1932

Abstract

The discovery of the gene–dependent, innate resistance of mice against influenza virus was a matter of pure chance. Although the subsequent analysis of this antiviral resistance was guided by straightforward logic, it nevertheless led us into many blind alleys and was full of surprising turns and twists. Unexpectedly, this research resulted in the identification of one of the first interferon-stimulated genes and provided a new view of interferon action. It also showed that in many species, MX proteins have activities against a broad range of viruses. To this day, Mx research continues to flourish and to provide insights into the never-ending battle between viruses and their hosts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043525
2018-09-29
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043525.html?itemId=/content/journals/10.1146/annurev-virology-092917-043525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  MacKenzie D 1993. Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance Cambridge, MA: MIT Press
    [Google Scholar]
  2. 2.  Lindenmann J 1964. Inheritance of resistance to influenza virus in mice. Proc. Soc. Exp. Biol. Med. 116:506–9
    [Google Scholar]
  3. 3.  Isaacs A, Lindenmann J 1957. Virus interference. I. The interferon. Proc. R. Soc. B 147:258–67
    [Google Scholar]
  4. 4.  Haller O 2015. A tribute to Jean Lindenmann, co-discoverer of interferon (1924–2015). Cytokine 76:113–15
    [Google Scholar]
  5. 5.  Lindenmann J 2005. Of mice and man—the Mx connection. Comprehensive Biochemistry, Vol. 44: Selected Topics in the History of Biochemistry: Personal Recollections IX G Semenza, AJ Turner 267–95 Amsterdam: Elsevier
    [Google Scholar]
  6. 6.  Ungar J, Basil B 1957. Routine experience of the mouse-protection assay of pertussis vaccine. J. Hyg. 55:45–49
    [Google Scholar]
  7. 7.  Lindenmann J 1962. Resistance of mice to mouse-adapted influenza A virus. Virology 16:203–4
    [Google Scholar]
  8. 8.  Sawyer WA, Lloyd W 1931. The use of mice in tests of immunity against yellow fever. J. Exp. Med. 54:533–55
    [Google Scholar]
  9. 9.  Webster LT 1937. Inheritance of resistance of mice to enteric bacterial and neurotropic virus infections. J. Exp. Med. 65:261–86
    [Google Scholar]
  10. 10.  Sabin AB 1952. Nature of inherited resistance to viruses affecting the nervous system. PNAS 38:540–46
    [Google Scholar]
  11. 11.  Vainio T, Gwatkin R, Koprowski H 1961. Production of interferon by brains of genetically resistant and susceptible mice infected with West Nile virus. Virology 14:385–87
    [Google Scholar]
  12. 12.  Bang FB, Warwick A 1960. Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis of their susceptibility. PNAS 46:1065–75
    [Google Scholar]
  13. 13.  Lindenmann J, Klein P 1966. Further studies on the resistance of mice to myxoviruses. Arch. Gesamte Virusforsch. 19:1–12
    [Google Scholar]
  14. 14.  Lindenmann J, Lane CA, Hobson D 1963. The resistance of A2G mice to myxoviruses. J. Immunol. 90:942–51
    [Google Scholar]
  15. 15.  Rusanova NA, Solov'ev VD 1966. [On the problem of natural antiviral immunity. The hereditary character and mechanism of resistance of mice of the A2G line to influenza virus]. Vopr. Virusol. 11:398–402 (In Russian)
    [Google Scholar]
  16. 16.  Lindenmann J 1963. Viral oncolysis with host survival. Proc. Soc. Exp. Biol. Med. 113:85–91
    [Google Scholar]
  17. 17.  Lindenmann J, Klein P 1967. Immunological Aspects of Viral Oncolysis Heidelberg, Ger.: Springer-Verlag
    [Google Scholar]
  18. 18.  Cattaneo R, Russell SJ 2017. How to develop viruses into anticancer weapons. PLOS Pathog 13:e1006190
    [Google Scholar]
