1932

Abstract

Over the past 20 years, our knowledge of virus diversity and abundance in subsurface environments has expanded dramatically through application of quantitative metagenomic approaches. In most subsurface environments, viral diversity and abundance rival viral diversity and abundance observed in surface environments. Most of these viruses are uncharacterized in terms of their hosts and replication cycles. Analysis of accessory metabolic genes encoded by subsurface viruses indicates that they evolved to replicate within the unique features of their environments. The key question remains: What role do these viruses play in the ecology and evolution of the environments in which they replicate? Undoubtedly, as more virologists examine the role of viruses in subsurface environments, new insights will emerge.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-093020-015957
2022-09-29
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-093020-015957.html?itemId=/content/journals/10.1146/annurev-virology-093020-015957&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bergh O, Borsheim KY, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature 340:467–68
    [Crossref] [Google Scholar]
  2. 2.
    Proctor LM, Fuhrman JA. 1990. Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62
    [Crossref] [Google Scholar]
  3. 3.
    Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. 1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. PNAS 96:2192–97
    [Crossref] [Google Scholar]
  4. 4.
    Suttle CA. 2005. Viruses in the sea. Nature 437:356–61
    [Crossref] [Google Scholar]
  5. 5.
    Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. PNAS 95:6578–83
    [Crossref] [Google Scholar]
  6. 6.
    Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Crossref] [Google Scholar]
  7. 7.
    Mushegian AR. 2020. Are there 1031 virus particles on Earth, or more, or fewer?. J. Bacteriol. 202:9e00052–20
    [Crossref] [Google Scholar]
  8. 8.
    Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K et al. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–13
    [Crossref] [Google Scholar]
  9. 9.
    Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. PNAS 109:16213–16
    [Crossref] [Google Scholar]
  10. 10.
    Magnabosco C, Lin LH, Dong H, Bomberg M, Ghiorse W et al. 2018. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11:707–17
    [Crossref] [Google Scholar]
  11. 11.
    Orsi WD. 2018. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol. 16:671–83
    [Crossref] [Google Scholar]
  12. 12.
    Suttle CA. 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12
    [Crossref] [Google Scholar]
  13. 13.
    Stevens T. 1997. Lithoautotrophy in the subsurface. FEMS Microbiol. Rev. 20:327–37
    [Crossref] [Google Scholar]
  14. 14.
    Flemming H-C, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17:247–60
    [Crossref] [Google Scholar]
  15. 15.
    Cai L, Jorgensen BB, Suttle CA, He M, Cragg BA et al. 2019. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J 13:1857–64
    [Crossref] [Google Scholar]
  16. 16.
    McKay CP. 2004. What is life—and how do we search for it in other worlds?. PLOS Biol 2:1260–63
    [Crossref] [Google Scholar]
  17. 17.
    McKay CP. 2014. Requirements and limits for life in the context of exoplanets. PNAS 111:12628–33
    [Crossref] [Google Scholar]
  18. 18.
    Koonin EV, Senkevich TG, Dolja VV. 2006. The ancient Virus World and evolution of cells. Biol. Direct 1:29
    [Crossref] [Google Scholar]
  19. 19.
    Krupovic M, Dolja VV, Koonin EV. 2019. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 17:449–58
    [Crossref] [Google Scholar]
  20. 20.
    Krupovic M, Dolja VV, Koonin EV. 2020. The LUCA and its complex virome. Nat. Rev. Microbiol. 18:661–70
    [Crossref] [Google Scholar]
  21. 21.
    Koonin EV, Senkevich TG, Dolja VV. 2009. Compelling reasons why viruses are relevant for the origin of cells. Nat. Rev. Microbiol. 7:615
    [Crossref] [Google Scholar]
  22. 22.
    Moelling K. 2009. Evolution of viruses and antiviral defense. Retrovirology 6:P59
    [Crossref] [Google Scholar]
  23. 23.
    Moelling K. 2012. Are viruses our oldest ancestors?. EMBO Rep 13:1033
    [Crossref] [Google Scholar]
  24. 24.
    Moelling K, Broecker F. 2019. Viruses and evolution—viruses first? A personal perspective. Front. Microbiol. 10:523
    [Crossref] [Google Scholar]
  25. 25.
    Harris HMB, Hill C. 2021. A place for viruses on the tree of life. Front. Microbiol. 11:3449
    [Crossref] [Google Scholar]
  26. 26.
    Martin W, Baross J, Kelley D, Russell MJ 2008. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6:805–14
    [Crossref] [Google Scholar]
  27. 27.
