1932

Abstract

Rift Valley fever virus (RVFV) is a mosquito-borne virus endemic to Africa and the Middle East. RVFV infection can cause encephalitis, which is associated with significant morbidity and mortality. Studies of RVFV encephalitis following percutaneous inoculation, as would occur following a mosquito bite, have historically been limited by a lack of consistent animal models. In this review, we describe new insights into the pathogenesis of RVFV and the opportunities provided by new mouse models. We underscore the need to consider viral strain and route of inoculation when interpreting data obtained using animal models. We discuss the trafficking of RVFV and the role of host genetics and immunity in modulating the pathogenesis of RVFV encephalitis. We also explore potential strategies to prevent and treat central nervous system disease caused by RVFV and discuss remaining knowledge gaps.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-093022-011544
2024-09-26
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-093022-011544.html?itemId=/content/journals/10.1146/annurev-virology-093022-011544&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cent. Dis. Control Prev., Dep. Health Hum. Serv. 2017.. Possession, use, and transfer of select agents and toxins; biennial review of the list of select agents and toxins and enhanced biosafety requirements. final rule. . Fed. Regist. 82:(12):627894
    [Google Scholar]
  2. 2.
    Div. Regul. Sci. Compliance. 2023.. HHS and USDA Select Agents and Toxins. . Fed. Select Agent Program. https://www.selectagents.gov/sat/list.htm
    [Google Scholar]
  3. 3.
    Mehand MS, Al-Shorbaji F, Millett P, Murgue B. 2018.. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. . Antiviral Res. 159::6367
    [Crossref] [Google Scholar]
  4. 4.
    Howley PM, Knipe DM, Whelan S, Freed EO, Cohen JL. 2022.. Fields Virology: RNA Viruses. Philadelphia:: Wolters Kluwer. , 7th ed..
    [Google Scholar]
  5. 5.
    Meegan JM. 1979.. The Rift Valley fever epizootic in Egypt 1977–78. 1. Description of the epizootic and virological studies. . Trans. R. Soc. Trop. Med. Hyg. 73:(6):61823
    [Crossref] [Google Scholar]
  6. 6.
    Smithburn KC, Mahaffy AF. 1949.. Rift Valley fever; accidental infections among laboratory workers. . J. Immunol. 62:(2):21327
    [Crossref] [Google Scholar]
  7. 7.
    El-Gebaly MR. 1978.. Epidemiological study of outbreak of Rift Valley fever among military personnel. . J. Egypt. Public Health Assoc. 53:(3–4):13746
    [Google Scholar]
  8. 8.
    Laughlin LW, Meegan JM, Strausbaugh LJ, Morens DM, Watten RH. 1979.. Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. . Trans. R. Soc. Trop. Med. Hyg. 73:(6):63033
    [Crossref] [Google Scholar]
  9. 9.
    Meegan JM, Watten RH, Laughlin LW. 1981.. Clinical experience with Rift Valley fever in humans during the 1977 Egyptian epizootic. . Contr. Epidem. Biostatist. 3::11423
    [Google Scholar]
  10. 10.
    Al-Hazmi M, Ayoola EA, Abdurahman M, Banzal S, Ashraf J, et al. 2003.. Epidemic Rift Valley fever in Saudi Arabia: a clinical study of severe illness in humans. . Clin. Infect. Dis. 36:(3):24552
    [Crossref] [Google Scholar]
  11. 11.
    Mohamed M, Mosha F, Mghamba J, Zaki SR, Shieh W-J, et al. 2010.. Epidemiologic and clinical aspects of a Rift Valley fever outbreak in humans in Tanzania, 2007. . Am. J. Trop. Med. Hyg. 83:(2 Suppl.):2227
    [Crossref] [Google Scholar]
  12. 12.
    Boushab BM, Fall-Malick FZ, Ould Baba SEW, Ould Salem ML, Belizaire MRD, et al. 2016.. Severe human illness caused by Rift Valley fever virus in Mauritania. , 2015.. Open Forum Infect. Dis. 3:(4):ofw200
    [Crossref] [Google Scholar]
  13. 13.
