Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here.

Keyword(s): p53telomerasetumorigenesis

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. zur Hausen H. 1.  1999. Papillomaviruses in human cancers. Proc. Assoc. Am. Physicians 111:581–87 [Google Scholar]
  2. Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F. 2.  2005. Carcinogenicity of human papillomaviruses. Lancet Oncol. 6:204 [Google Scholar]
  3. Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ. 3.  1992. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet. Gynecol. 79:328–37 [Google Scholar]
  4. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. 4.  2010. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79 [Google Scholar]
  5. zur Hausen H. 5.  1987. Papillomaviruses in human cancer. Cancer 59:1692–96 [Google Scholar]
  6. Doorbar J. 6.  2005. The papillomavirus life cycle. J. Clin. Virol. 32:Suppl. 1S7–15 [Google Scholar]
  7. Huibregtse JM, Scheffner M, Howley PM. 7.  1991. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10:4129–35 [Google Scholar]
  8. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. 8.  1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505 [Google Scholar]
  9. Scheffner M, Munger K, Byrne JC, Howley PM. 9.  1991. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. PNAS 88:5523–27 [Google Scholar]
  10. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 10.  1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–36 [Google Scholar]
  11. Phelps WC, Munger K, Yee CL, Barnes JA, Howley PM. 11.  1992. Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J. Virol. 66:2418–27 [Google Scholar]
  12. Dyson N, Howley PM, Munger K, Harlow E. 12.  1989. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–37 [Google Scholar]
  13. Collins SI, Constandinou-Williams C, Wen K, Young LS, Roberts S. 13.  et al. 2009. Disruption of the E2 gene is a common and early event in the natural history of cervical human papillomavirus infection: a longitudinal cohort study. Cancer Res. 69:3828–32 [Google Scholar]
  14. Romanczuk H, Thierry F, Howley PM. 14.  1990. Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J. Virol. 64:2849–59 [Google Scholar]
  15. Thierry F, Howley PM. 15.  1991. Functional analysis of E2-mediated repression of the HPV18 P105 promoter. New Biol. 3:90–100 [Google Scholar]
  16. Cole ST, Danos O. 16.  1987. Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome: phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J. Mol. Biol. 193:599–608 [Google Scholar]
  17. Barbosa MS, Lowy DR, Schiller JT. 17.  1989. Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J. Virol. 63:1404–7 [Google Scholar]
  18. Grossman SR, Laimins LA. 18.  1989. E6 protein of human papillomavirus type 18 binds zinc. Oncogene 4:1089–93 [Google Scholar]
  19. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M. 19.  1997. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. PNAS 94:11612–16 [Google Scholar]
  20. Lee SS, Weiss RS, Javier RT. 20.  1997. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. PNAS 94:6670–75 [Google Scholar]
  21. Baleja JD, Cherry JJ, Liu Z, Gao H, Nicklaus MC. 21.  et al. 2006. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antivir. Res. 72:49–59 [Google Scholar]
  22. Liu Y, Liu Z, Androphy E, Chen J, Baleja JD. 22.  2004. Design and characterization of helical peptides that inhibit the E6 protein of papillomavirus. Biochemistry 43:7421–31 [Google Scholar]
  23. Sterlinko Grm H, Weber M, Elston R, McIntosh P, Griffin H. 23.  et al. 2004. Inhibition of E6-induced degradation of its cellular substrates by novel blocking peptides. J. Mol. Biol. 335:971–85 [Google Scholar]
  24. Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R. 24.  2000. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–80 [Google Scholar]
