1932

Abstract

The effects of SARS-CoV-2 infection on children continue to evolve following the onset of the COVID-19 pandemic. Although life-threatening multisystem inflammatory syndrome in children (MIS-C) has become rare, long-standing symptoms stemming from persistent immune activation beyond the resolution of acute SARS-CoV-2 infection contribute to major health sequelae and continue to pose an economic burden. Shared pathophysiologic mechanisms place MIS-C and long COVID within a vast spectrum of postinfectious conditions characterized by intestinal dysbiosis, increased gut permeability, and varying degrees of immune dysregulation. Insights obtained from MIS-C will help shape our understanding of the more indolent and prevalent postacute sequelae of COVID and ultimately guide efforts to improve diagnosis and management of postinfectious complications of SARS-CoV-2 infection in children.

Keyword(s): COVID-19long COVIDMIS-CPASCspike
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-093022-011839
2024-09-26
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-093022-011839.html?itemId=/content/journals/10.1146/annurev-virology-093022-011839&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Toubiana J, Poirault C, Corsia A, Bajolle F, Fourgeaud J, et al. 2020.. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. . BMJ 369::m2094
    [Crossref] [Google Scholar]
  2. 2.
    Belhadjer Z, Méot M, Bajolle F, Khraiche D, Legendre A, et al. 2020.. Acute heart failure in multisystem inflammatory syndrome in children in the context of global SARS-CoV-2 pandemic. . Circulation 142:(5):42936
    [Crossref] [Google Scholar]
  3. 3.
    Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, et al. 2020.. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. . Lancet 395:(10239):177178
    [Crossref] [Google Scholar]
  4. 4.
    Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. 2020.. Hyperinflammatory shock in children during COVID-19 pandemic. . Lancet 395:(10237):16078
    [Crossref] [Google Scholar]
  5. 5.
    Dufort EM, Koumans EH, Chow EJ, Rosenthal EM, Muse A, et al. 2020.. Multisystem inflammatory syndrome in children in New York state. New Engl. . J. Med. 383:(4):34758
    [Google Scholar]
  6. 6.
    Yonker LM, Gilboa T, Ogata AF, Senussi Y, Lazarovits R, et al. 2021.. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. . J. Clin. Investig. 131:(14):e149633
    [Crossref] [Google Scholar]
  7. 7.
    Sencio V, Machado MG, Trottein F. 2021.. The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. . Mucosal Immunol. 14::296304
    [Crossref] [Google Scholar]
  8. 8.
    Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. 2023.. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. . Nat. Rev. Gastroenterol. Hepatol. 20:(5):32337
    [Crossref] [Google Scholar]
  9. 9.
    Wang M, Zhang Y, Li C, Chang W, Zhang L. 2023.. The relationship between gut microbiota and COVID-19 progression: new insights into immunopathogenesis and treatment. . Front. Immunol. 14::1180336
    [Crossref] [Google Scholar]
  10. 10.
    Josyabhatla R, Kamdar AA, Armbrister SA, Daniel R, Boukas K, et al. 2021.. Recognizing a MIS-Chievous cause of acute viral gastroenteritis. . Front. Pediatr. 9::748368
    [Crossref] [Google Scholar]
  11. 11.
    Fasano A. 2011.. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. . Physiol. Rev. 91::15175
    [Crossref] [Google Scholar]
  12. 12.
    Proal AD, VanElzakker MB, Aleman S, Bach K, Boribong BP, et al. 2023.. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). . Nat. Immunol. 24:(10):161627
    [Crossref] [Google Scholar]
  13. 13.
    Mouchati C, Durieux JC, Zisis SN, Labbato D, Rodgers MA, Ailstock K, et al. 2023.. Increase in gut permeability and oxidized ldl is associated with post-acute sequelae of SARS-CoV-2. . Front. Immunol. 14::1182544
    [Crossref] [Google Scholar]
  14. 14.
    Swank Z, Senussi Y, Manickas-Hill Z, Yu XG, Li JZ, et al. 2022.. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. . Clin. Infect. Dis. 76:(3):e48790
    [Crossref] [Google Scholar]
  15. 15.
    Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. 2022.. Multisystem inflammatory syndrome in children and long COVID: the SARS-CoV-2 viral superantigen hypothesis. . Front. Immunol. 13::941009
    [Crossref] [Google Scholar]
  16. 16.
    Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. 2021.. COVID-19-associated multisystem inflammatory syndrome in children (MIS-C): a novel disease that mimics toxic shock syndrome—the superantigen hypothesis. . J. Allergy Clin. Immuno. 147::5759
    [Crossref] [Google Scholar]
  17. 17.
    Cheng MH, Zhang S, Porritt RA, Noval Rivas M, Paschold L, et al. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. . PNAS 117:(41):2525462
    [Crossref] [Google Scholar]
  18. 18.
    Porritt RA, Binek A, Paschold L, Noval Rivas M, McArdle A, et al. 2021.. The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children. . J. Clin. Investig. 131:(20):e151520
    [Crossref] [Google Scholar]
  19. 19.
    Porritt RA, Paschold L, Noval Rivas M, Cheng MH, Yonker LM, et al. Identification of a unique TCR repertoire, consistent with a superantigen selection process in children with multi-system inflammatory syndrome. . bioRxiv 2020.11.09.372169. https://doi.org/10.1101/2020.11.09.372169
  20. 20.
    Moreews M, Le Gouge K, Khaldi-Plassart S, Pescarmona R, Mathieu AL, et al. 2021.. Polyclonal expansion of TCR Vβ 21.3+ CD4+ and CD8+ T cells is a hallmark of multisystem inflammatory syndrome in children. . Sci. Immunol. 6:(59):eabh1516
    [Crossref] [Google Scholar]
  21. 21.
    Porritt RA, Paschold L, Noval Rivas M, Cheng MH, Yonker LM, et al. 2021.. HLA class I–associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. . J. Clin. Investig. 131:(10):e146614
    [Crossref] [Google Scholar]
  22. 22.
    Sacco K, Castagnoli R, Vakkilainen S, Liu C, Delmonte OM, et al. 2022.. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. . Nat. Med. 28:(5):105062
    [Crossref] [Google Scholar]
  23. 23.
    Hoste L, Roels L, Naesens L, Bosteels V, Vanhee S, et al. 2022.. TIM3+TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. . J. Exp. Med. 219:(2):e20211381
    [Crossref] [Google Scholar]
  24. 24.
    Vella LA, Rowley AH. 2021.. Current insights into the pathophysiology of multisystem inflammatory syndrome in children. . Curr. Pediatr. Rep. 9::8392
    [Crossref] [Google Scholar]
  25. 25.
    Carter MJ, Fish M, Jennings A, Doores KJ, Wellman P, et al. 2020.. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. . Nat. Med. 26:(11):17017
    [Crossref] [Google Scholar]
  26. 26.
    Vella LA, Giles JR, Baxter AE, Oldridge DA, Diorio C, et al. 2021.. Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared with adult and pediatric COVID-19. . Sci. Immunol. 6:(57):eabf7570
    [Crossref] [Google Scholar]
  27. 27.
    Abo-Haded HM, Alshengeti AM, Alawfi AD, Khoshhal SQ, Al-Harbi KM, et al. 2022.. Cytokine profiling among children with multisystem inflammatory syndrome versus simple COVID-19 infection: a study from northwest Saudi Arabia. . Biology 11:(7):946
    [Crossref] [Google Scholar]
  28. 28.
    Dinarello CA. 2018.. Overview of the IL-1 family in innate inflammation and acquired immunity. . Immunol. Rev. 281:(1):827
    [Crossref] [Google Scholar]
  29. 29.
    Pfeifer J, Thurner B, Kessel C, Fadle N, Kheiroddin P, et al. 2022.. Autoantibodies against interleukin-1 receptor antagonist in multisystem inflammatory syndrome in children: a multicentre, retrospective, cohort study. . Lancet Rheumatol. 4:(5):e32937
    [Crossref] [Google Scholar]
  30. 30.
    Lin J, Harahsheh AS, Raghuveer G, Jain S, Choueiter NF, Garrido-Garcia LM, et al. 2023.. Emerging insights into the pathophysiology of multisystem inflammatory syndrome associated with COVID-19 in children. . Can. J. Cardiol. 39::793802
    [Crossref] [Google Scholar]
  31. 31.