    Anywaine Z, Lule SA, Hansen C, Warimwe G, Elliott A. 2022.. Clinical manifestations of Rift Valley fever in humans: systematic review and meta-analysis. . PLOS Negl. Trop. Dis. 16:(3):e0010233
    [Crossref] [Google Scholar]
  14. 14.
    Clark MHA, Warimwe GM, Di Nardo A, Lyons NA, Gubbins S. 2018.. Systematic literature review of Rift Valley fever virus seroprevalence in livestock, wildlife and humans in Africa from 1968 to 2016. . PLOS Negl. Trop. Dis. 12:(7):e0006627
    [Crossref] [Google Scholar]
  15. 15.
    Gerken KN, LaBeaud AD, Mandi H, L'Azou Jackson M, Breugelmans JG, King CH. 2022.. Paving the way for human vaccination against Rift Valley fever virus: a systematic literature review of RVFV epidemiology from 1999 to 2021. . PLOS Negl. Trop. Dis. 16:(1):e0009852
    [Crossref] [Google Scholar]
  16. 16.
    Daubney R, Hudson JR, Garnham PC. 1931.. Enzootic hepatitis or Rift Valley fever. An undescribed virus disease of sheep cattle and man from East Africa. . J. Pathol. Bacteriol. 34:(4):54579
    [Crossref] [Google Scholar]
  17. 17.
    Watts DM, el-Tigani A, Botros BA, Salib AW, Olson JG, et al. 1994.. Arthropod-borne viral infections associated with a fever outbreak in the northern province of Sudan. . J. Trop. Med. Hyg. 97:(4):22830
    [Google Scholar]
  18. 18.
    LaBeaud AD, Pfeil S, Muiruri S, Dahir S, Sutherland LJ, et al. 2015.. Factors associated with severe human Rift Valley fever in Sangailu, Garissa County, Kenya. . PLOS Negl. Trop. Dis. 9:(3):e0003548
    [Crossref] [Google Scholar]
  19. 19.
    van Velden DJ, Meyer JD, Olivier J, Gear JH, McIntosh B. 1977.. Rift Valley fever affecting humans in South Africa: a clinicopathological study. . S. Afr. Med. J. 51:(24):86771
    [Google Scholar]
  20. 20.
    Laughlin LW, Girgis NI, Meegan JM, Strausbaugh LJ, Yassin MW, Watten RH. 1978.. Clinical studies on Rift Valley fever. Part 2: ophthalmologic and central nervous system complications. . J. Egypt. Public Health Assoc. 53:(3–4):18384
    [Google Scholar]
  21. 21.
    Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, et al. 2003.. Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. . Clin. Infect. Dis. 37:(8):108492
    [Crossref] [Google Scholar]
  22. 22.
    Jansen van Vuren P, Shalekoff S, Grobbelaar AA, Archer BN, Thomas J, et al. 2015.. Serum levels of inflammatory cytokines in Rift Valley fever patients are indicative of severe disease. . Virol. J. 12::159
    [Crossref] [Google Scholar]
  23. 23.
    Cartwright HN, Barbeau DJ, McElroy AK. 2020.. Rift Valley fever virus is lethal in different inbred mouse strains independent of sex. . Front. Microbiol. 11::1962
    [Crossref] [Google Scholar]
  24. 24.
    Anderson GW, Slone TW, Peters CJ. 1988.. The gerbil, Meriones unguiculatus, a model for Rift Valley fever viral encephalitis. . Arch. Virol. 102:(3–4):18796
    [Crossref] [Google Scholar]
  25. 25.
    Dodd KA, McElroy AK, Jones TL, Zaki SR, Nichol ST, Spiropoulou CF. 2014.. Rift Valley fever virus encephalitis is associated with an ineffective systemic immune response and activated T cell infiltration into the CNS in an immunocompetent mouse model. . PLOS Negl. Trop. Dis. 8:(6):e2874
    [Crossref] [Google Scholar]
  26. 26.
    Michaely LM, Rissmann M, Keller M, König R, von Arnim F, et al. 2022.. NSG-mice reveal the importance of a functional innate and adaptive immune response to overcome RVFV infection. . Viruses 14:(2):350
    [Crossref] [Google Scholar]
  27. 27.
    Hum NR, Bourguet FA, Sebastian A, Lam D, Phillips AM, et al. 2022.. MAVS mediates a protective immune response in the brain to Rift Valley fever virus. . PLOS Pathog. 18:(5):e1010231
    [Crossref] [Google Scholar]
  28. 28.
    Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F, et al. 2004.. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. . J. Virol. 78:(18):9798806
    [Crossref] [Google Scholar]
  29. 29.
    Ikegami T, Narayanan K, Won S, Kamitani W, Peters CJ, Makino S. 2009.. Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR. . Ann. N. Y. Acad. Sci. 1171:(Suppl. 1):E7585
    [Google Scholar]
  30. 30.
    Smithburn KC. 1949.. Rift Valley fever; the neurotropic adaptation of the virus and the experimental use of this modified virus as a vaccine. . Br. J. Exp. Pathol. 30:(1):116
    [Google Scholar]
  31. 31.
    Lacote S, Tamietti C, Chabert M, Confort M-P, Conquet L, et al. 2022.. Intranasal exposure to Rift Valley fever virus live-attenuated strains leads to high mortality rate in immunocompetent mice. . Viruses 14:(11):2470
    [Crossref] [Google Scholar]
  32. 32.
    Muller R, Saluzzo JF, Lopez N, Dreier T, Turell M, et al. 1995.. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. . Am. J. Trop. Med. Hyg. 53:(4):40511
    [Crossref] [Google Scholar]
  33. 33.
    Caplen H, Peters CJ, Bishop DH. 1985.. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. . J. Gen. Virol. 66: (Part 10):227177
    [Crossref] [Google Scholar]
  34. 34.
    Takehara K, Min MK, Battles JK, Sugiyama K, Emery VC, et al. 1989.. Identification of mutations in the mRNA of a candidate vaccine strain of Rift Valley fever virus. . Virology 169:(2):45257
    [Crossref] [Google Scholar]
  35. 35.
    Billecocq A, Gauliard N, Le May N, Elliott RM, Flick R, Bouloy M. 2008.. RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. . Virology 378:(2):37784
    [Crossref] [Google Scholar]
  36. 36.
    Vialat P, Muller R, Vu TH, Prehaud C, Bouloy M. 1997.. Mapping of the mutations present in the genome of the Rift Valley fever virus attenuated MP12 strain and their putative role in attenuation. . Virus Res. 52:(1):4350
    [Crossref] [Google Scholar]
  37. 37.
    Ermler ME, Yerukhim E, Schriewer J, Schattgen S, Traylor Z, et al. 2013.. RNA helicase signaling is critical for type I interferon production and protection against Rift Valley fever virus during mucosal challenge. . J. Virol. 87:(9):484660
    [Crossref] [Google Scholar]
  38. 38.
    Bird BH, Albariño CG, Hartman AL, Erickson BR, Ksiazek TG, Nichol ST. 2008.. Rift Valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. . J. Virol. 82:(6):268191
    [Crossref] [Google Scholar]
  39. 39.
    Reed C, Lin K, Wilhelmsen C, Friedrich B, Nalca A, et al. 2013.. Aerosol exposure to Rift Valley fever virus causes earlier and more severe neuropathology in the murine model, which has important implications for therapeutic development. . PLOS Negl. Trop. Dis. 7:(4):e2156
    [Crossref] [Google Scholar]
  40. 40.
    Albe JR, Boyles DA, Walters AW, Kujawa MR, McMillen CM, et al. 2019.. Neutrophil and macrophage influx into the central nervous system are inflammatory components of lethal Rift Valley fever encephalitis in rats. . PLOS Pathog. 15:(6):e1007833
    [Crossref] [Google Scholar]
  41. 41.
    Bales JM, Powell DS, Bethel LM, Reed DS, Hartman AL. 2012.. Choice of inbred rat strain impacts lethality and disease course after respiratory infection with Rift Valley fever virus. . Front. Cell. Infect. Microbiol. 2::105
    [Crossref] [Google Scholar]
  42. 42.
    Hartman AL, Powell DS, Bethel LM, Caroline AL, Schmid RJ, et al. 2014.. Aerosolized Rift Valley fever virus causes fatal encephalitis in African green monkeys and common marmosets. . J. Virol. 88:(4):223545
    [Crossref] [Google Scholar]
  43. 43.
