1932

Abstract

Viruses are the most abundant and the most diverse life form. In this meta-analysis we estimate that there are 4.80×1031 phages on Earth. Further, 97% of viruses are in soil and sediment—two underinvestigated biomes that combined account for only ∼2.5% of publicly available viral metagenomes. The majority of the most abundant viral sequences from all biomes are novel. Our analysis drawing on all publicly available viral metagenomes observed a mere 257,698 viral genotypes on Earth—an unrealistically low number—which attests to the current paucity of viral metagenomic data. Further advances in viral ecology and diversity call for a shift of attention to previously ignored major biomes and careful application of verified methods for viral metagenomic analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100114-054952
2016-09-29
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-100114-054952.html?itemId=/content/journals/10.1146/annurev-virology-100114-054952&mimeType=html&fmt=ahah

Literature Cited

  1. Staley JT, Konopka A. 1.  1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321–46 [Google Scholar]
  2. Hobbie JE, Daley RJ, Jasper S. 2.  1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225–28 [Google Scholar]
  3. Torrella F, Morita RY. 3.  1979. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Appl. Environ. Microbiol. 37:774–78 [Google Scholar]
  4. Bergh Ø, Børsheim KY, Bratbak G, Heldal M. 4.  1989. High abundance of viruses found in aquatic environments. Nature 340:467–68 [Google Scholar]
  5. Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B. 5.  2007. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J. Geophys. Res. 112:G04S31 [Google Scholar]
  6. Bolduc B, Wirth JF, Mazurie A, Young MJ. 6.  2015. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis. ISME J. 9:2162–77 [Google Scholar]
  7. Ortmann AC, Suttle CA. 7.  2005. High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality. Deep-Sea Res. I 52:1515–27 [Google Scholar]
  8. Engelhardt T, Kallmeyer J, Cypionka H, Engelen B. 8.  2014. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 8:1503–9 [Google Scholar]
  9. Whitman WB, Coleman DC, Wiebe WJ. 9.  1998. Prokaryotes: the unseen majority. PNAS 95:6578–83 [Google Scholar]
  10. Williamson KE, Radosevich M, Wommack KE. 10.  2005. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71:3119 [Google Scholar]
  11. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S. 11.  2012. Global distribution of microbial abundance and biomass in subseafloor sediment. PNAS 109:16213–16 [Google Scholar]
  12. DeLong EF. 12.  2003. Oceans of Archaea. ASM News 69:503–11 [Google Scholar]
  13. Rocke E, Pachiadaki MG, Cobban A, Kujawinski EB, Edgcomb VP. 13.  2015. Protist community grazing on prokaryotic prey in deep ocean water masses. PLOS ONE 10:e012450 [Google Scholar]
  14. Danovaro R, Serresi M. 14.  2000. Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl. Environ. Microbiol. 66:1857 [Google Scholar]
  15. Wommack KE, Colwell RR. 15.  2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69–114 [Google Scholar]
  16. Mokili JL, Rohwer F, Dutilh BE. 16.  2012. Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2:63–77 [Google Scholar]
  17. Kimura M. 17.  1962. On the probability of fixation of mutant genes in a population. Genetics 47:713 [Google Scholar]
  18. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML. 18.  et al. 2013. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS 110:10771–76 [Google Scholar]
  19. Kim MS, Park EJ, Roh SW, Bae JW. 19.  2011. Diversity and abundance of single-stranded DNA viruses in human feces. Appl. Environ. Microbiol. 77:8062–70 [Google Scholar]
  20. Sender R, Fuchs S, Milo R. 20.  2016. Revised estimates for the number of human and bacteria cells in the body. bioRxiv 036103. doi: 10.1101/036103
  21. Haynes M, Rohwer F. 21.  2011. The human virome. Metagenomics of the Human Body KE Nelson 63–77 New York: Springer [Google Scholar]
  22. Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY. 22.  et al. 1999. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Anal. Biochem. 268:278–88 [Google Scholar]
  23. Lang AS, Zhaxybayeva O, Beatty JT. 23.  2012. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10:472–82 [Google Scholar]
  24. Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. 24.  2014. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12:519–28 [Google Scholar]
  25. Fuhrman JA. 25.  1999. Marine viruses and their biogeochemical and ecological effects. Nature 399:541–48 [Google Scholar]
  26. Weinbauer MG. 26.  2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28:127–81 [Google Scholar]
  27. Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML. 27.  et al. 2015. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J 9:1352–64 [Google Scholar]
  28. Proctor LM, Fuhrman JA. 28.  1990. Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62 [Google Scholar]