    Burbelo PD, Castagnoli R, Shimizu C, Delmonte OM, Dobbs K, et al. 2022.. Autoantibodies against proteins previously associated with autoimmunity in adult and pediatric patients with COVID-19 and children with MIS-C. . Front. Immunol. 13::841126
    [Crossref] [Google Scholar]
  32. 32.
    Izci Duran T, Turkmen E, Dilek M, Sayarlioglu H, Arik N. 2021.. ANCA-associated vasculitis after COVID-19. . Rheumatol. Int. 41:(8):152329
    [Crossref] [Google Scholar]
  33. 33.
    Gelzo M, Giannattasio A, Maglione M, Muzzica S, D'Anna C, et al. 2022.. Biomarkers of endothelial damage in distinct phases of multisystem inflammatory syndrome in children. . Metabolites 12:(8):680
    [Crossref] [Google Scholar]
  34. 34.
    Rajamanickam A, Nathella PK, Venkataraman A, Varadarjan P, Kannan S, et al. 2022.. Unique cellular immune signatures of multisystem inflammatory syndrome in children. . PLOS Pathog. 18:(11):e1010915
    [Crossref] [Google Scholar]
  35. 35.
    Boribong BP, LaSalle TJ, Bartsch YC, Ellett F, Loiselle ME, et al. 2022.. Neutrophil profiles of pediatric COVID-19 and multisystem inflammatory syndrome in children. . Cell Rep. Med. 3:(12):100848
    [Crossref] [Google Scholar]
  36. 36.
    Hany M, Zidan A, Gaballa M, Ibrahim M, Agayby ASS, et al. 2023.. Lingering SARS-CoV-2 in gastric and gallbladder tissues of patients with previous COVID-19 infection undergoing bariatric surgery. . Obes. Surg. 33:(1):13948
    [Crossref] [Google Scholar]
  37. 37.
    Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, et al. Multimodal molecular imaging reveals tissue-based T cell activation and viral RNA 1 persistence for up to 2 years following COVID-19. . medRxiv 2023.07.27.23293177. https://doi.org/10.1101/2023.07.27.23293177
  38. 38.
    Proal AD, VanElzakker MB. 2021.. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. . Front. Microbiol. 12::1494
    [Crossref] [Google Scholar]
  39. 39.
    Davis HE, McCorkell L, Vogel JM, Topol EJ. 2023.. Long COVID: major findings, mechanisms and recommendations. . Nat. Rev. Microbiol. 21:(3):13346
    [Crossref] [Google Scholar]
  40. 40.
    Kreye J, Reincke SM, Prüss H. 2020.. Do cross-reactive antibodies cause neuropathology in COVID-19?. Nat. Rev. Immunol. 20:(11):64546
    [Crossref] [Google Scholar]
  41. 41.
    Rhedin S, Lundholm C, Horne A, Smew AI, Osvald EC, et al. 2022.. Risk factors for multisystem inflammatory syndrome in children—a population-based cohort study of over 2 million children. . Lancet Reg. Health Eur. 19::100443
    [Crossref] [Google Scholar]
  42. 42.
    Gawlik AM, Berdej-Szczot E, Chmiel I, Lorek M, Antosz A, et al. 2022.. A tendency to worse course of multisystem inflammatory syndrome in children with obesity: MultiOrgan Inflammatory Syndromes COVID-19 related study. . Front. Endocrinol. 13::934373
    [Crossref] [Google Scholar]
  43. 43.
    Acevedo L, Piñeres-Olave BE, Niño-Serna LF, Vega LM, Gomez IJA, et al. 2021.. Mortality and clinical characteristics of multisystem inflammatory syndrome in children (MIS-C) associated with covid-19 in critically ill patients: an observational multicenter study (MISCO study). . BMC Pediatr. 21:(1):516
    [Crossref] [Google Scholar]
  44. 44.
    Dennis-Heyward EA. 2021.. Disparities in susceptibility to multisystem inflammatory syndrome in children. . JAMA Pediatr. 175:(9):89293
    [Crossref] [Google Scholar]
  45. 45.