    Alrajhi AA, Al-Semari A, Al-Watban J. 2004.. Rift Valley fever encephalitis. . Emerg. Infect. Dis. 10:(3):55455
    [Crossref] [Google Scholar]
  44. 44.
    Smith DR, Bird BH, Lewis B, Johnston SC, McCarthy S, et al. 2012.. Development of a novel nonhuman primate model for Rift Valley fever. . J. Virol. 86:(4):210920
    [Crossref] [Google Scholar]
  45. 45.
    Cartwright HN, Barbeau DJ, Doyle JD, Klein E, Heise MT, et al. 2022.. Genetic diversity of Collaborative Cross mice enables identification of novel Rift Valley fever virus encephalitis model. . PLOS Pathog. 18:(7):e1010649
    [Crossref] [Google Scholar]
  46. 46.
    Walters AW, Kujawa MR, Albe JR, Reed DS, Klimstra WB, Hartman AL. 2019.. Vascular permeability in the brain is a late pathogenic event during Rift Valley fever virus encephalitis in rats. . Virology 526::17379
    [Crossref] [Google Scholar]
  47. 47.
    Dodd KA, McElroy AK, Jones MEB, Nichol ST, Spiropoulou CF. 2013.. Rift Valley fever virus clearance and protection from neurologic disease are dependent on CD4+ T cell and virus-specific antibody responses. . J. Virol. 87:(11):616171
    [Crossref] [Google Scholar]
  48. 48.
    Harmon JR, Spengler JR, Coleman-McCray JD, ST Nichol, Spiropoulou CF, McElroy AK. 2018.. CD4 T cells, CD8 T cells, and monocytes coordinate to prevent Rift Valley fever virus encephalitis. . J. Virol. 92:(24):e01270-18
    [Crossref] [Google Scholar]
  49. 49.
    Rocamonde B, Hasan U, Mathieu C, Dutartre H. 2023.. Viral-induced neuroinflammation: different mechanisms converging to similar exacerbated glial responses. . Front. Neurosci. 17::1108212
    [Crossref] [Google Scholar]
  50. 50.
    Hosseini S, Wilk E, Michaelsen-Preusse K, Gerhauser I, Baumgärtner W, et al. 2018.. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. . J. Neurosci. 38:(12):306080
    [Crossref] [Google Scholar]
  51. 51.
    McArthur JC, Johnson TP. 2020.. Chronic inflammation mediates brain injury in HIV infection: relevance for cure strategies. . Curr. Opin. Neurol. 33:(3):397404
    [Crossref] [Google Scholar]
  52. 52.
    Smith DR, Steele KE, Shamblin J, Honko A, Johnson J, et al. 2010.. The pathogenesis of Rift Valley fever virus in the mouse model. . Virology 407:(2):25667
    [Crossref] [Google Scholar]
  53. 53.
    Caroline AL, Kujawa MR, Oury TD, Reed DS, Hartman AL. 2015.. Inflammatory biomarkers associated with lethal Rift Valley fever encephalitis in the Lewis rat model. . Front. Microbiol. 6::1509
    [Google Scholar]
  54. 54.
    Maurizio PL, Ferris MT. 2017.. The Collaborative Cross resource for systems genetics research of infectious diseases. . Methods Mol. Biol. 1488::57996
    [Crossref] [Google Scholar]
  55. 55.
    Noll KE, Ferris MT, Heise MT. 2019.. The Collaborative Cross: a systems genetics resource for studying host-pathogen interactions. . Cell Host Microbe 25:(4):48498
    [Crossref] [Google Scholar]
  56. 56.
    Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O. 1988.. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. . Mol. Cell. Biol. 8:(10):451823
    [Google Scholar]
  57. 57.
    Ferris MT, Aylor DL, Bottomly D, Whitmore AC, Aicher LD, et al. 2013.. Modeling host genetic regulation of influenza pathogenesis in the Collaborative Cross. . PLOS Pathog. 9:(2):e1003196
    [Crossref] [Google Scholar]
  58. 58.
    Ganaie SS, Schwarz MM, McMillen CM, Price DA, Feng AX, et al. 2021.. Lrp1 is a host entry factor for Rift Valley fever virus. . Cell 184:(20):516378.e24
    [Crossref] [Google Scholar]
  59. 59.