    Forterre P. 2013. The virocell concept and environmental microbiology. ISME J 7:233–36
    [Crossref] [Google Scholar]
  28. 28.
    Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA et al. 2020. Phage-specific metabolic reprogramming of virocells. ISME J 14:881–95
    [Crossref] [Google Scholar]
  29. 29.
    Heldal M, Bratbak G. 1991. Production and decay of viruses in aquatic environments. Mar. Ecol. Prog. Ser. 72:205–12
    [Crossref] [Google Scholar]
  30. 30.
    Jiang SC, Paul JH. 1998. Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64:2780–87
    [Crossref] [Google Scholar]
  31. 31.
    Clokie MR, Millard AD, Letarov AV, Heaphy S. 2011. Phages in nature. Bacteriophage 1:31–45
    [Crossref] [Google Scholar]
  32. 32.
    Hendrix RW, Lawrence JG, Hatfull GF, Casjens S. 2000. The origins and ongoing evolution of viruses. Trends Microbiol 8:499–500
    [Crossref] [Google Scholar]
  33. 33.
    Hatfull GF, Hendrix RW. 2011. Bacteriophages and their genomes. Curr. Opin. Virol. 1:298–303
    [Crossref] [Google Scholar]
  34. 34.
    Paul JH. 1999. Microbial gene transfer: an ecological perspective. J. Mol. Microbiol. Biotechnol. 1:45–50
    [Google Scholar]
  35. 35.
    Brussaard CPD, Wilhelm SW, Thingstad F, Weinbauer MG, Bratbak G et al. 2008. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J 2:575–78
    [Crossref] [Google Scholar]
  36. 36.
    Hurwitz BL, Hallam SJ, Sullivan MB. 2013. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol 14:R123
    [Crossref] [Google Scholar]
  37. 37.
    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU et al. 2011. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. PNAS 108:E757–64
    [Crossref] [Google Scholar]
  38. 38.
    Wommack KE, Colwell RR. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69–114
    [Crossref] [Google Scholar]
  39. 39.
    Breitbart M. 2012. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4:425–48
    [Crossref] [Google Scholar]
  40. 40.
    Mojica KDA, Brussaard CPD. 2014. Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol. Ecol. 89:495–515
    [Crossref] [Google Scholar]
  41. 41.
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A et al. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–70
    [Crossref] [Google Scholar]
  42. 42.
    Wilhelm SW, Suttle CA. 1999. Viruses and nutrient cycles in the sea—Viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49:781–88
    [Crossref] [Google Scholar]
  43. 43.
    Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G et al. 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8:593–99
    [Crossref] [Google Scholar]
  44. 44.
    Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N et al. 2020. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat. Ecol. Evol. 4:1639–49
    [Crossref] [Google Scholar]
  45. 45.
    Weitz JS, Li G, Gulbudak H, Cortez MH, Whitaker RJ. 2019. Viral invasion fitness across a continuum from lysis to latency. Virus Evol 5:vez006
    [Crossref] [Google Scholar]
  46. 46.
    Paul JH. 2008. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?. ISME J 2:579–89
    [Crossref] [Google Scholar]
  47. 47.
    Anderson RE, Brazelton WJ, Baross JA. 2011. Is the genetic landscape of the deep subsurface biosphere affected by viruses?. Front. Microbiol. 2:219
    [Crossref] [Google Scholar]
  48. 48.
    Colombo S, Arioli S, Neri E, Della Scala G, Gargari G, Mora D 2017. Viromes as genetic reservoir for the microbial communities in aquatic environments: a focus on antimicrobial-resistance genes. Front. Microbiol. 8:1095
    [Crossref] [Google Scholar]
  49. 49.
    Labonte JM, Pachiadaki M, Fergusson E, McNichol J, Grosche A et al. 2019. Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system. Front. Microbiol. 10:1262
    [Crossref] [Google Scholar]
  50. 50.
    Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR et al. 2008. Lysogenic virus–host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J 2:1112–21
    [Crossref] [Google Scholar]
  51. 51.
    Winter C, Bouvier T, Weinbauer MG, Thingstad TF. 2010. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol. Mol. Biol. Rev. 74:42–57
    [Crossref] [Google Scholar]
  52. 52.
    DeWerff SJ, Bautista MA, Pauly M, Zhang C, Whitaker RJ 2020. Killer archaea: Virus-mediated antagonism to CRISPR-immune populations results in emergent virus-host mutualism. mBio 11:e00404–20
    [Crossref] [Google Scholar]
  53. 53.