  25. Thomas M, Laura R, Hepner K, Guccione E, Sawyers C. 25.  et al. 2002. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21:5088–96 [Google Scholar]
  26. Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT. 26.  2000. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J. Virol. 74:9680–93 [Google Scholar]
  27. Nakagawa S, Huibregtse JM. 27.  2000. Human Scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol. Cell. Biol. 20:8244–53 [Google Scholar]
  28. Gardiol D, Kuhne C, Glaunsinger B, Lee SS, Javier R, Banks L. 28.  1999. Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18:5487–96 [Google Scholar]
  29. Lorenz LD, Rivera Cardona J, Lambert PF. 29.  2013. Inactivation of p53 rescues the maintenance of high risk HPV DNA genomes deficient in expression of E6. PLOS Pathog. 9:e1003717 [Google Scholar]
  30. Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF. 30.  2003. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6's induction of epithelial hyperplasia in vivo. J. Virol. 77:6957–64 [Google Scholar]
  31. Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE. 31.  2003. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol. Cell. Biol. 23:8970–81 [Google Scholar]
  32. Simonson SJ, Difilippantonio MJ, Lambert PF. 32.  2005. Two distinct activities contribute to human papillomavirus 16 E6's oncogenic potential. Cancer Res. 65:8266–73 [Google Scholar]
  33. Handa K, Yugawa T, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T. 33.  2007. E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein. J. Virol. 81:1379–89 [Google Scholar]
  34. Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. 34.  2007. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J. Virol. 81:2231–39 [Google Scholar]
  35. Kuballa P, Matentzoglu K, Scheffner M. 35.  2007. The role of the ubiquitin ligase E6-AP in human papillomavirus E6-mediated degradation of PDZ domain-containing proteins. J. Biol. Chem. 282:65–71 [Google Scholar]
  36. Spanos WC, Hoover A, Harris GF, Wu S, Strand GL. 36.  et al. 2008. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with Ras for invasive growth. J. Virol. 82:2493–500 [Google Scholar]
  37. White EA, Howley PM. 37.  2013. Proteomic approaches to the study of papillomavirus-host interactions. Virology 435:57–69 [Google Scholar]
  38. Nominé Y, Masson M, Charbonnier S, Zanier K, Ristriani T. 38.  et al. 2006. Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol. Cell 21:665–78 [Google Scholar]
  39. Zanier K, ould M'hamed ould Sidi A, Boulade-Ladame C, Rybin V, Chappelle A. 39.  et al. 2012. Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure 20:604–17 [Google Scholar]
  40. Huibregtse JM, Scheffner M, Howley PM. 40.  1991. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10:4129–35 [Google Scholar]
  41. Huibregtse JM, Scheffner M, Howley PM. 41.  1993. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol. Cell. Biol. 13:4918–27 [Google Scholar]
  42. Bohl J, Das K, Dasgupta B, Vande Pol SB. 42.  2000. Competitive binding to a charged leucine motif represses transformation by a papillomavirus E6 oncoprotein. Virology 271:163–70 [Google Scholar]
  43. Cooper B, Schneider S, Bohl J, Jiang Y, Beaudet A, Vande Pol S. 43.  2003. Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology 306:87–99 [Google Scholar]
  44. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW. 44.  et al. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–77 [Google Scholar]
  45. Dohoney KM, Guillerm C, Whiteford C, Elbi C, Lambert PF. 45.  et al. 2004. Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage. Oncogene 23:49–57 [Google Scholar]
  46. Goodman RH, Smolik S. 46.  2000. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14:1553–77 [Google Scholar]
  47. Shieh SY, Ikeda M, Taya Y, Prives C. 47.  1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–34 [Google Scholar]
