RNA and makes a 0.34-kb subgenomic RNA. Virol 267:90–101
    [Google Scholar]
  29. 29.  Stewart LR, Willie K, Wijeratne S, Redinbaugh MG, Massawe D et al. 2017. Johnsongrass mosaic virus contributes to maize lethal necrosis in East Africa. Plant Dis 101:1455–62
    [Google Scholar]
  30. 30.  Uyemoto JK 1980. Detection of maize chlorotic mottle virus serotypes by enzyme-linked immunosorbent assay. Phytopathology 70:290–92
    [Google Scholar]
  31. 31.  Gordon DT, Bradfute OE, Gingery RE, Knoke JK, Nault LR 1978. Maize virus disease complexes in the United States: real and potential disease problems. Proceedings of the Thirty-third Annual Corn and Sorghum Research Conference102–33 Washington, DC: Am. Seed Trade Assoc.
    [Google Scholar]
  32. 32.  Stewart LR, Teplier R, Todd JC, Jones MW, Cassone BC et al. 2014. Viruses in maize and Johnsongrass in southern Ohio. Phytopathology 104:1360–69
    [Google Scholar]
  33. 33.  Storey HH 1924. Diseases of sugar-cane of the mosaic type in South Africa—Part I. J. Dep. Agric. (S. Afr.) 9:108–117
    [Google Scholar]
  34. 34.  Hansford CG 1935. Sugar-cane disease in Uganda. E. Afr. Agric. J. 1:25–28
    [Google Scholar]
  35. 35.  Kulkarni H 1972. Survey of viruses affecting East African major food crops PhD Thesis Univ. Nairobi Kenya:
    [Google Scholar]
  36. 36.  Louie R 1980. Sugarcane mosaic virus in Kenya. Plant Dis 64:944–47
    [Google Scholar]
  37. 37.  Hadi BAR, Langham MAC, Osborne L, Tilmon KJ 2011. Wheat streak mosaic virus on wheat: biology and management. Integ. J. Pest Manag. 2:J1–5
    [Google Scholar]
  38. 38.  Olspert A, Chung BYW, Atkins JF, Carr JP, Firth AE 2015. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. . EMBO Rep 16:995–1004
    [Google Scholar]
  39. 39.  Slykhuis JT 1955. Aceria tulipae Keifer (Acarina: Eriophyidae) in relation to spread of wheat streak mosaic virus. Phytopathology 45:116–28
    [Google Scholar]
  40. 40.  Adams MJ, Antoniw JF, Fauquet CM 2005. Molecular criteria for genus and species discrimination within the family Potyviridae. Arch. . Virol 150:459–79
    [Google Scholar]
  41. 41.  Shukla DD, Ward CW, Brunt AA 1994. The Potyviridae Wallingford, UK: Cent. Agric. Biosci. Int.
    [Google Scholar]
  42. 42.  Gao B, Cui XW, Li XD, Zhang CQ, Miao HQ 2011. Complete genomic sequence analysis of a highly virulent isolate revealed a novel strain of Sugarcane mosaic virus. . Virus Genes 43:390–97
    [Google Scholar]
  43. 43.  Jones M, Boyd E, Redinbaugh M 2011. Responses of maize (Zea mays L.) near isogenic lines carrying Wsm1, Wsm2, and Wsm3 to three viruses in the Potyviridae. Theor. Appl. Genet. 123:729–40
    [Google Scholar]
  44. 44.  Stewart LR, Haque MA, Jones MW, Redinbaugh MG 2013. Response of maize (Zea mays L.) lines carrying Wsm1, Wsm2, and Wsm3 to the potyviruses Johnsongrass mosaic virus and Sorghum mosaic virus. Mol. Breeding 31:289–97
    [Google Scholar]
  45. 45.  Uzarowska A, Dionisio G, Sarholz B, Piepho HP, Xu ML et al. 2009. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC Plant Biol 9:15
    [Google Scholar]
  46. 46.  Goldberg KB, Brakke MK 1987. Concentration of maize chlorotic mottle virus increased in mixed infections with maize dwarf mosaic virus, strain B. Phytopathology 77:162–67
    [Google Scholar]
  47. 47.  Scheets K 1998. Maize chlorotic mottle machlomovirus and wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. Virology 242:28–38
    [Google Scholar]
  48. 48.  Xia Z, Zhao ZX, Chen L, Li MJ, Zhou T et al. 2016. Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Sci. Rep. 6:20520
    [Google Scholar]
  49. 49.  Wang Q, Zhang C, Wang CY, Qian YJ, Li ZH et al. 2017. Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize. Sci. Rep. 7:39960
    [Google Scholar]
  50. 50.  Pruss G, Ge X, Shi XM, Carrington JC, Vance VB 1997. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–68
    [Google Scholar]