  19. 19.  Fiske RA, Klein PA 1975. Effect of immunosuppression on the genetic resistance of A2G mice to neurovirulent influenza virus. Infect. Immun. 11:576–87
    [Google Scholar]
  20. 20.  Mayer V, Schulman JL, Kilbourne ED 1973. Nonlinkage of neurovirulence exclusively to viral hemagglutinin or neuraminidase in genetic recombinants of A-NWS (H0N1) influenza virus. J. Virol. 11:272–78
    [Google Scholar]
  21. 21.  Haller O 1975. A mouse hepatotropic variant of influenza virus. Arch. Virol. 49:99–116
    [Google Scholar]
  22. 22.  Haller O, Arnheiter H, Lindenmann J 1976. Genetically determined resistance to infection by hepatotropic influenza A virus in mice: effect of immunosuppression. Infect. Immun. 13:844–54
    [Google Scholar]
  23. 23.  Arnheiter H, Haller O, Lindenmann J 1976. Pathology of influenza hepatitis in susceptible and genetically resistant mice. Exp. Cell Biol. 44:95–107
    [Google Scholar]
  24. 24.  Haller O, Lindenmann J 1974. Athymic (nude) mice express gene for myxovirus resistance. Nature 250:679–80
    [Google Scholar]
  25. 25.  Goodman GT, Koprowski H 1962. Macrophages as a cellular expression of inherited natural resistance. PNAS 48:160–65
    [Google Scholar]
  26. 26.  Lindenmann J, Deuel E, Fanconi S, Haller O 1978. Inborn resistance of mice to myxoviruses: macrophages express phenotype in vitro. J. Exp. Med. 147:531–40
    [Google Scholar]
  27. 27.  Godleski JJ, Brain JD 1972. The origin of alveolar macrophages in mouse radiation chimeras. J. Exp. Med. 136:630–43
    [Google Scholar]
  28. 28.  Howard J 1978. The origin and immunological significance of Kupffer cells. Mononuclear Phagocytes R van Furth, pp. 178–99 Oxford, UK: Blackwell Sci.
    [Google Scholar]
  29. 29.  Haller O, Hansson M, Kiessling R, Wigzell H 1977. Role of non-conventional natural killer cells in resistance against syngeneic tumour cells in vivo. Nature 270:609–11
    [Google Scholar]
  30. 30.  Baldwin R 1977. Immune surveillance revisited. Nature 270:557
    [Google Scholar]
  31. 31.  Haller O, Arnheiter H, Lindenmann J 1979. Natural, genetically determined resistance toward influenza virus in hemopoietic mouse chimeras. Role of mononuclear phagocytes. J. Exp. Med. 150:117–26
    [Google Scholar]
  32. 32.  Virelizier JL, Gresser I 1978. Role of interferon in the pathogenesis of viral diseases of mice as demonstrated by the use of anti-interferon serum. V. Protective role in mouse hepatitis virus type 3 infection of susceptible and resistant strains of mice. J. Immunol. 120:1616–19
    [Google Scholar]
  33. 33.  Gresser I, Tovey MG, Maury C, Bandu MT 1976. Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. II. Studies with herpes simplex, Moloney sarcoma, vesicular stomatitis, Newcastle disease, and influenza viruses. J. Exp. Med. 144:1316–23
    [Google Scholar]
  34. 34.  Haller O, Arnheiter H, Gresser I, Lindenmann J 1979. Genetically determined, interferon-dependent resistance to influenza virus in mice. J. Exp. Med. 149:601–12
    [Google Scholar]
  35. 35.  De Maeyer-Guignard J, Tovey MG, Gresser I, De Maeyer E 1978. Purification of mouse interferon by sequential affinity chromatography on poly(U)– and antibody–agarose columns. Nature 271:622–25
    [Google Scholar]
  36. 36.  Haller O, Arnheiter H, Lindenmann J, Gresser I 1980. Host gene influences sensitivity to interferon action selectively for influenza virus. Nature 283:660–62
    [Google Scholar]
  37. 37.  Schoggins JW, Rice CM 2011. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1:519–25
    [Google Scholar]
  38. 38.  Arnheiter H 1980. Primary monolayer culture of adult mouse hepatocytes—a model for the study of hepatotropic viruses. Arch. Virol. 63:11–22
    [Google Scholar]
