1932

Abstract

Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA–editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092920-030354
2022-09-29
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-092920-030354.html?itemId=/content/journals/10.1146/annurev-virology-092920-030354&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71:209–49
    [Crossref] [Google Scholar]
  2. 2.
    de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. 2020. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 8:e180–90
    [Crossref] [Google Scholar]
  3. 3.
    Lambert PF. 2016. Transgenic mouse models of tumor virus action. Annu. Rev. Virol. 3:473–89
    [Crossref] [Google Scholar]
  4. 4.
    Spurgeon ME, Cheng J, Bronson RT, Lambert PF, DeCaprio JA. 2015. Tumorigenic activity of Merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice. Cancer Res 75:1068–79
    [Crossref] [Google Scholar]
  5. 5.
    Pfeifer GP, You YH, Besaratinia A. 2005. Mutations induced by ultraviolet light. Mutat. Res. 571:19–31
    [Crossref] [Google Scholar]
  6. 6.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18
    [Crossref] [Google Scholar]
  7. 7.
    Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93
    [Crossref] [Google Scholar]
  8. 8.
    Roberts SA, Sterling J, Thompson C, Harris S, Mav D et al. 2012. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46:424–35
    [Crossref] [Google Scholar]
  9. 9.
    Granadillo Rodriguez M, Flath B, Chelico L 2020. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biol 10:200188
    [Crossref] [Google Scholar]
  10. 10.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21
    [Crossref] [Google Scholar]
  11. 11.
    Burns MB, Temiz NA, Harris RS. 2013. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45:977–83
    [Crossref] [Google Scholar]
  12. 12.
    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:94–101
    [Crossref] [Google Scholar]
  13. 13.
    Warren CJ, Westrich JA, Doorslaer KV, Pyeon D. 2017. Roles of APOBEC3A and APOBEC3B in human papillomavirus infection and disease progression. Viruses 9:8233
    [Crossref] [Google Scholar]
  14. 14.
    Logue EC, Bloch N, Dhuey E, Zhang R, Cao P et al. 2014. A DNA sequence recognition loop on APOBEC3A controls substrate specificity. PLOS ONE 9:e97062
    [Crossref] [Google Scholar]
  15. 15.
    Rathore A, Carpenter MA, Demir O, Ikeda T, Li M et al. 2013. The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution. J. Mol. Biol. 425:4442–54
    [Crossref] [Google Scholar]
  16. 16.
    Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K et al. 2013. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. eLife 2:e00534
    [Crossref] [Google Scholar]
  17. 17.
    Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45:970–76
    [Crossref] [Google Scholar]
  18. 18.
    Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, Malim MH. 2009. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J. Virol. 83:9474–85
    [Crossref] [Google Scholar]
  19. 19.
    Warren CJ, Xu T, Guo K, Griffin LM, Westrich JA et al. 2015. APOBEC3A functions as a restriction factor of human papillomavirus. J. Virol. 89:688–702
    [Crossref] [Google Scholar]
  20. 20.
    Chang YE, Pena L, Sen GC, Park JK, Laimins LA. 2002. Long-term effect of interferon on keratinocytes that maintain human papillomavirus type 31. J. Virol. 76:8864–74
    [Crossref] [Google Scholar]
  21. 21.
    Herdman MT, Pett MR, Roberts I, Alazawi WO, Teschendorff AE et al. 2006. Interferon-β treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants. Carcinogenesis 27:2341–53
    [Crossref] [Google Scholar]
  22. 22.
    Westrich JA, Warren CJ, Pyeon D. 2017. Evasion of host immune defenses by human papillomavirus. Virus Res 231:21–33
    [Crossref] [Google Scholar]
  23. 23.
    Pyeon D, Newton MA, Lambert PF, Den Boon JA, Sengupta S et al. 2007. Fundamental differences in cell cycle deregulation in human papillomavirus–positive and human papillomavirus–negative head/neck and cervical cancers. Cancer Res 67:4605–19
    [Crossref] [Google Scholar]
  24. 24.
    DeCarlo CA, Severini A, Edler L, Escott NG, Lambert PF et al. 2010. IFN-κ, a novel type I IFN, is undetectable in HPV-positive human cervical keratinocytes. Lab. Invest. 90:1482–91
    [Crossref] [Google Scholar]
  25. 25.