  48. Zhao Y, Lu S, Wu L, Chai G, Wang H. 48.  et al. 2006. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21Waf1/Cip1. Mol. Cell. Biol. 26:2782–90 [Google Scholar]
  49. Gu W, Roeder RG. 49.  1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606 [Google Scholar]
  50. Murray-Zmijewski F, Slee EA, Lu X. 50.  2008. A complex barcode underlies the heterogeneous response of p53 to stress. Nat. Rev. Mol. Cell Biol. 9:702–12 [Google Scholar]
  51. Shen Y, White E. 51.  2001. p53-dependent apoptosis pathways. Adv. Cancer Res. 82:55–84 [Google Scholar]
  52. Klingelhutz AJ, Foster SA, McDougall JK. 52.  1996. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380:79–82 [Google Scholar]
  53. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. 53.  1998. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88 [Google Scholar]
  54. Veldman T, Liu X, Yuan H, Schlegel R. 54.  2003. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. PNAS 100:8211–16 [Google Scholar]
  55. Fu B, Quintero J, Baker CC. 55.  2003. Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Cancer Res. 63:7815–24 [Google Scholar]
  56. Gewin L, Galloway DA. 56.  2001. E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J. Virol. 75:7198–201 [Google Scholar]
  57. Gewin L, Myers H, Kiyono T, Galloway DA. 57.  2004. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 18:2269–82 [Google Scholar]
  58. Oh ST, Kyo S, Laimins LA. 58.  2001. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol. 75:5559–66 [Google Scholar]
  59. Xu M, Luo W, Elzi DJ, Grandori C, Galloway DA. 59.  2008. NFX1 interacts with mSin3A/histone deacetylase to repress hTERT transcription in keratinocytes. Mol. Cell. Biol. 28:4819–28 [Google Scholar]
  60. Wallace NA, Galloway DA. 60.  2014. Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin. Cancer Biol. 26:30–42 [Google Scholar]
  61. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. 61.  1989. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8:3905–10 [Google Scholar]
  62. Hudson JB, Bedell MA, McCance DJ, Laiminis LA. 62.  1990. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J. Virol. 64:519–26 [Google Scholar]
  63. Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. 63.  1989. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63:4417–21 [Google Scholar]
  64. Sedman SA, Barbosa MS, Vass WC, Hubbert NL, Haas JA. 64.  et al. 1991. The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J. Virol. 65:4860–66 [Google Scholar]
  65. Woodworth CD, Doniger J, DiPaolo JA. 65.  1989. Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma. J. Virol. 63:159–64 [Google Scholar]
  66. Pim D, Storey A, Thomas M, Massimi P, Banks L. 66.  1994. Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 9:1869–76 [Google Scholar]
  67. Storey A, Banks L. 67.  1993. Human papillomavirus type 16 E6 gene cooperates with EJ-ras to immortalize primary mouse cells. Oncogene 8:919–24 [Google Scholar]
  68. Massimi P, Shai A, Lambert P, Banks L. 68.  2008. HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene 27:1800–4 [Google Scholar]
  69. Ansari T, Brimer N, Vande Pol SB. 69.  2012. Peptide interactions stabilize and restructure human papillomavirus type 16 E6 to interact with p53. J. Virol. 86:11386–91 [Google Scholar]
  70. Shai A, Pitot HC, Lambert PF. 70.  2010. E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice. Cancer Res. 70:5064–73 [Google Scholar]
  71. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA. 71.  et al. 1999. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13:152–57 [Google Scholar]
  72. Wallace NA, Robinson K, Howie HL, Galloway DA. 72.  2012. HPV 5 and 8 E6 abrogate ATR activity resulting in increased persistence of UVB induced DNA damage. PLOS Pathog. 8:e1002807 [Google Scholar]
  73. Patel D, Huang SM, Baglia LA, McCance DJ. 73.  1999. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18:5061–72 [Google Scholar]