  51. 51.  Stenger DC, Young BA, Qu F, Morris TJ, French R 2007. Wheat streak mosaic virus lacking helper component-proteinase is competent to produce disease synergism in double infections with Maize chlorotic mottle virus. Phytopathology 97:1213–21
    [Google Scholar]
  52. 52.  Young BA, Stenger DC, Qu F, Morris TJ, Tatineni S, French R 2012. Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms. Virus Res 163:672–77
    [Google Scholar]
  53. 53.  Chen S, Jiang GZ, Wu JX, Liu Y, Qian YJ, Zhou XP 2016. Characterization of a novel polerovirus infecting maize in China. Viruses 8:120
    [Google Scholar]
  54. 54.  Wang F, Zhou BG, Gao ZL, Xu DF 2016. A new species of the genus Polerovirus causing symptoms similar to Maize yellow dwarf virus-RMV of maize in China. Plant Dis 100:1508
    [Google Scholar]
  55. 55.  Goncalves MC, Godinho M, Alves-Freitas DMT, Varsani A, Ribeiro SG 2017. First report of Maize yellow mosaic virus infecting maize in Brazil. Plant Dis 101:2156–57
    [Google Scholar]
  56. 56.  Yahaya A, Al Rwahnih M, Dangora DB, Gregg L, Alegbejo MD et al. 2017. First report of Maize yellow mosaic virus infecting sugarcane (Saccharum spp.) and itch grass (Rottboellia cochinchinensis) in Nigeria. Plant Dis 101:1335
    [Google Scholar]
  57. 57.  Kumar LM, Foster JA, McFarland C, Malapi-Wight M 2018. First report of Barley virus G in switchgrass (Panicum virgatum). Plant Dis 102:466
    [Google Scholar]
  58. 58.  Oh J, Park CY, Min HG, Lee HK, Yeom YA et al. 2017. First report of Barley virus G in foxtail millet (Setaria italica) in Korea. Plant Dis 101:1061–62
    [Google Scholar]
  59. 59.  Park CY, Min HG, Oh J, Kim BS, Lim S et al. 2017. First complete genome sequence of barley virus G identified from proso millet (Panicum miliaceum) in South Korea. Genome Ann. 5:e00523–17
    [Google Scholar]
  60. 60.  Park CY, Oh JH, Min HG, Lee HK, Lee SH 2017. First report of Barley virus G in proso millet (Panicum miliaceum) in Korea. Plant Dis 101:393
    [Google Scholar]
  61. 61.  Zhao F, Lim S, Yoo RH, Igori D, Kim SM et al. 2016. The complete genomic sequence of a tentative new polerovirus identified in barley in South Korea. Arch. Virol. 161:2047–50
    [Google Scholar]
  62. 62.  Alvarez-Quinto RA, Espinoza-Lozano RF, Mora-Pinargote CA, Quito-Avila DF 2017. Complete genome sequence of a variant of maize-associated totivirus from Ecuador. Arch. Virol. 162:1083–87
    [Google Scholar]
  63. 63.  Chen S, Cao L, Huang Q, Qian Y, Zhou X 2016. The complete genome sequence of a novel maize-associated totivirus. Arch. Virol. 161:487–90
    [Google Scholar]
  64. 64.  Nault LR, Styer WE, Coffey ME, Gordon DT, Negi LS, Niblett CL 1978. Transmission of maize chlorotic mottle virus by chrysomelid beetles. Phytopathology 68:1071–74
    [Google Scholar]
  65. 65.  Jensen SG 1985. Laboratory transmission of maize chlorotic mottle virus by three species of corn rootworms. Plant Dis. 69:864–68
    [Google Scholar]
  66. 66.  Tolin SA, Langham MAC, Gergerich RC 2016. Beetle transmission: a unique alliance of virus, vector, and host. Vector-Mediated Transmission of Plant Pathogens JK Brown 131–46 St. Paul, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  67. 67.  Krczal G, Damy JAI, Kusiak C, Deogratias JM, Moreau JP et al. 1995. Transmission of Pelargonium flower break virus (PFBV) in irrigation systems and by thrips. Plant Dis 79:163–66
    [Google Scholar]
  68. 68.  Zhao M, Ho H, Wu Y, He Y, Li M 2014. Western flower thrips (Frankliniella occidentalis) transmits Maize chlorotic mottle virus. J. Phytopathol. 162:532–36
    [Google Scholar]
  69. 69.  Cabanas D, Watanabe S, Higashi CHV, Bressan A 2013. Dissecting the mode of Maize chlorotic mottle virus transmission (Tombusviridae: Machlomovirus) by Frankliniella williamsi (Thysanoptera: Thripidae). J. Econ. Entomol. 106:16–24
    [Google Scholar]
  70. 70.  Hudson R 1999. Thrips. Handbook of Corn Insects KL Steffey, ME Rice, J All, DA Andow, ME Gray, JW Van Duyn 111 Lanham, MD: Entomol. Soc. Am.