    Vieira VC, Leonard B, White EA, Starrett GJ, Temiz NA et al. 2014. Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B. mBio 5:6e02234–14
    [Crossref] [Google Scholar]
  26. 26.
    Westrich JA, Warren CJ, Klausner MJ, Guo K, Liu CW et al. 2018. Human papillomavirus 16 E7 stabilizes APOBEC3A protein by inhibiting cullin 2-dependent protein degradation. J. Virol. 92:7e01318–17
    [Crossref] [Google Scholar]
  27. 27.
    Oh S, Bournique E, Bowen D, Jalili P, Sanchez A et al. 2021. Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways. Nat. Commun. 12:4917
    [Crossref] [Google Scholar]
  28. 28.
    Albert E, Laimins L 2020. Regulation of the human papillomavirus life cycle by DNA damage repair pathways and epigenetic factors. Viruses 12:7744
    [Crossref] [Google Scholar]
  29. 29.
    Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80:5059–64
    [Crossref] [Google Scholar]
  30. 30.
    Roelofs PA, Goh CY, Chua BH, Jarvis MC, Stewart TA et al. 2020. Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. eLife 9:e61287
    [Crossref] [Google Scholar]
  31. 31.
    Starrett GJ, Serebrenik AA, Roelofs PA, McCann JL, Verhalen B et al. 2019. Polyomavirus T antigen induces APOBEC3B expression using an LXCXE-dependent and TP53-independent mechanism. mBio 10:1e02690–18
    [Crossref] [Google Scholar]
  32. 32.
    Mori S, Takeuchi T, Ishii Y, Yugawa T, Kiyono T et al. 2017. Human papillomavirus 16 E6 upregulates APOBEC3B via the TEAD transcription factor. J. Virol. 91:6e02413–16
    [Crossref] [Google Scholar]
  33. 33.
    He C, Mao D, Hua G, Lv X, Chen X et al. 2015. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol. Med. 7:1426–49
    [Crossref] [Google Scholar]
  34. 34.
    Webb Strickland S, Brimer N, Lyons C, Vande Pol SB. 2018. Human papillomavirus E6 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. Virology 516:127–38
    [Crossref] [Google Scholar]
  35. 35.
    Mori S, Takeuchi T, Ishii Y, Kukimoto I. 2015. Identification of APOBEC3B promoter elements responsible for activation by human papillomavirus type 16 E6. Biochem. Biophys. Res. Commun. 460:555–60
    [Crossref] [Google Scholar]
  36. 36.
    Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK et al. 2018. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 562:373–79
    [Crossref] [Google Scholar]
  37. 37.
    Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y et al. 2017. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 102:118–29
    [Crossref] [Google Scholar]
  38. 38.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–50
    [Crossref] [Google Scholar]
  39. 39.
    Scholtes GK, Sawyer AM, Vaca CC, Clerc I, Roh M et al. 2021. The von Hippel–Lindau Cullin-RING E3 ubiquitin ligase regulates APOBEC3 cytidine deaminases. Transl. Res. 237:1–15
    [Crossref] [Google Scholar]
  40. 40.
    Zhou L, Ren JH, Cheng ST, Xu HM, Chen WX et al. 2019. A functional variant in ubiquitin conjugating enzyme E2 L3 contributes to hepatitis B virus infection and maintains covalently closed circular DNA stability by inducing degradation of apolipoprotein B mRNA editing enzyme catalytic subunit 3A. Hepatology 69:1885–902
    [Crossref] [Google Scholar]
  41. 41.
    Oh KJ, Kalinina A, Wang J, Nakayama K, Nakayama KI, Bagchi S. 2004. The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. J. Virol. 78:5338–46
    [Crossref] [Google Scholar]
  42. 42.
    Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK et al. 2003. DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–9
    [Crossref] [Google Scholar]
  43. 43.
    Suspene R, Guetard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP. 2005. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. PNAS 102:8321–26
    [Crossref] [Google Scholar]
  44. 44.
    Vartanian JP, Guetard D, Henry M, Wain-Hobson S. 2008. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320:230–33
    [Crossref] [Google Scholar]
  45. 45.