    Bermúdez-Méndez E, Angelino P, van Keulen L, van de Water S, Rockx B, et al. 2023.. Transcriptomic profiling reveals intense host-pathogen dispute compromising homeostasis during acute Rift Valley fever virus infection. . J. Virol. 97:(6):e0041523
    [Crossref] [Google Scholar]
  60. 60.
    Schwarz MM, Ganaie SS, Feng A, Brown G, Yangdon T, et al. 2023.. Lrp1 is essential for lethal Rift Valley fever hepatic disease in mice. . Sci. Adv. 9:(28):eadh2264
    [Crossref] [Google Scholar]
  61. 61.
    Xu L, Paine AC, Barbeau DJ, Alencastro F, Duncan AW, McElroy AK. 2023.. Limiting viral replication in hepatocytes alters Rift Valley fever virus disease manifestations. . J. Virol. 97:(9):e00853-23
    [Google Scholar]
  62. 62.
    Wienholds E, Plasterk RHA. 2005.. MicroRNA function in animal development. . FEBS Lett. 579:(26):591122
    [Crossref] [Google Scholar]
  63. 63.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. 2002.. Identification of tissue-specific microRNAs from mouse. . Curr. Biol. 12:(9):73539
    [Crossref] [Google Scholar]
  64. 64.
    Winkler CW, Race B, Phillips K, Peterson KE. 2015.. Capillaries in the olfactory bulb but not the cortex are highly susceptible to virus-induced vascular leak and promote viral neuroinvasion. . Acta Neuropathol. 130:(2):23345
    [Crossref] [Google Scholar]
  65. 65.
    Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL. 2005.. Virology, pathology, and clinical manifestations of West Nile virus disease. . Emerg. Infect. Dis. 11:(8):117479
    [Crossref] [Google Scholar]
  66. 66.
    Ghosh D, Basu A. 2009.. Japanese encephalitis—a pathological and clinical perspective. . PLOS Negl. Trop. Dis. 3:(9):e437
    [Crossref] [Google Scholar]
  67. 67.
    Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, Verma S. 2012.. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. . J. Gen. Virol. 93:(Part 6):1193203
    [Crossref] [Google Scholar]
  68. 68.
    Pratt WD, Fine DL, Hart MK, Martin SS, Reed DS. 2012.. Alphaviruses. . In Biodefense Research Methodology and Animal Models, ed. JR Swearengen , pp. 22354. Boca Raton, FL:: CRC
    [Google Scholar]
  69. 69.
    Cain MD, Salimi H, Gong Y, Yang L, Hamilton SL, et al. 2017.. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. . J. Neuroimmunol. 308::11830
    [Crossref] [Google Scholar]
  70. 70.
    Boyles DA, Schwarz MM, Albe JR, McMillen CM, O'Malley KJ, et al. 2021.. Development of Rift Valley fever encephalitis in rats is mediated by early infection of olfactory epithelium and neuroinvasion across the cribriform plate. . J. Gen. Virol. 102:(2):001522
    [Crossref] [Google Scholar]
  71. 71.
    Reed C, Steele KE, Honko A, Shamblin J, Hensley LE, Smith DR. 2012.. Ultrastructural study of Rift Valley fever virus in the mouse model. . Virology 431:(1–2):5870
    [Crossref] [Google Scholar]
  72. 72.
    Abu-Elyazeed R, el-Sharkawy S, Olson J, Botros B, Soliman A, et al. 1996.. Prevalence of anti-Rift-Valley-fever Igm antibody in abattoir workers in the Nile delta during the 1993 outbreak in Egypt. . Bull. World Health Organ. 74:(2):15558
    [Google Scholar]
  73. 73.
    Chambers PG, Swanepoel R. 1980.. Rift Valley fever in abattoir workers. . Cent. Afr. J. Med. 26:(6):12226
    [Google Scholar]
  74. 74.
    Turkistany AH, Mohamed AG, Al-Hamdan N. 2001.. Seroprevalence of Rift Valley fever among slaughterhouse personnel in Makkah during Hajj 1419h (1999). . J. Fam. Commun. Med. 8:(3):5357
    [Crossref] [Google Scholar]
  75. 75.