    Bondy-Denomy J, Davidson AR. 2014. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52:235–42
    [Crossref] [Google Scholar]
  54. 54.
    Silveira CB, Rohwer FL. 2016. Piggyback-the-Winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2:16010
    [Crossref] [Google Scholar]
  55. 55.
    Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA et al. 2016. Lytic to temperate switching of viral communities. Nature 531:466–70
    [Crossref] [Google Scholar]
  56. 56.
    Danovaro R, Manini E, Dell'Anno A. 2002. Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Appl. Environ. Microbiol. 68:1468–72
    [Crossref] [Google Scholar]
  57. 57.
    Wigington CH, Sonderegger D, Brussaard CPD, Buchan A, Finke JF et al. 2016. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1:15024
    [Crossref] [Google Scholar]
  58. 58.
    Wei M, Xu K. 2020. New insights into the virus-to-prokaryote ratio (VPR) in marine sediments. Front. Microbiol. 11:1102
    [Crossref] [Google Scholar]
  59. 59.
    Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. 2020. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J 14:1304–15
    [Crossref] [Google Scholar]
  60. 60.
    Roossinck MJ. 2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:99–108
    [Crossref] [Google Scholar]
  61. 61.
    Roossinck MJ. 2015. Move over, bacteria! Viruses make their mark as mutualistic microbial symbionts. J. Virol. 89:6532–35
    [Crossref] [Google Scholar]
  62. 62.
    Moelling K. 2020. Viruses more friends than foes. Electroanalysis 32:669–73
    [Crossref] [Google Scholar]
  63. 63.
    Hurwitz BL, U'Ren JM. 2016. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol. 31:161–68
    [Crossref] [Google Scholar]
  64. 64.
    Chisholm SW, Bragg JG. 2008. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLOS ONE 3:10e3550
    [Crossref] [Google Scholar]
  65. 65.
    Mann NH, Cook A, Millard A, Bailey S, Clokie M. 2003. Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424:741
    [Crossref] [Google Scholar]
  66. 66.
    Breitbart M, Thompson LR, Suttle CA, Sullivan MB. 2007. Exploring the vast diversity of marine viruses. Oceanography 20:135–39
    [Crossref] [Google Scholar]
  67. 67.
    Roux S, Hawley AK, Beltran MT, Scofield M, Schwientek P et al. 2014. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3:e03125
    [Crossref] [Google Scholar]
  68. 68.
    Breitbart M, Bonnain C, Malki K, Sawaya NA. 2018. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3:754–66
    [Crossref] [Google Scholar]
  69. 69.
    Kieft K, Zhou Z, Anderson RE, Buchan A, Campbell BJ et al. 2021. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 12:3503
    [Crossref] [Google Scholar]
  70. 70.
    Warwick-Dugdale J, Buchholz HH, Allen MJ, Temperton B. 2019. Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol. J. 16:15
    [Crossref] [Google Scholar]
  71. 71.
    Hurwitz BL, Brum JR, Sullivan MB. 2015. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J 9:472–84
    [Crossref] [Google Scholar]
  72. 72.
    Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG et al. 2015. Patterns and ecological drivers of ocean viral communities. Science 348:1261498
    [Crossref] [Google Scholar]
  73. 73.
    Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. 2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLOS Biol 4:1344–57
    [Crossref] [Google Scholar]
  74. 74.
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. 2005. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLOS Biol 3:790–806
    [Crossref] [Google Scholar]
  75. 75.
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. 2015. Shedding new light on viral photosynthesis. Photosynth. Res. 126:71–97
    [Crossref] [Google Scholar]
  76. 76.
    Gazitua MC, Vik DR, Roux S, Gregory AC, Bolduc B et al. 2021. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J 15:981–98
    [Crossref] [Google Scholar]
  77. 77.
    Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. 2014. Sulfur oxidation genes in diverse deep-sea viruses. Science 344:757–60
    [Crossref] [Google Scholar]
  78. 78.
    He T, Li H, Zhang X. 2017. Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus-host interactions. mBio 8:4e00893–17
    [Crossref] [Google Scholar]
  79. 79.
    Bernheim A, Sorek R. 2020. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18:113–19
    [Crossref] [Google Scholar]
  80. 80.
    Isaev AB, Musharova OS, Severinov KV. 2021. Microbial arsenal of antiviral defenses. Part II. Biochem. (Moscow) 86:449–70
    [Crossref] [Google Scholar]
  81. 81.