  74. Zimmermann H, Degenkolbe R, Bernard HU, O'Connor MJ. 74.  1999. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73:6209–19 [Google Scholar]
  75. Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S. 75.  et al. 2002. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol. Cell. Biol. 22:5801–12 [Google Scholar]
  76. Meng G, Zhao Y, Nag A, Zeng M, Dimri G. 76.  et al. 2004. Human ADA3 binds to estrogen receptor (ER) and functions as a coactivator for ER-mediated transactivation. J. Biol. Chem. 279:54230–40 [Google Scholar]
  77. Mantovani F, Banks L. 77.  2001. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20:7874–87 [Google Scholar]
  78. Mendoza-Villanueva D, Diaz-Chavez J, Uribe-Figueroa L, Rangel-Escareao C, Hidalgo-Miranda A. 78.  et al. 2008. Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice. BMC Cancer 8:347 [Google Scholar]
  79. Jha S, Vande Pol S, Banerjee NS, Dutta AB, Chow LT, Dutta A. 79.  2010. Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. Mol. Cell 38:700–11 [Google Scholar]
  80. Hsu CH, Peng KL, Jhang HC, Lin CH, Wu SY. 80.  et al. 2012. The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription. Oncogene 31:2335–49 [Google Scholar]
  81. Martin C, Zhang Y. 81.  2005. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6:838–49 [Google Scholar]
  82. James MA, Lee JH, Klingelhutz AJ. 82.  2006. Human papillomavirus type 16 E6 activates NF-κB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J. Virol. 80:5301–7 [Google Scholar]
  83. Xu M, Katzenellenbogen RA, Grandori C, Galloway DA. 83.  2010. NFX1 plays a role in human papillomavirus type 16 E6 activation of NFκB activity. J. Virol. 84:11461–69 [Google Scholar]
  84. Spangle JM, Munger K. 84.  2010. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J. Virol. 84:9398–407 [Google Scholar]
  85. An J, Mo D, Liu H, Veena MS, Srivatsan ES. 85.  et al. 2008. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-κB activation. Cancer Cell 14:394–407 [Google Scholar]
  86. Wilson RC, Doudna JA. 86.  2013. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42:217–39 [Google Scholar]
  87. Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. 87.  2008. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 27:2575–82 [Google Scholar]
  88. Au Yeung CL, Tsang TY, Yau PL, Kwok TT. 88.  2011. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 30:2401–10 [Google Scholar]
  89. McKenna DJ, Patel D, McCance DJ. 89.  2014. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes. Virology 448:210–16 [Google Scholar]
  90. Wang X, Meyers C, Guo M, Zheng ZM. 90.  2011. Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int. J. Cancer 129:1362–72 [Google Scholar]
  91. Wang X, Wang HK, McCoy JP, Banerjee NS, Rader JS. 91.  et al. 2009. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15:637–47 [Google Scholar]
  92. Schmitt E, Paquet C, Beauchemin M, Bertrand R. 92.  2007. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J. Zhejiang Univ. Sci. B 8:377–97 [Google Scholar]
  93. Flynn RL, Zou L. 93.  2011. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem. Sci. 36:133–40 [Google Scholar]
  94. Lindahl T. 94.  1993. Instability and decay of the primary structure of DNA. Nature 362:709–15 [Google Scholar]
  95. Iftner T, Elbel M, Schopp B, Hiller T, Loizou JI. 95.  et al. 2002. Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J. 21:4741–48 [Google Scholar]
  96. Srivenugopal KS, Ali-Osman F. 96.  2002. The DNA repair protein, O6-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 21:5940–45 [Google Scholar]
  97. Zhang Y, Fan S, Meng Q, Ma Y, Katiyar P. 97.  et al. 2005. BRCA1 interaction with human papillomavirus oncoproteins. J. Biol. Chem. 280:33165–77 [Google Scholar]
  98. Yim EK, Lee KH, Myeong J, Tong SY, Um SJ, Park JS. 98.  2007. Novel interaction between HPV E6 and BARD1 (BRCA1-associated ring domain 1) and its biologic roles. DNA Cell Biol. 26:753–61 [Google Scholar]