  39. 39.  Arnheiter H, Baechi T, Haller O 1982. Adult mouse hepatocytes in primary monolayer culture express genetic resistance to mouse hepatitis virus type 3. J. Immunol. 129:1275–81
    [Google Scholar]
  40. 40.  Arnheiter H, Haller O, Lindenmann J 1980. Host gene influence on interferon action in adult mouse hepatocytes: specificity for influenza virus. Virology 103:11–20
    [Google Scholar]
  41. 41.  Arnheiter H, Staeheli P 1983. Expression of interferon dependent resistance to influenza virus in mouse embryo cells. Arch. Virol. 76:127–37
    [Google Scholar]
  42. 42.  Haller O, Arnheiter H, Gresser I, Lindenmann J 1981. Virus-specific interferon action. Protection of newborn Mx carriers against lethal infection with influenza virus. J. Exp. Med. 154:199–203
    [Google Scholar]
  43. 43.  Haller O 1981. Inborn resistance of mice to orthomyxoviruses. Curr. Top. Microbiol. Immunol. 92:25–52
    [Google Scholar]
  44. 44.  Arnheiter H, Haller O 1983. Mx gene control of interferon action: different kinetics of the antiviral state against influenza virus and vesicular stomatitis virus. J. Virol. 47:626–30
    [Google Scholar]
  45. 45.  Lengyel P 1982. Biochemistry of interferons and their actions. Annu. Rev. Biochem. 51:251–82
    [Google Scholar]
  46. 46.  Staeheli P, Horisberger MA, Haller O 1984. Mx-dependent resistance to influenza viruses is induced by mouse interferons α and β but not γ. Virology 132:456–61
    [Google Scholar]
  47. 47.  Simon A, Fah J, Haller O, Staeheli P 1991. Interferon-regulated Mx genes are not responsive to interleukin-1, tumor necrosis factor, and other cytokines. J. Virol. 65:968–71
    [Google Scholar]
  48. 48.  Holzinger D, Jorns C, Stertz S, Boisson-Dupuis S, Thimme R et al. 2007. Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. J. Virol. 81:7776–85
    [Google Scholar]
  49. 49.  Mordstein M, Neugebauer E, Ditt V, Jessen B, Rieger T et al. 2010. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J. Virol. 84:5670–77
    [Google Scholar]
  50. 50.  Horisberger MA, Haller O, Arnheiter H 1980. Interferon-dependent genetic resistance to influenza virus in mice: Virus replication in macrophages is inhibited at an early step. J. Gen. Virol. 50:205–10
    [Google Scholar]
  51. 51.  Plotch SJ, Bouloy M, Ulmanen I, Krug RM 1981. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–58
    [Google Scholar]
  52. 52.  Krug RM, Shaw M, Broni B, Shapiro G, Haller O 1985. Inhibition of influenza viral mRNA synthesis in cells expressing the interferon-induced Mx gene product. J. Virol. 56:201–6
    [Google Scholar]
  53. 53.  Broni B, Julkunen I, Condra JH, Davies ME, Berry MJ, Krug RM 1990. Parental influenza virion nucleocapsids are efficiently transported into the nuclei of murine cells expressing the nuclear interferon-induced Mx protein. J. Virol. 64:6335–40
    [Google Scholar]
  54. 54.  Pavlovic J, Haller O, Staeheli P 1992. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J. Virol. 66:2564–69
    [Google Scholar]
  55. 55.  Stranden AM, Staeheli P, Pavlovic J 1993. Function of the mouse Mx1 protein is inhibited by overexpression of the PB2 protein of influenza virus. Virology 197:642–51
    [Google Scholar]
  56. 56.  Verhelst J, Van Hoecke L, Spitaels J, De Vlieger D, Kolpe A, Saelens X 2017. Chemical-controlled activation of antiviral myxovirus resistance protein 1. J. Biol. Chem. 292:2226–36
    [Google Scholar]
  57. 57.  Huang T, Pavlovic J, Staeheli P, Krystal M 1992. Overexpression of the influenza virus polymerase can titrate out inhibition by the murine Mx1 protein. J. Virol. 66:4154–60
    [Google Scholar]
  58. 58.  Samuel CE, Joklik WK 1974. A protein synthesizing system from interferon-treated cells that discriminates between cellular and viral messenger RNAs. Virology 58:476–91