    Isaev AB, Musharova OS, Severinov KV. 2021. Microbial arsenal of antiviral defenses—part I. Biochem. (Moscow) 86:319–37
    [Crossref] [Google Scholar]
  82. 82.
    Hille F, Richter H, Wong SP, Bratovic M, Ressel S, Charpentier E. 2018. The biology of CRISPR-Cas: backward and forward. Cell 172:1239–59
    [Crossref] [Google Scholar]
  83. 83.
    Li Y, Bondy-Denomy J. 2021. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe 29:704–14
    [Crossref] [Google Scholar]
  84. 84.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13:722–36
    [Crossref] [Google Scholar]
  85. 85.
    Makarova KS, Koonin EV. 2015. Annotation and classification of CRISPR-Cas systems. CRISPR 1311:47–75
    [Crossref] [Google Scholar]
  86. 86.
    Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J. 2018. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174:917–25
    [Crossref] [Google Scholar]
  87. 87.
    Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM et al. 2018. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362:240–42
    [Crossref] [Google Scholar]
  88. 88.
    Davidson AR, Lu W-T, Stanley SY, Wang J, Mejdani M et al. 2020. Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu. Rev. Biochem. 89:309–32
    [Crossref] [Google Scholar]
  89. 89.
    Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. 2020. Structures and strategies of anti-CRISPR-mediated immune suppression. Annu. Rev. Microbiol. 74:21–37
    [Crossref] [Google Scholar]
  90. 90.
    Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature 577:327–36
    [Crossref] [Google Scholar]
  91. 91.
    Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA. 2018. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362:236–39
    [Crossref] [Google Scholar]
  92. 92.
    Watters KE, Shivram H, Fellmann C, Lew RJ, McMahon B, Doudna JA. 2020. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. PNAS 117:6531–39
    [Crossref] [Google Scholar]
  93. 93.
    Dong L, Guan X, Li N, Zhang F, Zhu Y et al. 2019. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 26:308–14
    [Crossref] [Google Scholar]
  94. 94.
    Athukoralage JS, McMahon SA, Zhang C, Grueschow S, Graham S et al. 2020. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577:572–75
    [Crossref] [Google Scholar]
  95. 95.
    Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A et al. 2018. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174:908–16
    [Crossref] [Google Scholar]
  96. 96.
    He F, Bhoobalan-Chitty Y, Van LB, Kjeldsen AL, Dedola M et al. 2018. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat. Microbiol. 3:461–69
    [Crossref] [Google Scholar]
  97. 97.
    Yoshida-Takashima Y, Nunoura T, Kazama H, Noguchi T, Inoue K et al. 2012. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl. Environ. Microbiol. 78:1311–20
    [Crossref] [Google Scholar]
  98. 98.
    Thomas E, Anderson RE, Li V, Rogan LJ, Huber JA. 2021. Diverse viruses in deep-sea hydrothermal vent fluids have restricted dispersal across ocean basins. mSystems 6:e00068–21
    [Crossref] [Google Scholar]
  99. 99.
    Joye SB. 2020. The geology and biogeochemistry of hydrocarbon seeps. Annu. Rev. Earth Planet. Sci. 48:205–31
    [Crossref] [Google Scholar]
  100. 100.
    Li Z, Pan D, Wei G, Pi W, Zhang C et al. 2021. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J 15:2366–78
    [Crossref] [Google Scholar]
  101. 101.
    Yoshida M, Takaki Y, Eitoku M, Nunoura T, Takai K. 2013. Metagenomic analysis of viral communities in (hado)pelagic sediments. PLOS ONE 8:e57271
    [Crossref] [Google Scholar]
  102. 102.
    Pan D, Morono Y, Inagaki F, Takai K. 2019. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front. Microbiol. 10:878
    [Crossref] [Google Scholar]
  103. 103.
    Backstrom D, Yutin N, Jorgensen SL, Dharamshi J, Homa F et al. 2019. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10:e02497–18
    [Crossref] [Google Scholar]
  104. 104.
    Middelboe M, Glud RN, Wenzhofer F, Oguri K, Kitazato H. 2006. Spatial distribution and activity of viruses in the deep-sea sediments of Sagami Bay, Japan. Deep Sea Res. Part I 53:1–13
    [Crossref] [Google Scholar]
  105. 105.
    Danovaro R, Dell'Anno A, Corinaldesi C, Magagnini M, Noble R et al. 2008. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454:1084–87
    [Crossref] [Google Scholar]
  106. 106.