  99. Duensing S, Duensing A, Crum CP, Munger K. 99.  2001. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61:2356–60 [Google Scholar]
  100. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Munger K. 100.  2001. Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J. Virol. 75:7712–16 [Google Scholar]
  101. Stukenberg PT. 101.  2004. Triggering p53 after cytokinesis failure. J. Cell Biol. 165:607–8 [Google Scholar]
  102. Tarapore P, Horn HF, Tokuyama Y, Fukasawa K. 102.  2001. Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20:3173–84 [Google Scholar]
  103. Kukimoto I, Aihara S, Yoshiike K, Kanda T. 103.  1998. Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem. Biophys. Res. Commun. 249:258–62 [Google Scholar]
  104. Kuhne C, Banks L. 104.  1998. E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J. Biol. Chem. 273:34302–9 [Google Scholar]
  105. Gao Q, Kumar A, Singh L, Huibregtse JM, Beaudenon S. 105.  et al. 2002. Human papillomavirus E6-induced degradation of E6TP1 is mediated by E6AP ubiquitin ligase. Cancer Res. 62:3315–21 [Google Scholar]
  106. Gao Q, Srinivasan S, Boyer SN, Wazer DE, Band V. 106.  1999. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol. Cell. Biol. 19:733–44 [Google Scholar]
  107. Lee C, Wooldridge TR, Laimins LA. 107.  2007. Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle. Virology 358:201–10 [Google Scholar]
  108. Singh L, Gao Q, Kumar A, Gotoh T, Wazer DE. 108.  et al. 2003. The high-risk human papillomavirus type 16 E6 counters the GAP function of E6TP1 toward small Rap G proteins. J. Virol. 77:1614–20 [Google Scholar]
  109. Lu Z, Hu X, Li Y, Zheng L, Zhou Y. 109.  et al. 2004. Human papillomavirus 16 E6 oncoprotein interferences with insulin signaling pathway by binding to tuberin. J. Biol. Chem. 279:35664–70 [Google Scholar]
  110. Zheng L, Ding H, Lu Z, Li Y, Pan Y. 110.  et al. 2008. E3 ubiquitin ligase E6AP-mediated TSC2 turnover in the presence and absence of HPV16 E6. Genes Cells 13:285–94 [Google Scholar]
  111. Degenhardt YY, Silverstein SJ. 111.  2001. Gps2, a protein partner for human papillomavirus E6 proteins. J. Virol. 75:151–60 [Google Scholar]
  112. Krymskaya VP. 112.  2003. Tumour suppressors hamartin and tuberin: intracellular signalling. Cell Signal. 15:729–39 [Google Scholar]
  113. Jin DY, Teramoto H, Giam CZ, Chun RF, Gutkind JS, Jeang KT. 113.  1997. A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor α. J. Biol. Chem. 272:25816–23 [Google Scholar]
  114. Janeway CA Jr, Medzhitov R. 114.  2002. Innate immune recognition. Annu. Rev. Immunol. 20:197–216 [Google Scholar]
  115. Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD. 115.  2001. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-κB-responsive genes in cervical keratinocytes. J. Virol. 75:4283–96 [Google Scholar]
  116. Ronco LV, Karpova AY, Vidal M, Howley PM. 116.  1998. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 12:2061–72 [Google Scholar]
  117. Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R. 117.  et al. 2007. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J. Immunol. 178:3186–97 [Google Scholar]
  118. Müller T, Hamm S, Bauer S. 118.  2008. TLR9-mediated recognition of DNA. Handb. Exp. Pharmacol. 183:51–70 [Google Scholar]
  119. Elmore S. 119.  2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495–516 [Google Scholar]
  120. Duerksen-Hughes PJ, Yang J, Schwartz SB. 120.  1999. HPV 16 E6 blocks TNF-mediated apoptosis in mouse fibroblast LM cells. Virology 264:55–65 [Google Scholar]
  121. Filippova M, Filippov VA, Kagoda M, Garnett T, Fodor N, Duerksen-Hughes PJ. 121.  2009. Complexes of human papillomavirus type 16 E6 proteins form pseudo-death-inducing signaling complex structures during tumor necrosis factor-mediated apoptosis. J. Virol. 83:210–27 [Google Scholar]