    Suspene R, Aynaud MM, Koch S, Pasdeloup D, Labetoulle M et al. 2011. Genetic editing of herpes simplex virus 1 and Epstein-Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo. J. Virol. 85:7594–602
    [Crossref] [Google Scholar]
  46. 46.
    Wang Z, Wakae K, Kitamura K, Aoyama S, Liu G et al. 2014. APOBEC3 deaminases induce hypermutation in human papillomavirus 16 DNA upon beta interferon stimulation. J. Virol. 88:1308–17
    [Crossref] [Google Scholar]
  47. 47.
    Kukimoto I, Mori S, Aoyama S, Wakae K, Muramatsu M, Kondo K. 2015. Hypermutation in the E2 gene of human papillomavirus type 16 in cervical intraepithelial neoplasia. J. Med. Virol. 87:1754–60
    [Crossref] [Google Scholar]
  48. 48.
    Zhu B, Xiao Y, Yeager M, Clifford G, Wentzensen N et al. 2020. Mutations in the HPV16 genome induced by APOBEC3 are associated with viral clearance. Nat. Commun. 11:886
    [Crossref] [Google Scholar]
  49. 49.
    Mirabello L, Yeager M, Yu K, Clifford GM, Xiao Y et al. 2017. HPV16 E7 genetic conservation is critical to carcinogenesis. Cell 170:1164–74.e6
    [Crossref] [Google Scholar]
  50. 50.
    Faden DL, Kuhs KAL, Lin M, Langenbucher A, Pinheiro M et al. 2021. APOBEC mutagenesis is concordant between tumor and viral genomes in HPV-positive head and neck squamous cell carcinoma. Viruses 13:1666
    [Crossref] [Google Scholar]
  51. 51.
    Narvaiza I, Linfesty DC, Greener BN, Hakata Y, Pintel DJ et al. 2009. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLOS Pathog 5:e1000439
    [Crossref] [Google Scholar]
  52. 52.
    Ooms M, Krikoni A, Kress AK, Simon V, Munk C. 2012. APOBEC3A, APOBEC3B, and APOBEC3H haplotype 2 restrict human T-lymphotropic virus type 1. J. Virol. 86:6097–108
    [Crossref] [Google Scholar]
  53. 53.
    Katuwal M, Wang Y, Schmitt K, Guo K, Halemano K et al. 2014. Cellular HIV-1 inhibition by truncated old world primate APOBEC3A proteins lacking a complete deaminase domain. Virology468–470:532–44
    [Google Scholar]
  54. 54.
    Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D et al. 2017. The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res 45:D499–506
    [Crossref] [Google Scholar]
  55. 55.
    Van Doorslaer K. 2013. Evolution of the papillomaviridae. Virology 445:11–20
    [Crossref] [Google Scholar]
  56. 56.
    Verhalen B, Starrett GJ, Harris RS, Jiang M. 2016. Functional upregulation of the DNA cytosine deaminase APOBEC3B by polyomaviruses. J. Virol. 90:6379–86
    [Crossref] [Google Scholar]
  57. 57.
    Poulain F, Lejeune N, Willemart K, Gillet NA. 2020. Footprint of the host restriction factors APOBEC3 on the genome of human viruses. PLOS Pathog 16:e1008718
    [Crossref] [Google Scholar]
  58. 58.
    Cheng AZ, Yockteng-Melgar J, Jarvis MC, Malik-Soni N, Borozan I et al. 2019. Epstein-Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nat. Microbiol. 4:78–88
    [Crossref] [Google Scholar]
  59. 59.
    Cheng AZ, Moraes SN, Attarian C, Yockteng-Melgar J, Jarvis MC et al. 2019. A conserved mechanism of APOBEC3 relocalization by herpesviral ribonucleotide reductase large subunits. J. Virol. 93:23e01539–19
    [Crossref] [Google Scholar]
  60. 60.
    Chen R, Zhao X, Wang Y, Xie Y, Liu J. 2017. Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G. Sci. Rep. 7:40783
    [Crossref] [Google Scholar]
  61. 61.