    [Google Scholar]
  71. 71.  Farrar JJ, Davis RM 1991. Relationships among ear morphology, western flower thrips, and fusarium ear rot of corn. Phytopathology 81:661–66
    [Google Scholar]
  72. 72.  Yard EE, Daniel JH, Lewis LS, Rybak ME, Paliakov EM et al. 2013. Human aflatoxin exposure in Kenya, 2007: a cross-sectional study. Food Addit. Contam. Part A, Chem. Anal. Control Expo. Risk Assess. 30:1322–31
    [Google Scholar]
  73. 73.  Parsons MW, Munkvold GP 2010. Relationships of immature and adult thrips with silk-cut, fusarium ear rot and fumonisin B1 contamination of maize in California and Hawaii. Plant Pathol 59:1099–106
    [Google Scholar]
  74. 74.  Stewart LR, Louie R, Redinbaugh MG 2016. Virus diseases. Compendium of Corn Diseases GW Munkvold, DG White 100–16 St. Paul, MN: Am. Phys. Soc. , 4th ed..
    [Google Scholar]
  75. 75.  Eastop VF 1955. Notes on East African aphids. VII. Grass and cereal stem- and leaf-feeding species. East Afr. Agric. For. J. 20:209–12
    [Google Scholar]
  76. 76.  Eastop VF 1957. The periodicity of aphid flight in East Africa. Bull. Entomol. Res. 48:305–10
    [Google Scholar]
  77. 77.  Stenger DC, Hein GL, Gildow FE, Horken KM, French R 2005. Plant virus HC-Pro is a determinant of eriophyid mite transmission. J. Virol. 79:9054–61
    [Google Scholar]
  78. 78.  Bockelman DL, Claflin LE, Uyemoto JK 1982. Host range and seed-transmission studies of maize chlorotic mottle virus in grasses and corn. Plant Dis 66:216–18
    [Google Scholar]
  79. 79.  Wang Q, Zhou XP, Wu JX 2013. First report of Maize chlorotic mottle virus infecting sugarcane (Saccharum officinarum). Plant Dis 98:572
    [Google Scholar]
  80. 80.  Jensen SG, Wysong DS, Ball EM, Higley PM 1991. Seed transmission of maize chlorotic mottle virus. Plant Dis 75:497–98
    [Google Scholar]
  81. 81.  Delgadillo Sánchez F, Pons Hernández JL, Torreón Ibarra AD 1994. Seed transmission of maize chlorotic mottle virus. Rev. Mex. Fitopatol. 12:7–10
    [Google Scholar]
  82. 82.  Castillo-Loayza J 1977. Maize virus and virus-like diseases in Peru. Proceedings of the International Maize Virus Disease Colloquium and Workshop LE Williams, DT Gordon, LR Nault 40–44 Wooster, OH: Ohio Agric. Res. Dev. Cent.
    [Google Scholar]
  83. 83.  Zhang YJ, Zhao WJ, Li MF, Chen HJ, Zhu SF, Fan ZF 2011. Real-time TaqMan RT-PCR for detection of maize chlorotic mottle virus in maize seeds. J. Virol. Meth. 171:292–94
    [Google Scholar]
  84. 84.  Albrechtsen SE 2006. Ecology, epidemiology and control. Testing Methods for Seed-Transmitted Viruses: Principles and Protocols27–46 Wallingford, UK: Cent. Agric. Biosci. Int.
    [Google Scholar]
  85. 85.  Braidwood L, Quito-Avila DF, Cabanas D, Bressan A, Wangai A, Baulcombe DC 2018. Maize chlorotic mottle virus exhibits low divergence between differentiated regional sub-populations. Sci. Rep. 8:1173
    [Google Scholar]
  86. 86.  Li L, Wang XF, Zhou GH 2011. Effects of seed quality on the proportion of seed transmission for Sugarcane mosaic virus in maize. Cereal Res. Comm. 39:257–66
    [Google Scholar]
  87. 87.  Hull R 2014. Plant to plant movement. Plant Virology669–751 Boston: Academic. , 5th ed..