    [Google Scholar]
  59. 59.  Clemens MJ, Williams BR 1978. Inhibition of cell-free protein synthesis by pppA2′p5′A2′p5′ A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 13:565–72
    [Google Scholar]
  60. 60.  Hovanessian AG, Kerr IM 1979. The (2′-5′) oligoadenylate (ppA2′-5′A2′-5′A) synthetase and protein kinase(s) from interferon-treated cells. Eur. J. Biochem. 93:515–26
    [Google Scholar]
  61. 61.  Baglioni C 1979. Interferon-induced enzymatic activities and their role in the antiviral state. Cell 17:255–64
    [Google Scholar]
  62. 62.  O'Farrell PZ, Goodman HM, O'Farrell PH 1977. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–41
    [Google Scholar]
  63. 63.  Horisberger MA 1980. The large P proteins of influenza A viruses are composed of one acidic and two basic polypeptides. Virology 107:302–5
    [Google Scholar]
  64. 64.  Horisberger MA, Staeheli P, Haller O 1983. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. PNAS 80:1910–14
    [Google Scholar]
  65. 65.  Staeheli P, Dreiding P, Haller O, Lindenmann J 1985. Polyclonal and monoclonal antibodies to the interferon-inducible protein Mx of influenza virus-resistant mice. J. Biol. Chem. 260:1821–25
    [Google Scholar]
  66. 66.  Dreiding P, Staeheli P, Haller O 1985. Interferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses. Virology 140:192–96
    [Google Scholar]
  67. 67.  Engelhardt OG, Sirma H, Pandolfi PP, Haller O 2004. Mx1 GTPase accumulates in distinct nuclear domains and inhibits influenza A virus in cells that lack promyelocytic leukaemia protein nuclear bodies. J. Gen. Virol. 85:2315–26
    [Google Scholar]
  68. 68.  Engelhardt OG, Ullrich E, Kochs G, Haller O 2001. Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp. Cell Res. 271:286–95
    [Google Scholar]
  69. 69.  Arnheiter H, Haller O 1988. Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J 7:1315–20
    [Google Scholar]
  70. 70.  Staeheli P, Haller O 1985. Interferon-induced human protein with homology to protein Mx of influenza virus-resistant mice. Mol. Cell. Biol. 5:2150–53
    [Google Scholar]
  71. 71.  Nagata S, Taira H, Hall A, Johnsrud L, Streuli M et al. 1980. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 284:316–20
    [Google Scholar]
  72. 72.  Staeheli P, Haller O, Boll W, Lindenmann J, Weissmann C 1986. Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44:147–58
    [Google Scholar]
  73. 73.  Rothman JH, Raymond CK, Gilbert T, O'Hara PJ, Stevens TH 1990. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61:1063–74
    [Google Scholar]
  74. 74.  Obar RA, Collins CA, Hammarback JA, Shpetner HS, Vallee RB 1990. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347:256–61
    [Google Scholar]
  75. 75.  Haller O, Staeheli P, Schwemmle M, Kochs G 2015. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol 23:154–63
    [Google Scholar]
  76. 76.  Mitchell PS, Patzina C, Emerman M, Haller O, Malik HS, Kochs G 2012. Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA. Cell Host Microbe 12:598–604
    [Google Scholar]
  77. 77.  Mitchell PS, Emerman M, Malik HS 2013. An evolutionary perspective on the broad antiviral specificity of MxA. Curr. Opin. Microbiol. 16:493–99
    [Google Scholar]
  78. 78.  Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O 1988. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell. Biol. 8:4518–23
    [Google Scholar]
  79. 79.  Haller O, Acklin M, Staeheli P 1987. Influenza virus resistance of wild mice: Wild-type and mutant Mx alleles occur at comparable frequencies. J. Interferon Res. 7:647–56
    [Google Scholar]