    Kondo S, Wakae K, Wakisaka N, Nakanishi Y, Ishikawa K et al. 2017. APOBEC3A associates with human papillomavirus genome integration in oropharyngeal cancers. Oncogene 36:1687–97
    [Crossref] [Google Scholar]
  62. 62.
    Warren CJ, Van Doorslaer K, Pandey A, Espinosa JM, Pyeon D. 2015. Role of the host restriction factor APOBEC3 on papillomavirus evolution. Virus Evol 1:vev015
    [Crossref] [Google Scholar]
  63. 63.
    Sadler HA, Stenglein MD, Harris RS, Mansky LM. 2010. APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J. Virol. 84:7396–404
    [Crossref] [Google Scholar]
  64. 64.
    Shapiro M, Krug LT, MacCarthy T. 2021. Mutational pressure by host APOBEC3s more strongly affects genes expressed early in the lytic phase of herpes simplex virus-1 (HSV-1) and human polyomavirus (HPyV) infection. PLOS Pathog 17:e1009560
    [Crossref] [Google Scholar]
  65. 65.
    Wijewardhane N, Dressler L, Ciccarelli FD. 2021. Normal somatic mutations in cancer transformation. Cancer Cell 39:125–29
    [Crossref] [Google Scholar]
  66. 66.
    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P et al. 2015. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–86
    [Crossref] [Google Scholar]
  67. 67.
    Buisson R, Langenbucher A, Bowen D, Kwan EE, Benes CH et al. 2019. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 364:6447eaaw2872
    [Crossref] [Google Scholar]
  68. 68.
    Brown AL, Collins CD, Thompson S, Coxon M, Mertz TM, Roberts SA. 2021. Single-stranded DNA binding proteins influence APOBEC3A substrate preference. Sci. Rep. 11:21008
    [Crossref] [Google Scholar]
  69. 69.
    Seplyarskiy VB, Soldatov RA, Popadin KY, Antonarakis SE, Bazykin GA, Nikolaev SI. 2016. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res 26:174–82
    [Crossref] [Google Scholar]
  70. 70.
    Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA. 2016. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication. Cell Rep 14:1273–82
    [Crossref] [Google Scholar]
  71. 71.
    Green AM, DeWeerd RA, O'Leary DR, Hansen AR, Hayer KE et al. 2021. Interaction with the CCT chaperonin complex limits APOBEC3A cytidine deaminase cytotoxicity. EMBO Rep 22:e52145
    [Crossref] [Google Scholar]
  72. 72.
    Trevino V. 2020. HotSpotAnnotations—a database for hotspot mutations and annotations in cancer. Database 2020:baaa025
    [Crossref] [Google Scholar]
  73. 73.
    Am. Assoc. Cancer Res 2019. Some mutational hotspots may be APOBEC3A-associated passengers. Cancer Discov 9:997
    [Google Scholar]
  74. 74.
    Cannataro VL, Gaffney SG, Sasaki T, Issaeva N, Grewal NKS et al. 2019. APOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma. Oncogene 38:3475–87
    [Crossref] [Google Scholar]
  75. 75.
    Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. 2014. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep 7:1833–41
    [Crossref] [Google Scholar]
  76. 76.
    Kosumi K, Baba Y, Ishimoto T, Harada K, Nakamura K et al. 2016. APOBEC3B is an enzymatic source of molecular alterations in esophageal squamous cell carcinoma. Med. Oncol. 33:26
    [Crossref] [Google Scholar]
  77. 77.
    Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I et al. 2014. Landscape of genomic alterations in cervical carcinomas. Nature 506:371–75
    [Crossref] [Google Scholar]
  78. 78.
    Shi MJ, Meng XY, Lamy P, Banday AR, Yang J et al. 2019. APOBEC-mediated mutagenesis as a likely cause of FGFR3 S249C mutation over-representation in bladder cancer. Eur. Urol. 76:9–13
    [Crossref] [Google Scholar]
  79. 79.
    Shi MJ, Meng XY, Fontugne J, Chen CL, Radvanyi F, Bernard-Pierrot I. 2020. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer. Genome Med 12:85
    [Crossref] [Google Scholar]
  80. 80.
    Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y et al. 2017. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 31:2057–64
    [Crossref] [Google Scholar]
  81. 81.