    Quellec J, Pédarrieu A, Piro-Mégy C, Barthelemy J, Simonin Y, et al. 2023.. Rift Valley fever virus modulates apoptosis and immune response during infection of human astrocytes. . Emerg. Microbes Infect. 12:(1):2207672
    [Crossref] [Google Scholar]
  76. 76.
    Borrego B, de Ávila AI, Domingo E, Brun A. 2019.. Lethal mutagenesis of Rift Valley fever virus induced by favipiravir. . Antimicrob. Agents Chemother. 63:(8):e00669-19
    [Crossref] [Google Scholar]
  77. 77.
    Caroline AL, Powell DS, Bethel LM, Oury TD, Reed DS, Hartman AL. 2014.. Broad spectrum antiviral activity of favipiravir (T-705): protection from highly lethal inhalational Rift Valley fever. . PLOS Negl. Trop. Dis. 8:(4):e2790
    [Crossref] [Google Scholar]
  78. 78.
    Peters CJ, Reynolds JA, Slone TW, Jones DE, Stephen EL. 1986.. Prophylaxis of Rift Valley fever with antiviral drugs, immune serum, an interferon inducer, and a macrophage activator. . Antiviral Res. 6:(5):28597
    [Crossref] [Google Scholar]
  79. 79.
    Scharton D, Bailey KW, Vest Z, Westover JB, Kumaki Y, et al. 2014.. Favipiravir (T-705) protects against peracute Rift Valley fever virus infection and reduces delayed-onset neurologic disease observed with ribavirin treatment. . Antiviral Res. 104::8492
    [Crossref] [Google Scholar]
  80. 80.
    Peters CJ, Slone TW. 1982.. Inbred rat strains mimic the disparate human response to Rift Valley fever virus infection. . J. Med. Virol. 10:(1):4554
    [Crossref] [Google Scholar]
  81. 81.
    Anderson GW, Rosebrock JA, Johnson AJ, Jennings GB, Peters CJ. 1991.. Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance. . Am. J. Trop. Med. Hyg. 44:(5):47580
    [Crossref] [Google Scholar]
  82. 82.
    Anderson GW, Slone TW, Peters CJ. 1987.. Pathogenesis of Rift Valley fever virus (RVFV) in inbred rats. . Microb. Pathog. 2:(4):28393
    [Crossref] [Google Scholar]
  83. 83.
    Busch CM, Callicott RJ, Peters CJ, Morrill JC, Womack JE. 2015.. Mapping a major gene for resistance to Rift Valley fever virus in laboratory rats. . J. Hered. 106:(6):72833
    [Crossref] [Google Scholar]
  84. 84.
    Do Valle TZ, Billecocq A, Guillemot L, Alberts R, Gommet C, et al. 2010.. A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever. . J. Immunol. 185:(10):614656
    [Crossref] [Google Scholar]
  85. 85.
    Tokuda S, Do Valle TZ, Batista L, Simon-Chazottes D, Guillemot L, et al. 2015.. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice. . Genes Immun. 16:(3):20612
    [Crossref] [Google Scholar]
  86. 86.
    Batista L, Jouvion G, Simon-Chazottes D, Houzelstein D, Burlen-Defranoux O, et al. 2020.. Genetic dissection of Rift Valley fever pathogenesis: RVFS2 locus on mouse chromosome 11 enables survival to early-onset hepatitis. . Sci. Rep. 10:(1):8734
    [Crossref] [Google Scholar]
  87. 87.
    Houzelstein D, Simon-Chazottes D, Batista L, Tokuda S, Langa Vives F, et al. 2021.. The ring finger protein 213 gene (Rnf213) contributes to Rift Valley fever resistance in mice. . Mamm. Genome 32:(1):3037
    [Crossref] [Google Scholar]
  88. 88.
    Graham JB, Thomas S, Swarts J, McMillan AA, Ferris MT, et al. 2015.. Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes. . mBio 6:(3):e00493-15
    [Crossref] [Google Scholar]
  89. 89.
    Green R, Wilkins C, Thomas S, Sekine A, Hendrick DM, et al. 2017.. Oas1b-dependent immune transcriptional profiles of West Nile virus infection in the collaborative cross. . G3 7:(6):166582
    [Crossref] [Google Scholar]
  90. 90.