  80. 80.  Jin HK, Yamashita T, Ochiai K, Haller O, Watanabe T 1998. Characterization and expression of the Mx1 gene in wild mouse species. Biochem. Genet. 36:311–22
    [Google Scholar]
  81. 81.  Guenet JL, Bonhomme F 2003. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19:24–31
    [Google Scholar]
  82. 82.  Iwasaki A 2016. Antiviral responses of inbred mice. Nat. Rev. Immunol. 16:339
    [Google Scholar]
  83. 83.  Pillai PS, Molony RD, Martinod K, Dong H, Pang IK et al. 2016. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352:463–66
    [Google Scholar]
  84. 84.  Haller O, Frese M, Rost D, Nuttall PA, Kochs G 1995. Tick-borne Thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product Mx1. J. Virol. 69:2596–601
    [Google Scholar]
  85. 85.  Staeheli P, Sutcliffe JG 1988. Identification of a second interferon-regulated murine Mx gene. Mol. Cell. Biol. 8:4524–28
    [Google Scholar]
  86. 86.  Staeheli P, Pravtcheva D, Lundin LG, Acklin M, Ruddle F et al. 1986. Interferon-regulated influenza virus resistance gene Mx is localized on mouse chromosome 16. J. Virol. 58:967–69
    [Google Scholar]
  87. 87.  Reeves RH, O'Hara BF, Pavan WJ, Gearhart JD, Haller O 1988. Genetic mapping of the Mx influenza virus resistance gene within the region of mouse chromosome 16 that is homologous to human chromosome 21. J. Virol. 62:4372–75
    [Google Scholar]
  88. 88.  Zurcher T, Pavlovic J, Staeheli P 1992. Mouse Mx2 protein inhibits vesicular stomatitis virus but not influenza virus. Virology 187:796–800
    [Google Scholar]
  89. 89.  Zurcher T, Pavlovic J, Staeheli P 1992. Nuclear localization of mouse Mx1 protein is necessary for inhibition of influenza virus. J. Virol. 66:5059–66
    [Google Scholar]
  90. 90.  Johannes L, Arnheiter H, Meier E 1993. Switch in antiviral specificity of a GTPase upon translocation from the cytoplasm to the nucleus. J. Virol. 67:1653–57
    [Google Scholar]
  91. 91.  Staeheli P, Yu YX, Grob R, Haller O 1989. A double-stranded RNA-inducible fish gene homologous to the murine influenza virus resistance gene Mx. Mol. Cell. . Biol 9:3117–21
    [Google Scholar]
  92. 92.  Caipang CM, Hirono I, Aoki T 2003. In vitro inhibition of fish rhabdoviruses by Japanese flounder, Paralichthys olivaceus Mx. Virology 317:373–82
    [Google Scholar]
  93. 93.  Larsen R, Rokenes TP, Robertsen B 2004. Inhibition of infectious pancreatic necrosis virus replication by Atlantic salmon Mx1 protein. J. Virol. 78:7938–44
    [Google Scholar]
  94. 94.  Robertsen B 2006. The interferon system of teleost fish. Fish Shellfish Immunol 20:172–91
    [Google Scholar]
  95. 95.  Lee SH, Vidal SM 2002. Functional diversity of Mx proteins: variations on a theme of host resistance to infection. Genome Res 12:527–30
    [Google Scholar]
  96. 96.  Bazzigher L, Schwarz A, Staeheli P 1993. No enhanced influenza virus resistance of murine and avian cells expressing cloned duck Mx protein. Virology 195:100–12
    [Google Scholar]
  97. 97.  Bernasconi D, Schultz U, Staeheli P 1995. The interferon-induced Mx protein of chickens lacks antiviral activity. J. Interferon Cytokine Res. 15:47–53
    [Google Scholar]
  98. 98.  Li XY, Qu LJ, Hou ZC, Yao JF, Xu GY, Yang N 2007. Genomic structure and diversity of the chicken Mx gene. Poult. Sci. 86:786–89
    [Google Scholar]
  99. 99.  Haller O, Staeheli P, Kochs G 2009. Protective role of interferon-induced Mx GTPases against influenza viruses. Rev. Sci. Tech. 28:219–31
    [Google Scholar]
  100. 100.  Kolb E, Laine E, Strehler D, Staeheli P 1992. Resistance to influenza virus infection of Mx transgenic mice expressing Mx protein under the control of two constitutive promoters. J. Virol. 66:1709–16
    [Google Scholar]