    Glaser AP, Fantini D, Wang Y, Yu Y, Rimar KJ et al. 2018. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget 9:4537–48
    [Crossref] [Google Scholar]
  82. 82.
    Fan Q, Huang T, Sun X, Wang YW, Wang J et al. 2021. HPV-16/18 E6-induced APOBEC3B expression associates with proliferation of cervical cancer cells and hypomethylation of Cyclin D1. Mol. Carcinog. 60:313–30
    [Crossref] [Google Scholar]
  83. 83.
    Cho RJ, Alexandrov LB, den Breems NY, Atanasova VS, Farshchian M et al. 2018. APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 10:455eaas9668
    [Crossref] [Google Scholar]
  84. 84.
    Lackey L, Law EK, Brown WL, Harris RS. 2013. Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle 12:762–72
    [Crossref] [Google Scholar]
  85. 85.
    Land AM, Law EK, Carpenter MA, Lackey L, Brown WL, Harris RS. 2013. Endogenous APOBEC3A DNA cytosine deaminase is cytoplasmic and nongenotoxic. J. Biol. Chem. 288:17253–60
    [Crossref] [Google Scholar]
  86. 86.
    Carpenter MA, Li M, Rathore A, Lackey L, Law EK et al. 2012. Methylcytosine and normal cytosine deamination by the foreign DNA restriction enzyme APOBEC3A. J. Biol. Chem. 287:34801–8
    [Crossref] [Google Scholar]
  87. 87.
    Stenglein MD, Matsuo H, Harris RS. 2008. Two regions within the amino-terminal half of APOBEC3G cooperate to determine cytoplasmic localization. J. Virol. 82:9591–99
    [Crossref] [Google Scholar]
  88. 88.
    Li J, Chen Y, Li M, Carpenter MA, McDougle RM et al. 2014. APOBEC3 multimerization correlates with HIV-1 packaging and restriction activity in living cells. J. Mol. Biol. 426:1296–307
    [Crossref] [Google Scholar]
  89. 89.
    Kuong KJ, Loeb LA. 2013. APOBEC3B mutagenesis in cancer. Nat. Genet. 45:964–65
    [Crossref] [Google Scholar]
  90. 90.
    Kidd JM, Newman TL, Tuzun E, Kaul R, Eichler EE. 2007. Population stratification of a common APOBEC gene deletion polymorphism. PLOS Genet 3:e63
    [Crossref] [Google Scholar]
  91. 91.
    Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP et al. 2014. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat. Genet. 46:487–91
    [Crossref] [Google Scholar]
  92. 92.
    Long J, Delahanty RJ, Li G, Gao YT, Lu W et al. 2013. A common deletion in the APOBEC3 genes and breast cancer risk. J. Natl. Cancer Inst. 105:573–79
    [Crossref] [Google Scholar]
  93. 93.
    Qi G, Xiong H, Zhou C. 2014. APOBEC3 deletion polymorphism is associated with epithelial ovarian cancer risk among Chinese women. Tumor Biol. 35:5723–26
    [Crossref] [Google Scholar]
  94. 94.
    Wen WX, Soo JS, Kwan PY, Hong E, Khang TF et al. 2016. Germline APOBEC3B deletion is associated with breast cancer risk in an Asian multi-ethnic cohort and with immune cell presentation. Breast Cancer Res 18:56
    [Crossref] [Google Scholar]
  95. 95.
    Caval V, Suspene R, Shapira M, Vartanian JP, Wain-Hobson S. 2014. A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage. Nat. Commun. 5:5129
    [Crossref] [Google Scholar]
  96. 96.
    Gansmo LB, Romundstad P, Hveem K, Vatten L, Nik-Zainal S et al. 2018. APOBEC3A/B deletion polymorphism and cancer risk. Carcinogenesis 39:118–24
    [Crossref] [Google Scholar]
  97. 97.
    Klonowska K, Kluzniak W, Rusak B, Jakubowska A, Ratajska M et al. 2017. The 30 kb deletion in the APOBEC3 cluster decreases APOBEC3A and APOBEC3B expression and creates a transcriptionally active hybrid gene but does not associate with breast cancer in the European population. Oncotarget 8:76357–74
    [Crossref] [Google Scholar]
  98. 98.
    Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N et al. 2015. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47:1067–72
    [Crossref] [Google Scholar]
  99. 99.
    Byeon IJ, Byeon CH, Wu T, Mitra M, Singer D et al. 2016. Nuclear magnetic resonance structure of the APOBEC3B catalytic domain: structural basis for substrate binding and DNA deaminase activity. Biochemistry 55:2944–59
    [Crossref] [Google Scholar]
  100. 100.
    Supek F, Lehner B. 2017. Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes. Cell 170:534–47.e23
    [Crossref] [Google Scholar]
  101. 101.
    Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP et al. 2020. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J. Exp. Med. 217:12e20200261
    [Crossref] [Google Scholar]
  102. 102.
    Faden DL, Ding F, Lin Y, Zhai S, Kuo F et al. 2019. APOBEC mutagenesis is tightly linked to the immune landscape and immunotherapy biomarkers in head and neck squamous cell carcinoma. Oral Oncol. 96:140–47
    [Crossref] [Google Scholar]
  103. 103.
    Chen Z, Wen W, Bao J, Kuhs KL, Cai Q et al. 2019. Integrative genomic analyses of APOBEC-mutational signature, expression and germline deletion of APOBEC3 genes, and immunogenicity in multiple cancer types. BMC Med. Genom. 12:131
    [Crossref] [Google Scholar]
  104. 104.
    Messerschmidt C, Obermayer B, Klinghammer K, Ochsenreither S, Treue D et al. 2020. Distinct immune evasion in APOBEC-enriched, HPV-negative HNSCC. Int. J. Cancer 147:2293–302
    [Crossref] [Google Scholar]
  105. 105.
    Boichard A, Pham TV, Yeerna H, Goodman A, Tamayo P et al. 2019. APOBEC-related mutagenesis and neo-peptide hydrophobicity: implications for response to immunotherapy. Oncoimmunology 8:1550341
    [Crossref] [Google Scholar]
  106. 106.
    Asaoka M, Patnaik SK, Ishikawa T, Takabe K. 2021. Different members of the APOBEC3 family of DNA mutators have opposing associations with the landscape of breast cancer. Am. J. Cancer Res. 11:5111–25
    [Google Scholar]
  107. 107.
    DiMarco AV, Qin X, McKinney BJ, Garcia NMG, Van Alsten SC et al. 2022. APOBEC mutagenesis inhibits breast cancer growth through induction of T cell-mediated antitumor immune responses. Cancer Immunol. Res. 10:70–86
    [Crossref] [Google Scholar]
  108. 108.
    Eberhardt CS, Kissick HT, Patel MR, Cardenas MA, Prokhnevska N et al. 2021. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 597:279–84
    [Crossref] [Google Scholar]
  109. 109.
    Zhao K, Zhang Q, Flanagan SA, Lang X, Jiang L et al. 2021. Cytidine deaminase APOBEC3A regulates PD-L1 expression in cancer cells in a JNK/c-JUN-dependent manner. Mol. Cancer Res. 19:1571–82
    [Crossref] [Google Scholar]
  110. 110.
    Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S et al. 2019. UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell 179:219–35.e21
    [Crossref] [Google Scholar]
  111. 111.
    King JJ, Borzooee F, Im J, Asgharpour M, Ghorbani A et al. 2021. Structure-based design of first-generation small molecule inhibitors targeting the catalytic pockets of AID, APOBEC3A, and APOBEC3B. ACS Pharmacol. Transl. Sci. 4:1390–407
    [Crossref] [Google Scholar]
  112. 112.
    Chen TW, Lee CC, Liu H, Wu CS, Pickering CR et al. 2017. APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nat. Commun. 8:465
    [Crossref] [Google Scholar]
  113. 113.
    Wang S, Jia M, He Z, Liu XS. 2018. APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer. Oncogene 37:3924–36
    [Crossref] [Google Scholar]
  114. 114.
    Chen H, Chong W, Teng C, Yao Y, Wang X, Li X 2019. The immune response-related mutational signatures and driver genes in non-small-cell lung cancer. Cancer Sci 110:2348–56
    [Crossref] [Google Scholar]
  115. 115.