  122. Filippova M, Johnson MM, Bautista M, Filippov V, Fodor N. 122.  et al. 2007. The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J. Virol. 81:4116–29 [Google Scholar]
  123. Filippova M, Parkhurst L, Duerksen-Hughes PJ. 123.  2004. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J. Biol. Chem. 279:25729–44 [Google Scholar]
  124. Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ. 124.  2002. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J. Biol. Chem. 277:21730–39 [Google Scholar]
  125. Tungteakkhun SS, Filippova M, Neidigh JW, Fodor N, Duerksen-Hughes PJ. 125.  2008. The interaction between human papillomavirus type 16 and FADD is mediated by a novel E6 binding domain. J. Virol. 82:9600–14 [Google Scholar]
  126. Yuan CH, Filippova M, Duerksen-Hughes P. 126.  2012. Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses 4:3831–50 [Google Scholar]
  127. Thomas M, Banks L. 127.  1999. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J. Gen. Virol. 80:1513–17 [Google Scholar]
  128. Thomas M, Banks L. 128.  1998. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17:2943–54 [Google Scholar]
  129. Yuan H, Fu F, Zhuo J, Wang W, Nishitani J. 129.  et al. 2005. Human papillomavirus type 16 E6 and E7 oncoproteins upregulate c-IAP2 gene expression and confer resistance to apoptosis. Oncogene 24:5069–78 [Google Scholar]
  130. Borbély AA, Murvai M, Kónya J, Beck Z, Gergely L. 130.  et al. 2006. Effects of human papillomavirus type 16 oncoproteins on survivin gene expression. J. Gen. Virol. 87:287–94 [Google Scholar]
  131. Du J, Chen GG, Vlantis AC, Chan PK, Tsang RK, van Hasselt CA. 131.  2004. Resistance to apoptosis of HPV 16-infected laryngeal cancer cells is associated with decreased Bak and increased Bcl-2 expression. Cancer Lett. 205:81–88 [Google Scholar]
  132. Henrique D, Schweisguth F. 132.  2003. Cell polarity: the ups and downs of the Par6/aPKC complex. Curr. Opin. Genet. Dev. 13:341–50 [Google Scholar]
  133. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L. 133.  et al. 2014. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol. Oncol. 8:533–43 [Google Scholar]
  134. Malanchi I, Accardi R, Diehl F, Smet A, Androphy E. 134.  et al. 2004. Human papillomavirus type 16 E6 promotes retinoblastoma protein phosphorylation and cell cycle progression. J. Virol. 78:13769–78 [Google Scholar]
  135. Shai A, Brake T, Somoza C, Lambert PF. 135.  2007. The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. Cancer Res. 67:1626–35 [Google Scholar]
  136. Vliet-Gregg PA, Hamilton JR, Katzenellenbogen RA. 136.  2013. NFX1-123 and human papillomavirus 16 E6 increase Notch expression in keratinocytes. J. Virol. 87:13741–50 [Google Scholar]
  137. Pietsch EC, Murphy ME. 137.  2008. Low risk HPV-E6 traps p53 in the cytoplasm and induces p53-dependent apoptosis. Cancer Biol. Ther. 7:1916–18 [Google Scholar]
  138. Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H. 138.  et al. 2012. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J. Virol. 86:94–107 [Google Scholar]
  139. Thomas MC, Chiang CM. 139.  2005. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol. Cell 17:251–64 [Google Scholar]
  140. White EA, Kramer RE, Tan MJ, Hayes SD, Harper JW, Howley PM. 140.  2012. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J. Virol. 86:13174–86 [Google Scholar]
  141. Patel T, Morrison LK, Rady P, Tyring S. 141.  2010. Epidermodysplasia verruciformis and susceptibility to HPV. Dis. Markers 29:199–206 [Google Scholar]
  142. Akgul B, Cooke JC, Storey A. 142.  2006. HPV-associated skin disease. J. Pathol. 208:165–75 [Google Scholar]
  143. Giampieri S, Storey A. 143.  2004. Repair of UV-induced thymine dimers is compromised in cells expressing the E6 protein from human papillomaviruses types 5 and 18. Br. J. Cancer 90:2203–9 [Google Scholar]