    [Google Scholar]
  88. 88.  Rochon DA 2016. Olpidium transmitted viruses. Vector-Mediated Transmission of Plant Pathogens DA Rochon 337–52 Minneapolis, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  89. 89.  Phillips NJ, Uyemoto JK, Wilson DL 1982. Maize chlorotic mottle virus and crop rotation: effect of sorghum on virus incidence. Plant Dis 66:376–79
    [Google Scholar]
  90. 90.  Sakimura K 1972. Frankliniella invasor, new species, and notes on F. gardeniae and the Frankliniella spp. in Hawaii (Thysanoptera: Thripidae). Proc. Hawaii. Entomol. Soc. 21:263–70
    [Google Scholar]
  91. 91.  Wang CL, Lin FC, Chiu YC, Shih HT 2010. Species of Frankliniella trybom (Thysanoptera: Thripidae) from the Asian-Pacific area. Zool. Stud. 49:824–38
    [Google Scholar]
  92. 92.  de Borbón CM 2013. Especies del género Frankliniella (Thysanoptera: Thripidae) registradas en la Argentina, una actualización. Rev. Facultad Cien. Agrarias Univ. Nacional Cuyo 45:259–84
    [Google Scholar]
  93. 93.  Nyasani JO, Meyhofer R, Subramanian S, Poehling HM 2012. Effect of intercrops on thrips species composition and population abundance on French beans in Kenya. Entomol. Exp. Appl. 142:236–46
    [Google Scholar]
  94. 94.  Svobodová Z, Skoková Habuštová O, Hutchison WD, Hussein HM, Sehnal F 2015. Risk assessment of genetically engineered maize resistant to Diabrotica spp.: influence on above-ground arthropods in the Czech Republic. PLOS ONE 10:e0130656
    [Google Scholar]
  95. 95.  Gowda M, Das B, Makumbi D, Babu R, Semagn K et al. 2015. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor. Appl. Genet. 128:1957–68
    [Google Scholar]
  96. 96.  Redinbaugh MG, Zambrano Mendoza JL 2014. Control of virus diseases in maize. Control of Plant Virus Disease: Seed-Propagated Crops G Lobenstein, N Katis 391–429 Waltham, MA: Academic
    [Google Scholar]
  97. 97.  Nelson S, Brewbaker J, Hu J 2011. Maize chlorotic mottle Rep. PD-79 Univ. Hawaii Honolulu:
    [Google Scholar]
  98. 98.  Jardine D 2018. Corn lethal necrosis Factsheet, Kan. State Univ. Ext. Manhattan: https://www.plantpath.k-state.edu/extension/publications/cornlethalnecrosis.pdf
    [Google Scholar]
  99. 99.  Doupnik B 1991. Complex Disease Threatens Corn Lincoln: Univ. Nebraska
    [Google Scholar]
  100. 100.  Stack J 1998. Corn Diseases Lincoln: Univ. Nebraska
    [Google Scholar]
  101. 101.  Li R, Baysal-Gurel F, Abdo Z, Miller SA, Ling K-S 2015. Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production. Virol. J. 12:5
    [Google Scholar]
  102. 102.  Wu JX, Wang Q, Liu H, Qian YJ, Xie Y, Zhou XP 2013. Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China. J. Zhejiang Univ. Sci. B 14:555–62
    [Google Scholar]
  103. 103.  Zeng C, Huang X, Xu JM, Li GF, Ma J et al. 2013. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal. Biochem. 440:18–22
    [Google Scholar]
  104. 104.  Huang X, Xu J, Ji H-F, Li G, Chen H 2014. Quartz crystal microbalance based biosensor for rapid and sensitive detection of maize chlorotic mottle virus. Anal. Meth. 6:4530–36
    [Google Scholar]
  105. 105.  Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E et al. 2013. Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol 62:741–49
    [Google Scholar]
  106. 106.  Boots M 2008. Fight or learn to live with the consequences?. Trends Ecol. Evol. 23:248–50
    [Google Scholar]
  107. 107.  Roy BA, Kirchner JW 2000. Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54:51–63
    [Google Scholar]
  108. 108.  Redinbaugh MG, Pratt RC 2008. Virus resistance. Handbook of Maize: Its Biology S Hake, JL Bennetzen 255–70 New York: Springer-Verlag
    [Google Scholar]
  109. 109.  Xu YB, Li P, Zou C, Lu YL, Xie CX et al. 2017. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 68:2641–66
    [Google Scholar]
  110. 110.  Semagn K, Beyene Y, Babu R, Nair S, Gowda M et al. 2015. Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for sub-Saharan Africa. Crop Sci 55:1–11
    [Google Scholar]