    Hao D, He S, Harada K, Pizzi MP, Lu Y et al. 2021. Integrated genomic profiling and modelling for risk stratification in patients with advanced oesophagogastric adenocarcinoma. Gut 70:2055–65
    [Crossref] [Google Scholar]
  116. 116.
    Xia S, Gu Y, Zhang H, Fei Y, Cao Y et al. 2021. Immune inactivation by APOBEC3B enrichment predicts response to chemotherapy and survival in gastric cancer. Oncoimmunology 10:1975386
    [Crossref] [Google Scholar]
  117. 117.
    Sieuwerts AM, Willis S, Burns MB, Look MP, Meijer-Van Gelder ME et al. 2014. Elevated APOBEC3B correlates with poor outcomes for estrogen-receptor-positive breast cancers. Horm. Cancer 5:405–13
    [Crossref] [Google Scholar]
  118. 118.
    Law EK, Sieuwerts AM, LaPara K, Leonard B, Starrett GJ et al. 2016. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci. Adv. 2:e1601737
    [Crossref] [Google Scholar]
  119. 119.
    Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB et al. 2015. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat. Commun. 6:6997
    [Crossref] [Google Scholar]
  120. 120.
    Lindskrog SV, Prip F, Lamy P, Taber A, Groeneveld CS et al. 2021. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat. Commun. 12:2301
    [Crossref] [Google Scholar]
  121. 121.
    Luo C, Wang S, Liao W, Zhang S, Xu N et al. 2021. Upregulation of the APOBEC3 family is associated with a poor prognosis and influences treatment response to Raf inhibitors in low grade glioma. Int. J. Mol. Sci. 22:1910390
    [Crossref] [Google Scholar]
  122. 122.
    Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S et al. 2016. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30:27–42
    [Crossref] [Google Scholar]
  123. 123.
    Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M et al. 2016. Mutational profile of metastatic breast cancers: a retrospective analysis. PLOS Med 13:e1002201
    [Crossref] [Google Scholar]
  124. 124.
    Riva G, Albano C, Gugliesi F, Pasquero S, Pacheco SFC et al. 2021. HPV meets APOBEC: new players in head and neck cancer. Int. J. Mol. Sci. 22:31402
    [Crossref] [Google Scholar]
  125. 125.
    Revathidevi S, Murugan AK, Nakaoka H, Inoue I, Munirajan AK. 2021. APOBEC: a molecular driver in cervical cancer pathogenesis. Cancer Lett 496:104–16
    [Crossref] [Google Scholar]
  126. 126.
    Okazaki IM, Hiai H, Kakazu N, Yamada S, Muramatsu M et al. 2003. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197:1173–81
    [Crossref] [Google Scholar]
  127. 127.
    Yamanaka S, Balestra ME, Ferrell LD, Fan J, Arnold KS et al. 1995. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. PNAS 92:8483–87
    [Crossref] [Google Scholar]
  128. 128.
    Warren CJ, Sawyer SL. 2019. How host genetics dictates successful viral zoonosis. PLOS Biol 17:e3000217
    [Crossref] [Google Scholar]
  129. 129.
    Vartanian JP, Henry M, Marchio A, Suspene R, Aynaud MM et al. 2010. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLOS Pathog 6:e1000928
    [Crossref] [Google Scholar]
  130. 130.
    Stadler D, Kachele M, Jones AN, Hess J, Urban C et al. 2021. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Rep 22:e49568
    [Crossref] [Google Scholar]
  131. 131.
    Kanagaraj A, Sakamoto N, Que L, Li Y, Mohiuddin M et al. 2019. Different antiviral activities of natural APOBEC3C, APOBEC3G, and APOBEC3H variants against hepatitis B virus. Biochem. Biophys. Res. Commun. 518:26–31
    [Crossref] [Google Scholar]
  132. 132.
    Zhu YP, Peng ZG, Wu ZY, Li JR, Huang MH et al. 2015. Host APOBEC3G protein inhibits HCV replication through direct binding at NS3. PLOS ONE 10:e0121608
    [Crossref] [Google Scholar]
  133. 133.