    Noval Rivas M, Arditi M. 2023.. Kawasaki disease and multisystem inflammatory syndrome in children: common inflammatory pathways of two distinct diseases. . Rheum. Dis. Clin. 49::64759
    [Crossref] [Google Scholar]
  46. 46.
    World Health Organ. 2023.. WHO COVID-19 dashboard. . World Health Organization. https://covid19.who.int/
    [Google Scholar]
  47. 47.
    Cent. Dis. Control Prev. 2023.. COVID data tracker: nationwide commercial lab pediatric antibody seroprevalence. . Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker/#pediatric-seroprevalence
    [Google Scholar]
  48. 48.
    Cent. Dis. Control Prev. 2023.. COVID data tracker: health department-reported cases of multisystem inflammatory syndrome in children (MIS-C) in the United States. . Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker/#mis-national-surveillance
    [Google Scholar]
  49. 49.
    Payne AB, Gilani Z, Godfred-Cato S, Belay ED, Feldstein LR, et al. 2021.. Incidence of multisystem inflammatory syndrome in children among US persons infected with SARS-CoV-2. . JAMA Netw. Open 4:(6):e2116420
    [Crossref] [Google Scholar]
  50. 50.
    Miller AD, Zambrano LD, Yousaf AR, Abrams JY, Meng L, et al. 2022.. Multisystem inflammatory syndrome in children—United States, February 2020–July 2021. . Clin. Infect. Dis. 75:(1):e116575
    [Crossref] [Google Scholar]
  51. 51.
    Jhaveri R, Webb R, Razzaghi H, Schuchard J, Mejias A, et al. 2023.. Can multisystem inflammatory syndrome in children be managed in the outpatient setting? An EHR-based cohort study from the RECOVER program. . J. Pediatr. Infect. Dis. Soc. 12:(3):15962
    [Crossref] [Google Scholar]
  52. 52.
    Kane AS, Boribong BP, Loiselle M, Chitnis AP, Chavez H, et al. 2023.. Monocyte anisocytosis corresponds with increasing severity of COVID-19 in children. . Front. Pediatr. 11::1177048
    [Crossref] [Google Scholar]
  53. 53.
    Yonker LM, Badaki-Makun O, Arya P, Boribong BP, Moraru G, et al. 2022.. Monocyte anisocytosis increases during multisystem inflammatory syndrome in children with cardiovascular complications. . BMC Infect. Dis. 22:(1):563
    [Crossref] [Google Scholar]
  54. 54.
    Henderson LA, Canna SW, Friedman KG, Gorelik M, Lapidus SK, et al. 2021.. American College of Rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: version 2. . Arthritis Rheumatol. 73:(4):e1329
    [Crossref] [Google Scholar]
  55. 55.
    Klein J, Wood J, Jaycox JR, Dhodapkar RM, Lu P, et al. 2023.. Distinguishing features of long COVID identified through immune profiling. . Nature 623::13948
    [Crossref] [Google Scholar]
  56. 56.
    Wong AC, Devason AS, Umana IC, Cox TO, Dohnalová L, et al. 2023.. Serotonin reduction in post-acute sequelae of viral infection. . Cell 186:(22):485167.e20
    [Crossref] [Google Scholar]
  57. 57.
    Andargie TE, Roznik K, Redekar N, Hill T, Zhou W, et al. 2023.. Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children. . J. Clin. Investig. 133:(21):e171729
    [Crossref] [Google Scholar]
  58. 58.
    Rodríguez-Rubio M, Menéndez-Suso JJ, Cámara-Hijón C, Río-García M, Laplaza-González M, et al. 2022.. Cytokine profile in children with severe multisystem inflammatory syndrome related to the coronavirus disease 2019. . J. Pediatr. Intensive Care 11:(03):25964
    [Crossref] [Google Scholar]
  59. 59.
    Ouldali N, Son MBF, McArdle AJ, Vito O, Vaugon E, et al. 2023.. Immunomodulatory therapy for MIS-C. . Pediatrics 152:(1):e2022061173
    [Crossref] [Google Scholar]
  60. 60.