    Jasperse BA, Mattocks MD, Noll KE, Ferris MT, Heise MT, Lazear HM. 2023.. Neuroinvasive flavivirus pathogenesis is restricted by host genetic factors in Collaborative Cross mice, independently of Oas1b. . J. Virol. 97:(7):e0071523
    [Crossref] [Google Scholar]
  91. 91.
    Lawley KS, Rech RR, Perez Gomez AA, Hopkins L, Han G, et al. 2022.. Viral clearance and neuroinflammation in acute TMEV infection vary by host genetic background. . Int. J. Mol. Sci. 23:(18):10482
    [Crossref] [Google Scholar]
  92. 92.
    Hise AG, Traylor Z, Hall NB, Sutherland LJ, Dahir S, et al. 2015.. Association of symptoms and severity of Rift Valley fever with genetic polymorphisms in human innate immune pathways. . PLOS Negl. Trop. Dis. 9:(3):e0003584
    [Crossref] [Google Scholar]
  93. 93.
    Habjan M, Andersson I, Klingström J, Schümann M, Martin A, et al. 2008.. Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. . PLOS ONE 3:(4):e2032
    [Crossref] [Google Scholar]
  94. 94.
    Barbeau DJ, Cartwright HN, Harmon JR, Spengler JR, Spiropoulou CF, et al. 2021.. Identification and characterization of Rift Valley fever virus-specific T cells reveals a dependence on CD40/CD40L interactions for prevention of encephalitis. . J. Virol. 95:(23):e0150621
    [Crossref] [Google Scholar]
  95. 95.
    Allen ER, Krumm SA, Raghwani J, Halldorsson S, Elliott A, et al. 2018.. A protective monoclonal antibody targets a site of vulnerability on the surface of Rift Valley fever virus. . Cell Rep. 25:(13):375058.e4
    [Crossref] [Google Scholar]
  96. 96.
    Gutjahr B, Keller M, Rissmann M, von Arnim F, Jäckel S, et al. 2020.. Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley fever challenge by cooperative effects. . PLOS Negl. Trop. Dis. 14:(3):e0008143
    [Crossref] [Google Scholar]
  97. 97.
    Chapman NS, Zhao H, Kose N, Westover JB, Kalveram B, et al. 2021.. Potent neutralization of Rift Valley fever virus by human monoclonal antibodies through fusion inhibition. . PNAS 118:(14):e2025642118
    [Crossref] [Google Scholar]
  98. 98.
    Chapman NS, Hulswit RJG, Westover JLB, Stass R, Paesen GC, et al. 2023.. Multifunctional human monoclonal antibody combination mediates protection against Rift Valley fever virus at low doses. . Nat. Commun. 14:(1):5650
    [Crossref] [Google Scholar]
  99. 99.
    McMillen CM, Chapman NS, Hoehl RM, Skvarca LB, Schwarz MM, et al. 2023.. A highly potent human neutralizing antibody prevents vertical transmission of Rift Valley fever virus in a rat model. . Nat. Commun. 14:(1):4507
    [Crossref] [Google Scholar]
  100. 100.
    Cartwright HN, Barbeau DJ, McElroy AK. 2021.. Isotype-specific Fc effector functions enhance antibody-mediated Rift Valley fever virus protection in vivo. . mSphere 6:(5):e0055621
    [Crossref] [Google Scholar]
  101. 101.
    Poole CL, Kimberlin DW. 2018.. Antiviral approaches for the treatment of herpes simplex virus infections in newborn infants. . Annu. Rev. Virol. 5::40725
    [Crossref] [Google Scholar]
  102. 102.
    Barbeau DJ, Albe JR, Nambulli S, Tilston-Lunel NL, Hartman AL, et al. 2020.. Rift Valley fever virus infection causes acute encephalitis in the ferret. . mSphere 5:(5):e00798-20
    [Crossref] [Google Scholar]
  103. 103.
    Michaely LM, Schuwerk L, Allnoch L, Schön K, Waltl I, et al. 2022.. Intact type I interferon receptor signaling prevents hepatocellular necrosis but not encephalitis in a dose-dependent manner in Rift Valley fever virus infected mice. . Int. J. Mol. Sci. 23:(20):12492
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-093022-011544
Loading
/content/journals/10.1146/annurev-virology-093022-011544
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error