    Martinez T, Shapiro M, Bhaduri-McIntosh S, MacCarthy T. 2019. Evolutionary effects of the AID/APOBEC family of mutagenic enzymes on human gamma-herpesviruses. Virus Evol 5:vey040
    [Crossref] [Google Scholar]
  134. 134.
    Yang Z, Lu Y, Xu Q, Zhuang L, Tang B, Chen X 2015. Correlation of APOBEC3 in tumor tissues with clinico-pathological features and survival from hepatocellular carcinoma after curative hepatectomy. Int. J. Clin. Exp. Med. 8:7762–69
    [Google Scholar]
  135. 135.
    Wakae K, Kondo S, Pham HT, Wakisaka N, Que L et al. 2020. EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutation in nasopharyngeal cancer. Cancer Med 9:7663–71
    [Crossref] [Google Scholar]
  136. 136.
    Yao J, Tanaka M, Takenouchi N, Ren Y, Lee SI, Fujisawa JI. 2019. Induction of APOBEC3B cytidine deaminase in HTLV-1-infected humanized mice. Exp. Ther. Med. 17:3701–8
    [Google Scholar]
  137. 137.
    Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J et al. 2015. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47:505–11
    [Crossref] [Google Scholar]
  138. 138.
    Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T et al. 2015. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47:1304–15
    [Crossref] [Google Scholar]
  139. 139.
    Bobrovnitchaia I, Valieris R, Drummond RD, Lima JP, Freitas HC et al. 2020. APOBEC-mediated DNA alterations: a possible new mechanism of carcinogenesis in EBV-positive gastric cancer. Int. J. Cancer 146:181–91
    [Crossref] [Google Scholar]
  140. 140.
    Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–38
    [Crossref] [Google Scholar]
  141. 141.
    Kvach MV, Barzak FM, Harjes S, Schares HAM, Jameson GB et al. 2019. Inhibiting APOBEC3 activity with single-stranded DNA containing 2′-deoxyzebularine analogues. Biochemistry 58:391–400
    [Crossref] [Google Scholar]
  142. 142.
    Kvach MV, Barzak FM, Harjes S, Schares HAM, Kurup HM et al. 2020. Differential inhibition of APOBEC3 DNA-mutator isozymes by fluoro- and non-fluoro-substituted 2′-deoxyzebularine embedded in single-stranded DNA. ChemBioChem 21:1028–35
    [Crossref] [Google Scholar]
  143. 143.
    Halemano K, Guo K, Heilman KJ, Barrett BS, Smith DS et al. 2014. Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection. PNAS 111:7759–64
    [Crossref] [Google Scholar]
  144. 144.
    Chiu YL, Greene WC. 2008. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu. Rev. Immunol. 26:317–53
    [Crossref] [Google Scholar]
  145. 145.
    Kazazian HH Jr. 2004. Mobile elements: drivers of genome evolution. Science 303:1626–32
    [Crossref] [Google Scholar]
  146. 146.
    Brucher BL, Jamall IS. 2016. Somatic mutation theory—why it's wrong for most cancers. Cell. Physiol. Biochem. 38:1663–80
    [Crossref] [Google Scholar]
  147. 147.
    Kouno T, Silvas TV, Hilbert BJ, Shandilya SMD, Bohn MF et al. 2017. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat. Commun. 8:15024
    [Crossref] [Google Scholar]
  148. 148.
    Klein HL. 2020. Stressed DNA replication generates stressed DNA. PNAS 117:10108–10
    [Crossref] [Google Scholar]
  149. 149.
    Komohara Y, Yano H, Shichijo S, Shimotohno K, Itoh K, Yamada A. 2006. High expression of APOBEC3G in patients infected with hepatitis C virus. J. Mol. Histol. 37:327–32
    [Crossref] [Google Scholar]
  150. 150.
    Que L, Li Y, Dainichi T, Kukimoto I, Nishiyama T et al. 2022. IFN-γ–induced APOBEC3B contributes to Merkel cell polyomavirus genome mutagenesis in Merkel cell carcinoma. J. Invest. Dermatol. 142:1793803
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-092920-030354
Loading
/content/journals/10.1146/annurev-virology-092920-030354
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error