  101. 101.  Muller M, Brenig B, Winnacker EL, Brem G 1992. Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 121:263–70
    [Google Scholar]
  102. 102.  Arnheiter H, Skuntz S, Noteborn M, Chang S, Meier E 1990. Transgenic mice with intracellular immunity to influenza virus. Cell 62:51–61
    [Google Scholar]
  103. 103.  Arnheiter H, Frese M, Kambadur R, Meier E, Haller O 1996. Mx transgenic mice—animal models of health. Curr. Top. Microbiol. Immunol. 206:119–47
    [Google Scholar]
  104. 104.  Aebi M, Fah J, Hurt N, Samuel CE, Thomis D et al. 1989. cDNA structures and regulation of two interferon-induced human Mx proteins. Mol. Cell. Biol. 9:5062–72
    [Google Scholar]
  105. 105.  Pavlovic J, Zurcher T, Haller O, Staeheli P 1990. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J. Virol. 64:3370–75
    [Google Scholar]
  106. 106.  Hefti HP, Frese M, Landis H, Di Paolo C, Aguzzi A et al. 1999. Human MxA protein protects mice lacking a functional alpha/beta interferon system against La Crosse virus and other lethal viral infections. J. Virol. 73:6984–91
    [Google Scholar]
  107. 107.  Miura TA, Carlson JO, Beaty BJ, Bowen RA, Olson KE 2001. Expression of human MxA protein in mosquito cells interferes with LaCrosse virus replication. J. Virol. 75:3001–3
    [Google Scholar]
  108. 108.  Turan K, Mibayashi M, Sugiyama K, Saito S, Numajiri A, Nagata K 2004. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res 32:643–52
    [Google Scholar]
  109. 109.  Zimmermann P, Manz B, Haller O, Schwemmle M, Kochs G 2011. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J. Virol. 85:8133–40
    [Google Scholar]
  110. 110.  Manz B, Dornfeld D, Gotz V, Zell R, Zimmermann P et al. 2013. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLOS Pathog 9:e1003279
    [Google Scholar]
  111. 111.  Melen K, Keskinen P, Ronni T, Sareneva T, Lounatmaa K, Julkunen I 1996. Human MxB protein, an interferon-α-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochromatin region beneath the nuclear envelope. J. Biol. Chem. 271:23478–86
    [Google Scholar]
  112. 112.  King MC, Raposo G, Lemmon MA 2004. Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB. PNAS 101:8957–62
    [Google Scholar]
  113. 113.  Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC et al. 2013. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–62
    [Google Scholar]
  114. 114.  Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T et al. 2013. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–66
    [Google Scholar]
  115. 115.  Liu Z, Pan Q, Ding S, Qian J, Xu F et al. 2013. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14:398–410
    [Google Scholar]
  116. 116.  Haller O 2013. Dynamins are forever: MxB inhibits HIV-1. Cell Host Microbe 14:371–73
    [Google Scholar]
  117. 117.  Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O et al. 2010. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465:502–6
    [Google Scholar]
  118. 118.  Gao S, von der Malsburg A, Dick A, Faelber K, Schroder GF et al. 2011. Structure of myxovirus resistance protein A reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 35:514–25
    [Google Scholar]
  119. 119.  Haller O, Gao S, von der Malsburg A, Daumke O, Kochs G 2010. Dynamin-like MxA GTPase: structural insights into oligomerization and implications for antiviral activity. J. Biol. Chem. 285:28419–24
    [Google Scholar]
  120. 120.  Daumke O, Gao S, von der Malsburg A, Haller O, Kochs G 2010. Structure of the MxA stalk elucidates the assembly of ring-like units of an antiviral module. Small GTPases 1:62–64
    [Google Scholar]
  121. 121.  Faelber K, Posor Y, Gao S, Held M, Roske Y et al. 2011. Crystal structure of nucleotide-free dynamin. Nature 477:556–60
    [Google Scholar]