    Yamaguchi Y, Takasawa K, Irabu H, Hiratoko K, Ichigi Y, et al. 2022.. Infliximab treatment for refractory COVID-19-associated multisystem inflammatory syndrome in a Japanese child. . J. Infect. Chemother. 28:(6):81418
    [Crossref] [Google Scholar]
  61. 61.
    Li J, Zhou Y, Ma J, Zhang Q, Shao J, et al. 2023.. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. . Signal Transduct. Target Ther. 8:(1):416
    [Crossref] [Google Scholar]
  62. 62.
    Bansal N, Azeka E, Neunert C, Kim JS, Murray J, et al. 2021.. Multisystem inflammatory syndrome associated with COVID-19 anti-thrombosis guideline of care for children by action. . Pediatr. Cardiol. 42:(7):163539
    [Crossref] [Google Scholar]
  63. 63.
    Wang C, Yu C, Jing H, Wu X, Novakovic VA, et al. 2022.. Long COVID: the nature of thrombotic sequelae determines the necessity of early anticoagulation. . Front. Cell. Infect. Microbiol. 12::861703
    [Crossref] [Google Scholar]
  64. 64.
    Pretorius E, Venter C, Laubshder G, Kotze MJ, Moremi K, et al. 2021.. Combined triple treatment of fibrin amyloid microclots and platelet pathology in individuals with long COVID/post-acute sequelae of COVID-19 (PASC) can resolve their persistent symptoms. . Preprint Res. Sq. https://doi.org/10.21203/rs.3.rs-1205453/v1
    [Google Scholar]
  65. 65.
    Eckard AR, Borow KM, Mack EH, Burke E, Atz AM. 2021.. Remestemcel-L therapy for COVID-19–associated multisystem inflammatory syndrome in children. . Pediatrics 147:(50):e2020046573
    [Crossref] [Google Scholar]
  66. 66.
    Yonker LM, Swank Z, Gilboa T, Senussi Y, Kenyon V, et al. 2022.. Zonulin antagonist, larazotide (AT1001), as an adjuvant treatment for multisystem inflammatory syndrome in children: a case series. . Crit. Care Explor. 10:(2):e0641
    [Crossref] [Google Scholar]
  67. 67.
    Shah SS, Naidu PKK, Selvam S, Shetty R, Bhat CS, Maheshwari S. 2023.. Cardiac findings in multisystem inflammatory syndrome in children: short term follow up in a large Indian series. . Ann. Pediatr. Cardiol. 16:(2):94101
    [Crossref] [Google Scholar]
  68. 68.
    Phirtskhalava S, Shavgulidze E, Shaikh AAA, Marikar F, Kalatozishvili K, et al. 2023.. Clinical course and outcome of cardiovascular manifestations in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection in Georgia. . Cureus 15:(5):e38555
    [Google Scholar]
  69. 69.
    Haslak F, Barut K, Durak C, Aliyeva A, Yildiz M, et al. 2021.. Clinical features and outcomes of 76 patients with COVID-19-related multi-system inflammatory syndrome in children. . Clin. Rheumatol. 40:(10):416778
    [Crossref] [Google Scholar]
  70. 70.
    Sperotto F, Gutiérrez-Sacristán A, Makwana S, Li X, Rofeberg VN, et al. 2023.. Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortium. . eClinicalMedicine 64::102212
    [Crossref] [Google Scholar]
  71. 71.
    Santos MO, Gonçalves LC, Silva PAN, Moreira ALE, Ito CRM, et al. 2022.. Multisystem inflammatory syndrome (MIS-C): a systematic review and meta-analysis of clinical characteristics, treatment, and outcomes. . J. Pediatr. 98::33849
    [Crossref] [Google Scholar]
  72. 72.
    Kwak JH, Lee SY, Choi JW. 2021.. Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019. . Clin. Exp. Pediatr. 64::6875
    [Crossref] [Google Scholar]
  73. 73.
    De Wolf R, Zaqout M, Tanaka K, Muiño-Mosquera L, van Berlaer G, et al. 2023.. Evaluation of late cardiac effects after multisystem inflammatory syndrome in children. . Front. Pediatr. 11::1253608
    [Crossref] [Google Scholar]
  74. 74.