  144. Howie HL, Koop JI, Weese J, Robinson K, Wipf G. 144.  et al. 2011. β-HPV 5 and 8 E6 promote p300 degradation by blocking AKT/p300 association. PLOS Pathog. 7:e1002211 [Google Scholar]
  145. Wallace NA, Robinson K, Howie HL, Galloway DA. 145.  2015. β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation. PLOS Pathog. 11:e1004687 [Google Scholar]
  146. White EA, Walther J, Javanbakht H, Howley PM. 146.  2014. Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes. J. Virol. 88:8201–12 [Google Scholar]
  147. Accardi R, Dong W, Smet A, Cui R, Hautefeuille A. 147.  et al. 2006. Skin human papillomavirus type 38 alters p53 functions by accumulation of ΔNp73. EMBO Rep. 7:334–40 [Google Scholar]
  148. Wallace NA, Robinson K, Galloway DA. 148.  2014. Beta human papillomavirus E6 expression inhibits stabilization of p53 and increases tolerance of genomic instability. J. Virol. 88:6112–27 [Google Scholar]
  149. Holloway A, Simmonds M, Azad A, Fox JL, Storey A. 149.  2015. Resistance to UV-induced apoptosis by β-HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. Int. J. Cancer 136:2831–43 [Google Scholar]
  150. Leverrier S, Bergamaschi D, Ghali L, Ola A, Warnes G. 150.  et al. 2007. Role of HPV E6 proteins in preventing UVB-induced release of pro-apoptotic factors from the mitochondria. Apoptosis 12:549–60 [Google Scholar]
  151. Simmonds M, Storey A. 151.  2008. Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis. Int. J. Cancer 123:2260–66 [Google Scholar]
  152. Underbrink MP, Howie HL, Bedard KM, Koop JI, Galloway DA. 152.  2008. E6 proteins from multiple human betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UVB irradiation. J. Virol. 82:10408–17 [Google Scholar]
  153. Cordano P, Gillan V, Bratlie S, Bouvard V, Banks L. 153.  et al. 2008. The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway. Virology 377:408–18 [Google Scholar]
  154. Brimer N, Lyons C, Wallberg AE, Vande Pol SB. 154.  2012. Cutaneous papillomavirus E6 oncoproteins associate with MAML1 to repress transactivation and NOTCH signaling. Oncogene 31:4639–46 [Google Scholar]
  155. Meyers JM, Spangle JM, Munger K. 155.  2013. The human papillomavirus type 8 E6 protein interferes with NOTCH activation during keratinocyte differentiation. J. Virol. 87:4762–67 [Google Scholar]
  156. Rozenblatt-Rosen O, Deo RC, Padi M, Adelmant G, Calderwood MA. 156.  et al. 2012. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487:491–95 [Google Scholar]
  157. Tan MJ, White EA, Sowa ME, Harper JW, Aster JC, Howley PM. 157.  2012. Cutaneous β-human papillomavirus E6 proteins bind Mastermind-like coactivators and repress Notch signaling. PNAS 109:E1473–80 [Google Scholar]
  158. Viarisio D, Mueller-Decker K, Kloz U, Aengeneyndt B, Kopp-Schneider A. 158.  et al. 2011. E6 and E7 from beta HPV38 cooperate with ultraviolet light in the development of actinic keratosis-like lesions and squamous cell carcinoma in mice. PLOS Pathog. 7:e1002125 [Google Scholar]
  159. Michel A, Kopp-Schneider A, Zentgraf H, Gruber AD, de Villiers EM. 159.  2006. E6/E7 expression of human papillomavirus type 20 (HPV-20) and HPV-27 influences proliferation and differentiation of the skin in UV-irradiated SKH-hr1 transgenic mice. J. Virol. 80:11153–64 [Google Scholar]
  160. Dong W, Kloz U, Accardi R, Caldeira S, Tong WM. 160.  et al. 2005. Skin hyperproliferation and susceptibility to chemical carcinogenesis in transgenic mice expressing E6 and E7 of human papillomavirus type 38. J. Virol. 79:14899–908 [Google Scholar]
  161. Hufbauer M, Lazic D, Akgul B, Brandsma JL, Pfister H, Weissenborn SJ. 161.  2010. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice. Virology 403:128–36 [Google Scholar]
  162. Schaper ID, Marcuzzi GP, Weissenborn SJ, Kasper HU, Dries V. 162.  et al. 2005. Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res. 65:1394–400 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error