  122. 122.  Ford MG, Jenni S, Nunnari J 2011. The crystal structure of dynamin. Nature 477:561–66
    [Google Scholar]
  123. 123.  Antonny B, Burd C, De Camilli P, Chen E, Daumke O et al. 2016. Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–84
    [Google Scholar]
  124. 124.  Mitchell PS, Young JM, Emerman M, Malik HS 2015. Evolutionary analyses suggest a function of MxB immunity proteins beyond lentivirus restriction. PLOS Pathog 11:e1005304
    [Google Scholar]
  125. 125.  Verhelst J, Hulpiau P, Saelens X 2013. Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol. Mol. Biol. Rev. 77:551–66
    [Google Scholar]
  126. 126.  Ciancanelli MJ, Abel L, Zhang SY, Casanova JL 2016. Host genetics of severe influenza: from mouse Mx1 to human IRF7. Curr. Opin. Immunol. 38:109–20
    [Google Scholar]
  127. 127.  Horby P, Nguyen NY, Dunstan SJ, Baillie JK 2012. The role of host genetics in susceptibility to influenza: a systematic review. PLOS ONE 7:e33180
    [Google Scholar]
  128. 128.  Pavlovic J, Arzet HA, Hefti HP, Frese M, Rost D et al. 1995. Enhanced virus resistance of transgenic mice expressing the human MxA protein. J. Virol. 69:4506–10
    [Google Scholar]
  129. 129.  Deeg CM, Hassan E, Mutz P, Rheinemann L, Gotz V et al. 2017. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein. J. Exp. Med. 214:1239–48
    [Google Scholar]
  130. 130.  Staeheli P, Danielson P, Haller O, Sutcliffe JG 1986. Transcriptional activation of the mouse Mx gene by type I interferon. Mol. Cell. Biol. 6:4770–74
    [Google Scholar]
  131. 131.  Hug H, Costas M, Staeheli P, Aebi M, Weissmann C 1988. Organization of the murine Mx gene and characterization of its interferon- and virus-inducible promoter. Mol. Cell. Biol. 8:3065–79
    [Google Scholar]
  132. 132.  Kuhn R, Schwenk F, Aguet M, Rajewsky K 1995. Inducible gene targeting in mice. Science 269:1427–29
    [Google Scholar]
  133. 133.  Velasco-Hernandez T, Sawen P, Bryder D, Cammenga J 2016. Potential pitfalls of the Mx1-Cre system: implications for experimental modeling of normal and malignant hematopoiesis. Stem Cell Rep 7:11–18
    [Google Scholar]
  134. 134.  von Wussow P, Jakschies D, Block B, Tschechne B, Schedel I et al. 1990. The interferon-induced Mx-homologous protein in people with symptomatic HIV-1 infection. AIDS 4:119–24
    [Google Scholar]
  135. 135.  Jakschies D, Hochkeppel H, Horisberger M, Deicher H, von Wussow P 1990. Emergence and decay of the human Mx homolog in cancer patients during and after interferon-α therapy. J. Biol. Response Modif. 9:305–12
    [Google Scholar]
  136. 136.  Fah J, Pavlovic J, Burg G 1995. Expression of MxA protein in inflammatory dermatoses. J. Histochem. Cytochem. 43:47–52
    [Google Scholar]
  137. 137.  Roers A, Hochkeppel HK, Horisberger MA, Hovanessian A, Haller O 1994. MxA gene expression after live virus vaccination: a sensitive marker for endogenous type I interferon. J. Infect. Dis. 169:807–13
    [Google Scholar]
  138. 138.  Jorns C, Holzinger D, Thimme R, Spangenberg HC, Weidmann M et al. 2006. Rapid and simple detection of IFN-neutralizing antibodies in chronic hepatitis C non-responsive to IFN-α. J. Med. Virol. 78:74–82
    [Google Scholar]
  139. 139.  Crameri M, Bauer M, Caduff N, Walker R, Steiner F et al. 2018. MxB is an interferon-induced restriction factor of human herpesviruses. Nat. Commun. 9:1980
    [Google Scholar]
  140. 140.  Schilling M, Bulli L, Weigang S, Graf L, Naumann S et al. 2018. MxB protein is a pan-herpesvirus restriction factor. J. Virol. In press
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043525
Loading
/content/journals/10.1146/annurev-virology-092917-043525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error