    Mainzer G, Zucker-Toledano M, Hanna M, Bar-Yoseph R, Kodesh E. 2023.. Significant exercise limitations after recovery from MIS-C related myocarditis. . World J. Pediatr. 19:(12):114954
    [Crossref] [Google Scholar]
  75. 75.
    Diorio C, Shraim R, Vella LA, Giles JR, Baxter AE, et al. 2021.. Proteomic profiling of MIS-C patients indicates heterogeneity relating to interferon gamma dysregulation and vascular endothelial dysfunction. . Nat. Commun. 12:(1):7222
    [Crossref] [Google Scholar]
  76. 76.
    Rollins CK, Calderon J, Wypij D, Taylor AM, Davalji Kanjiker TS, et al. 2023.. Neurological and psychological sequelae associated with multisystem inflammatory syndrome in children. . JAMA Netw. Open 6:(7):e2324369
    [Crossref] [Google Scholar]
  77. 77.
    Cutler DM. 2022.. The costs of long COVID. . JAMA Health Forum 3:(5):e221809
    [Crossref] [Google Scholar]
  78. 78.
    Lopez-Leon S, Wegman-Ostrosky T, Ayuzo del Valle NC, Perelman C, Sepulveda R, et al. 2022.. Long-COVID in children and adolescents: a systematic review and meta-analyses. . Sci. Rep. 12:(1):9950
    [Crossref] [Google Scholar]
  79. 79.
    Hamad Saied M, van der Griend L, van Straalen JW, Wulffraat NM, Vastert S, Jansen MHA. 2023.. The protective effect of COVID-19 vaccines on developing multisystem inflammatory syndrome in children (MIS-C): a systematic literature review and meta-analysis. . Pediatr. Rheumatol. 21::80
    [Crossref] [Google Scholar]
  80. 80.
    Zambrano LD, Newhams MM, Olson SM, Halasa NB, Price AM, et al. 2022.. Effectiveness of BNT162b2 (Pfizer-BioNTech) mRNA vaccination against multisystem inflammatory syndrome in children among persons aged 12–18 years—United States, July–December 2021. . MMWR Morb. Mortal. Wkly. Rep. 71:(2):5258
    [Crossref] [Google Scholar]
  81. 81.
    Shook LL, Atyeo CG, Yonker LM, Fasano A, Gray KJ, et al. 2022.. Durability of anti-spike antibodies in infants after maternal COVID-19 vaccination or natural infection. . JAMA 327:(11):108789
    [Crossref] [Google Scholar]
  82. 82.
    Atyeo CG, Shook LL, Brigida S, De Guzman RM, Demidkin S, et al. 2022.. Maternal immune response and placental antibody transfer after COVID-19 vaccination across trimester and platforms. . Nat. Commun. 13:(1):3571
    [Crossref] [Google Scholar]
  83. 83.
    Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, et al. 2023.. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. . Circulation 147:(11):86776
    [Crossref] [Google Scholar]
  84. 84.
    GISAID. 2023.. Tracking of hCoV-19 variants. . GISAID. https://gisaid.org/hcov19-variants/
    [Google Scholar]
  85. 85.
    Whittaker R, Greve-Isdahl M, Bøås H, Suren P, Buanes EA, Veneti L. 2022.. COVID-19 hospitalization among children <18 years by variant wave in Norway. . Pediatrics 150:(3):e2022057564
    [Crossref] [Google Scholar]
  86. 86.
    Lopez L, Burgner D, Glover C, Carr J, Clark J, et al. 2022.. Lower risk of multi-system inflammatory syndrome in children (MIS-C) with the omicron variant. . Lancet Reg. Health–West Pac. 27::100604
    [Google Scholar]
  87. 87.
    Hedberg P, Nauclér P. 2023.. Post-COVID-19 condition after SARS-CoV-2 infections during the omicron surge versus the delta, alpha, and wild type periods in Stockholm, Sweden. . J Infect. Dis. 229::13336
    [Crossref] [Google Scholar]
  88. 88.
    Antonelli M, Pujol JC, Spector TD, Ourselin S, Steves CJ. 2022.. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. . Lancet 399:(10343):226364
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-093022-011839
Loading
/content/journals/10.1146/annurev-virology-093022-011839
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error