    Corinaldesi C, Dell'Anno A, Danovaro R. 2007. Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems. Limnol. Oceanogr. 52:508–16
    [Crossref] [Google Scholar]
  107. 107.
    Jian HH, Yi Y, Wang JH, Hao YL, Zhang MJ et al. 2021. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J 15:3094–110
    [Crossref] [Google Scholar]
  108. 108.
    Manea E, Dell'Anno A, Rastelli E, Tangherlini M, Nunoura T et al. 2019. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front. Microbiol. 10:1952
    [Crossref] [Google Scholar]
  109. 109.
    Zheng X, Liu W, Dai X, Zhu Y, Wang J et al. 2021. Extraordinary diversity of viruses in deep-sea sediments as revealed by metagenomics without prior virion separation. Environ. Microbiol. 23:728–43
    [Crossref] [Google Scholar]
  110. 110.
    Zhao J, Jing HM, Wang Z, Wang L, Jian H et al. 2022. Novel viral communities potentially assisting in carbon, nitrogen, and sulfur metabolism in the upper slope sediments of Mariana Trench. mSystems 7:e01358–21
    [Google Scholar]
  111. 111.
    Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA et al. 2006. The marine viromes of four oceanic regions. PLOS Biol 4:2121–31
    [Crossref] [Google Scholar]
  112. 112.
    Culley AI, Lang AS, Suttle CA. 2006. Metagenomic analysis of coastal RNA virus communities. Science 312:1795–98
    [Crossref] [Google Scholar]
  113. 113.
    Hurwitz BL, Sullivan MB. 2013. The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLOS ONE 8:2e57355
    [Crossref] [Google Scholar]
  114. 114.
    Winter C, Garcia JAL, Weinbauer MG, DuBow MS, Herndl GJ. 2014. Comparison of deep-water viromes from the Atlantic Ocean and the Mediterranean Sea. PLOS ONE 9:6e100600
    [Crossref] [Google Scholar]
  115. 115.
    Martinez JM, Swan BK, Wilson WH. 2014. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J 8:1079–88
    [Crossref] [Google Scholar]
  116. 116.
    Mizuno CM, Ghai R, Saghai A, Lopez-Garcia P, Rodriguez-Valera F. 2016. Genomes of abundant and widespread viruses from the deep ocean. mBio 7:4e00805–16
    [Crossref] [Google Scholar]
  117. 117.
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB et al. 2016. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537:689–93
    [Crossref] [Google Scholar]
  118. 118.
    Gregory AC, Zayed AA, Conceicao-Neto N, Temperton B, Bolduc B et al. 2019. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177:1109–23
    [Crossref] [Google Scholar]
  119. 119.
    Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA et al. 2017. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. 8:15955
    [Crossref] [Google Scholar]
  120. 120.
    Liang Y, Wang L, Wang Z, Zhao J, Yang Q et al. 2019. Metagenomic analysis of the diversity of DNA viruses in the surface and deep sea of the South China Sea. Front. Microbiol. 10:1951
    [Crossref] [Google Scholar]
  121. 121.
    Nishimura Y, Watai H, Honda T, Mihara T, Omae K et al. 2017. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2:e00359–16
    [Crossref] [Google Scholar]
  122. 122.
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ et al. 2018. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3:870–80
    [Crossref] [Google Scholar]
  123. 123.
    Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K et al. 2014. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. PNAS 111:4274–79
    [Crossref] [Google Scholar]
  124. 124.
    Labbe M, Girard C, Vincent WF, Culley AI. 2020. Extreme viral partitioning in a marine-derived high arctic lake. mSphere 5:3e00334–20
    [Crossref] [Google Scholar]
  125. 125.
    Zhong Z-P, Tian F, Roux S, Gazitua MC, Solonenko NE et al. 2021. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 9:160
    [Crossref] [Google Scholar]
  126. 126.
    Daly RA, Roux S, Borton MA, Morgan DM, Johnston MD et al. 2019. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4:352–61
    [Crossref] [Google Scholar]
  127. 127.
    Zhu HZ, Zhang ZF, Zhou N, Jiang CY, Wang BJ et al. 2019. Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Front. Microbiol. 10:1726
    [Crossref] [Google Scholar]
  128. 128.
    Hershey OS, Kallmeyer J, Wallace A, Barton MD, Barton HA. 2018. High microbial diversity despite extremely low biomass in a deep karst aquifer. Front. Microbiol. 9:2823
    [Crossref] [Google Scholar]
  129. 129.