  29. Suttle CA. 29.  2005. Viruses in the sea. Nature 437:356–61 [Google Scholar]
  30. Suttle CA. 30.  2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12 [Google Scholar]
  31. Thingstad TF. 31.  2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45:1320–28 [Google Scholar]
  32. Thingstad TF, Pree B, Giske J, Våge S. 32.  2015. What difference does it make if viruses are strain-, rather than species-specific?. Front. Microbiol. 6:320 [Google Scholar]
  33. Sandaa RA, Gómez-Consarnau L, Pinhassi J, Riemann L, Malits A. 33.  et al. 2009. Viral control of bacterial biodiversity—evidence from a nutrient-enriched marine mesocosm experiment. Environ. Microbiol. 11:2585–97 [Google Scholar]
  34. Paul JH. 34.  1999. Microbial gene transfer: an ecological perspective. J. Mol. Microbiol. Biotechnol. 1:45–50 [Google Scholar]
  35. Frank JA, Lorimer D, Youle M, Witte P, Craig T. 35.  et al. 2013. Structure and function of a cyanophage-encoded peptide deformylase. ISME J. 7:1150–60 [Google Scholar]
  36. Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. 36.  2004. Transfer of photosynthesis genes to and from Prochlorococcus viruses. PNAS 101:11013–18 [Google Scholar]
  37. Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. 37.  2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLOS Biol 4:e234 [Google Scholar]
  38. Goldsmith DB, Crosti G, Dwivedi B, McDaniel LD, Varsani A. 38.  et al. 2011. Development of phoH as a novel signature gene for assessing marine phage diversity. Appl. Environ. Microbiol. 77:7730–39 [Google Scholar]
  39. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M. 39.  et al. 2008. Functional metagenomic profiling of nine biomes. Nature 452:629–32 [Google Scholar]
  40. Bose M, Barber RD. 40.  2006. Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol. 6:223–27 [Google Scholar]
  41. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 41.  2011. PHAST: a fast phage search tool. Nucleic Acids Res 39:Suppl. 2W347–52 [Google Scholar]
  42. McNair K, Bailey BA, Edwards RA. 42.  2012. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–18 [Google Scholar]
  43. Akhter S, Aziz RK, Edwards RA. 43.  2012. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 40:e126 [Google Scholar]
  44. Fouts DE. 44.  2006. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res. 34:5839–51 [Google Scholar]
  45. Paul JH. 45.  2008. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?. ISME J. 2:579–89 [Google Scholar]
  46. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. 46.  2003. Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6:417–24 [Google Scholar]
  47. Casas V, Miyake J, Balsley H, Roark J, Telles S. 47.  et al. 2006. Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol. Lett. 261:141–49 [Google Scholar]
  48. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J. 48.  et al. 2004. Diversity and population structure of a near-shore marine-sediment viral community. Proc. R. Soc. B 271:565 [Google Scholar]
  49. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM. 49.  et al. 2002. Genomic analysis of uncultured marine viral communities. PNAS 99:14250–55 [Google Scholar]
  50. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J. 50.  et al. 2003. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185:6220–23 [Google Scholar]
  51. Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. 51.  2015. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10:437–49 [Google Scholar]
  52. Adriaenssens EM, Van Zyl L, De Maayer P, Rubagotti E, Rybicki E. 52.  et al. 2015. Metagenomic analysis of the viral community in Namib Desert hypoliths. Environ. Microbiol. 17:480–95 [Google Scholar]
  53. Roux S, Enault F, Ravet V, Colombet J, Bettarel Y. 53.  et al. 2016. Analysis of metagenomic data reveals common features of halophilic viral communities across continents. Environ. Microbiol. 18:889–903 [Google Scholar]
  54. Herskowitz I, Hagen D. 54.  1980. The lysis-lysogeny decision of phage λ: explicit programming and responsiveness. Annu. Rev. Genet. 14:399–445 [Google Scholar]
  55. Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA. 55.  et al. 2016. Lytic to temperate switching of viral communities. Nature 531:466–70 [Google Scholar]
  56. Rohwer F, Edwards R. 56.  2002. The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184:4529–35 [Google Scholar]
  57. Dwivedi B, Schmieder R, Goldsmith DB, Edwards RA, Breitbart M. 57.  2012. PhiSiGns: an online tool to identify signature genes in phages and design PCR primers for examining phage diversity. BMC Bioinform. 13:37 [Google Scholar]
  58. Rohwer F. 58.  2003. Global phage diversity. Cell 113:141 [Google Scholar]
  59. Chao A. 59.  1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11:265–70 [Google Scholar]
  60. Ignacio-Espinoza JC, Solonenko SA, Sullivan MB. 60.  2013. The global virome: not as big as we thought?. Curr. Opin. Virol. 3:566–71 [Google Scholar]