  111. 111.  Beyene Y, Gowda M, Suresh LM, Mugo S, Olsen M et al. 2017. Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica 213:224
    [Google Scholar]
  112. 112.  Liu Q, Liu H, Gong Y, Tao Y, Jiang L et al. 2017. An atypical thioredoxin imparts early resistance to Sugarcane mosaic virus in maize. Mol. Plant 10:483–97
    [Google Scholar]
  113. 113.  Leng P, Ji Q, Asp T, Frei UK, Ingvardsen CR et al. 2017. Auxin binding protein 1 reinforces resistance to Sugarcane mosaic virus in maize. Mol. Plant 10:1357–60
    [Google Scholar]
  114. 114.  Balducchi AJ, Mowers RP, George KR II. 1996. Corn lethal necrosis resistant maize and the production thereof U.S. Patent 5563318
    [Google Scholar]
  115. 115.  Jones MW, Penning BW, Jamann TM, Glaubitz JC, Romay MC et al. 2018. Diverse chromosomal locations of quantitative trait loci for tolerance to Maize chlorotic mottle virus in five maize populations. Phytopathology 108:748–58
    [Google Scholar]
  116. 116.  Brewbaker JL, Martin I 2015. Breeding tropical vegetable corns. Plant Breeding Reviews 39 J Janick 125–98 New York: Wiley-Blackwell
    [Google Scholar]
  117. 117.  Gowda M, Beyene Y, Makumbi D, Semagn K, Olsen MS et al. 2018. Discovery and validation of genomic regions associated with resistance to maize lethal necrosis in four biparental populations. Mol. Breed. 38:66
    [Google Scholar]
  118. 118.  Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL et al. 2013. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55
    [Google Scholar]
  119. 119.  Lindbo JA, Falk BW 2017. The impact of “coat protein-mediated virus resistance” in applied plant pathology and basic research. Phytopathology 107:624–34
    [Google Scholar]
  120. 120.  Liu XH, Tan ZB, Li WC, Zhang HM, He DW 2009. Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB. Afr. J. Biotech. 8:3747–53
    [Google Scholar]
  121. 121.  McMullen MD, Roth BA, Townsend R 1996. Maize chlorotic dwarf virus and resistance thereto U.S. Patent No. 5569828
    [Google Scholar]
  122. 122.  Shepherd DN, Mangwende T, Martin DP, Bezuidenhout M, Kloppers FJ et al. 2007. Maize streak virus-resistant transgenic maize: a first for Africa. Plant Biotech. J. 5:759–67
    [Google Scholar]
  123. 123.  Shepherd DN, Dugdale B, Martin DP, Varsani A, Lakay FM et al. 2014. Inducible resistance to maize streak virus. PLOS ONE 9:e105932
    [Google Scholar]
  124. 124.  Zhang ZY, Wang YG, Shen XJ, Li L, Zhou SF et al. 2013. RNA interference-mediated resistance to maize dwarf mosaic virus. Plant Cell Tissue Organ Cult 113:571–78
    [Google Scholar]
  125. 125.  Iqbal MS, Jabbar B, Sharif MN, Ali Q, Husnain T, Nasir IA 2017. In silico MCMV silencing concludes potential host-derived miRNAs in maize. Front. Plant Sci. 8:372
    [Google Scholar]
  126. 126.  Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–45
    [Google Scholar]
  127. 127.  Zaidi S, Tashkandi M, Mansoor S, Mahfouz MM 2016. Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front. Plant Sci. 7:1673
    [Google Scholar]
  128. 128.  Fishilevich E, Velez AM, Storer NP, Li HR, Bowling AJ et al. 2016. RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Manag. Sci. 72:1652–63
    [Google Scholar]
  129. 129.  Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE 2015. RNA interference tools for the western flower thrips, Frankliniella occidentalis. J. Insect Physiol. 76:36–46
    [Google Scholar]
  130. 130.  Albrechtsen SE 2006. Introduction. Testing Methods for Seed-Transmitted Viruses: Principles and Protocols Wallingford, UK: Cent. Agric. Biosci. Int.
    [Google Scholar]
  131. 131.  Hilker FM, Allen LJS, Bokil VA, Briggs CJ, Feng ZL et al. 2017. Modeling virus coinfection to inform management of maize lethal necrosis in Kenya. Phytopathology 107:1095–108
    [Google Scholar]
  132. 132.  Goergen G, Kumar PL, Sankung SB, Togola A, Tamo M 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLOS ONE 11:0165632
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043413
Loading
/content/journals/10.1146/annurev-virology-092917-043413
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error