    Tebo BM, Davis RE, Anitori RP, Conne LB, Schiffman P, Staudigel H. 2015. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front. Microbiol. 6:179
    [Crossref] [Google Scholar]
  130. 130.
    Takai K, Komatsu T, Inagaki F, Horikoshi K. 2001. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67:3618–29
    [Crossref] [Google Scholar]
  131. 131.
    Osbum MR, Kruger B, Masterson AL, Casar CP, Amend JP. 2019. Establishment of the Deep Mine Microbial Observatory (DeMMO), South Dakota, USA, a geochemically stable portal into the deep subsurface. Front. Earth Sci. 7:196
    [Crossref] [Google Scholar]
  132. 132.
    Anesio AM, Lutz S, Chrismas NAM, Benning LG. 2017. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3:10
    [Crossref] [Google Scholar]
  133. 133.
    Ortmann AC, Suttle CA. 2005. High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality. Deep Sea Res. Part I 52:1515–27
    [Crossref] [Google Scholar]
  134. 134.
    Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. 2017. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5:69
    [Crossref] [Google Scholar]
  135. 135.
    Dellas N, Snyder JC, Bolduc B, Young MJ. 2014. Archaeal viruses: diversity, replication, and structure. Annu. Rev. Virol. 1:399–426
    [Crossref] [Google Scholar]
  136. 136.
    Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. 2018. Viruses of archaea: structural, functional, environmental and evolutionary genomics. Virus Res 244:181–93
    [Crossref] [Google Scholar]
  137. 137.
    Danczak RE, Daly RA, Borton MA, Stegen JC, Roux S et al. 2020. Ecological assembly processes are coordinated between bacterial and viral communities in fractured shale ecosystems. mSystems 5:e00098–20
    [Crossref] [Google Scholar]
  138. 138.
    Williamson KE, Radosevich M, Wommack KE. 2005. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71:3119–25
    [Crossref] [Google Scholar]
  139. 139.
    Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M. 2009. Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann. Appl. Biol. 155:51–60
    [Crossref] [Google Scholar]
  140. 140.
    Breitbart M, Rohwer F. 2005. Here a virus, there a virus, everywhere the same virus?. Trends Microbiol 13:278–84
    [Crossref] [Google Scholar]
  141. 141.
    Munson-McGee JH, Peng SY, Dewerff S, Stepanauskas R, Whitaker RJ et al. 2018. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. ISME J 12:1706–14
    [Crossref] [Google Scholar]
  142. 142.
    Bolduc B, Wirth JF, Mazurie A, Young MJ. 2015. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis. ISME J 9:2162–77
    [Crossref] [Google Scholar]
  143. 143.
    Campbell KM, Kouris A, England W, Anderson RE, McCleskey RB et al. 2017. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ. Microbiol. 19:2334–47
    [Crossref] [Google Scholar]
  144. 144.
    Lawrence CM, Menon S, Eilers BJ, Bothner B, Khayat R et al. 2009. Structural and functional studies of archaeal viruses. J. Biol. Chem. 284:12599–603
    [Crossref] [Google Scholar]
  145. 145.
    Snyder JC, Bolduc B, Young MJ. 2015. 40 Years of archaeal virology: expanding viral diversity. Virology 479:369–78
    [Crossref] [Google Scholar]
  146. 146.
    Wagner C, Reddy V, Asturias F, Khoshouei M, Johnson JE et al. 2017. Isolation and characterization of Metallosphaera turreted icosahedral virus, a founding member of a new family of archaeal viruses. J. Virol. 91:e00925–17
    [Google Scholar]
  147. 147.
    Wirth J, Young M. 2020. The intriguing world of archaeal viruses. PLOS Pathog 16:8e1008574
    [Crossref] [Google Scholar]
  148. 148.
    Gamaarachchi H, Samarakoon H, Jenner SP, Ferguson JM, Amos TG et al. 2022. Fast nanopore sequencing data analysis with SLOW5. Nat. Biotechnol. 2022: https://doi.org/10.1038/s41587-021-01147-4
    [Crossref] [Google Scholar]
  149. 149.
    Wang W, Ren J, Tang K, Dart E, Ignacio-Espinoza JC et al. 2020. A network-based integrated framework for predicting virus-prokaryote interactions. NAR Genom. Bioinform. 2:lqaa044
    [Crossref] [Google Scholar]
  150. 150.
    Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S et al. 2019. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37:632–39
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-093020-015957
Loading
/content/journals/10.1146/annurev-virology-093020-015957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error