  61. Adriaenssens EM, Cowan DA. 61.  2014. Using signature genes as tools to assess environmental viral ecology and diversity. Appl. Environ. Microbiol. 80:4470–80 [Google Scholar]
  62. Zhong Y, Chen F, Wilhelm SW, Poorvin L, Hodson RE. 62.  2002. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl. Environ. Microbiol. 68:1576 [Google Scholar]
  63. Jameson E, Mann NH, Joint I, Sambles C, Mühling M. 63.  2011. The diversity of cyanomyovirus populations along a north–south Atlantic Ocean transect. ISME J 5:1713–21 [Google Scholar]
  64. Chow CET, Fuhrman JA. 64.  2012. Seasonality and monthly dynamics of marine myovirus communities. Environ. Microbiol. 14:2171–83 [Google Scholar]
  65. Dorigo U, Jacquet S, Humbert JF. 65.  2004. Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in France, Lake Bourget. Appl. Environ. Microbiol. 70:1017 [Google Scholar]
  66. McDaniel LD, delaRosa M, Paul JH. 66.  2006. Temperate and lytic cyanophages from the Gulf of Mexico. J. Mar. Biol. Assoc. U.K. 86:517–27 [Google Scholar]
  67. Comeau AM, Krisch HM. 67.  2008. The capsid of the T4 phage superfamily: the evolution, diversity, and structure of some of the most prevalent proteins in the biosphere. Mol. Biol. Evol. 25:1321–32 [Google Scholar]
  68. Pagarete A, Chow CE, Johannessen T, Fuhrman J, Thingstad T, Sandaa R. 68.  2013. Strong seasonality and interannual recurrence in marine myovirus communities. Appl. Environ. Microbiol. 79:6253–59 [Google Scholar]
  69. Thingstad T, Lignell R. 69.  1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13:19–27 [Google Scholar]
  70. Breitbart M, Rohwer F. 70.  2005. Here a virus, there a virus, everywhere the same virus?. Trends Microbiol 13:278–84 [Google Scholar]
  71. Chenard C, Suttle C. 71.  2008. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl. Environ. Microbiol. 74:5317–24 [Google Scholar]
  72. Huang S, Wilhelm SW, Jiao N, Chen F. 72.  2010. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME J. 4:1243–51 [Google Scholar]
  73. Goldsmith DB, Parsons RJ, Beyene D, Salamon P, Breitbart M. 73.  2015. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea. PeerJ 3e997 [Google Scholar]
  74. Breitbart M, Miyake JH, Rohwer F. 74.  2004. Global distribution of nearly identical phage encoded DNA sequences. FEMS Microbiol. Lett. 236:249–56 [Google Scholar]
  75. Short CM, Suttle CA. 75.  2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol. 71:480–86 [Google Scholar]
  76. Sano E, Carlson S, Wegley L, Rohwer F. 76.  2004. Movement of viruses between biomes. Appl. Environ. Microbiol. 70:5842 [Google Scholar]
  77. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA. 77.  et al. 2006. The marine viromes of four oceanic regions. PLOS Biol 4:e368 [Google Scholar]
  78. Brum JR, Sullivan MB. 78.  2015. Rising to the challenge: Accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13:147–59 [Google Scholar]
  79. Watkins SC, Kuehnle N, Ruggeri CA, Malki K, Bruder K. 79.  et al. 2015. Assessment of a metaviromic dataset generated from nearshore Lake Michigan. Mar. Freshw. Res. doi: 10.1071/MF15172 [Google Scholar]
  80. Youle M, Haynes M, Rohwer F. 80.  2012. Scratching the surface of biology's dark matter. Viruses: Essential Agents of Life G Witzany 61–81 Dordrecht, Neth.: Springer [Google Scholar]
  81. Tseng CH, Chiang PW, Shiah FK, Chen YL, Liou JR. 81.  et al. 2013. Microbial and viral metagenomes of a subtropical freshwater reservoir subject to climatic disturbances. ISME J 7:2374–86 [Google Scholar]
  82. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M. 82.  et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455–77 [Google Scholar]
  83. García-López R, Vázquez-Castellanos JF, Moya A. 83.  2015. Fragmentation and coverage variation in viral metagenome assemblies, and their effect in diversity calculations. Front. Bioeng. Biotechnol. 3:141 [Google Scholar]
  84. Fu L, Niu B, Zhu Z, Wu S, Li W. 84.  2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–52 [Google Scholar]
  85. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C. 85.  et al. 2007. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73:7059–66 [Google Scholar]
  86. Kim KH, Bae JW. 86.  2011. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Environ. Microbiol. 77:7663–68 [Google Scholar]
  87. Duhaime MB, Sullivan MB. 87.  2012. Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology 434:181–86 [Google Scholar]
  88. Duhaime MB, Deng L, Poulos BT, Sullivan MB. 88.  2012. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ. Microbiol. 14:2526–37 [Google Scholar]
  89. 89. United Nations 2016. Population and Vital Statistics Report: Statistical Papers Ser. A LXVIII New York: United Nations http://unstats.un.org/unsd/demographic/products/vitstats/Sets/Series_A_2016.pdf [Google Scholar]
/content/journals/10.1146/annurev-virology-100114-054952
Loading
/content/journals/10.1146/annurev-virology-100114-054952
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error