1932

Abstract

The genus is unique within the family in that it is made up of viruses that infect plants. Initially documented over 100 years ago, tospoviruses have become increasingly important worldwide since the 1980s due to the spread of the important insect vector and the discovery of new viruses. As a result, tospoviruses are now recognized globally as emerging agricultural diseases. Tospoviruses and their vectors, thrips species in the order , represent a major problem for agricultural and ornamental crops that must be managed to avoid devastating losses. In recent years, the number of recognized species in the genus has increased rapidly, and our knowledge of the molecular interactions of tospoviruses with their host plants and vectors has expanded. In this review, we present an overview of the genus with particular emphasis on new understandings of the molecular plant-virus and vector-virus interactions as well as relationships among genus members.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100114-055036
2016-09-29
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-100114-055036.html?itemId=/content/journals/10.1146/annurev-virology-100114-055036&mimeType=html&fmt=ahah

Literature Cited

  1. Brittlebank CC. 1.  1919. Tomato diseases. J. Dep. Agric. Vic. 27:213–35 [Google Scholar]
  2. Samuel G, Bald JG, Pitman HA. 2.  1930. Investigations on ‘spotted wilt’ of tomatoes. Commonw. Aust. Counc. Sci. Ind. Res. Bull. 44:64 [Google Scholar]
  3. Law MD, Moyer JW. 3.  1990. A tomato spotted wilt-like virus with a serologically distinct N protein. J. Gen. Virol. 71:933–38 [Google Scholar]
  4. Rotenberg D, Jacobson AL, Schneweis DJ, Whitfield AE. 4.  2015. Thrips transmission of tospoviruses. Curr. Opin. Virol. 15:80–89 [Google Scholar]
  5. Whitfield AE, Ullman DE, German TL. 5.  2005. Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 43:459–89 [Google Scholar]
  6. Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL. 6.  2011. Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 162:184–202 [Google Scholar]
  7. Dehaan P, Wagemakers L, Peters D, Goldbach R. 7.  1989. Molecular-cloning and terminal sequence determination of the S RNA and M RNA of Tomato spotted wilt virus. J. Gen. Virol. 70:3469–73 [Google Scholar]
  8. Kellmann JW, Liebisch P, Schmitz KP, Piechulla B. 8.  2001. Visual representation by atomic force microscopy (AFM) of Tomato spotted wilt virus ribonucleoproteins. Biol. Chem. 382:1559–62 [Google Scholar]
  9. Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R. 9.  et al. 2012. Bunyaviridae. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses AMQ King, E Lefkowitz, MJ Adams, EB Carstens 725–41 London: Elsevier [Google Scholar]
  10. Walter CT, Barr JN. 10.  2011. Recent advances in the molecular and cellular biology of bunyaviruses. J. Gen. Virol. 92:2467–84 [Google Scholar]
  11. Vaheri A, Strandin T, Hepojoki J, Sironen T, Henttonen H. 11.  et al. 2013. Uncovering the mysteries of hantavirus infections. Nat. Rev. Microbiol. 11:539–50 [Google Scholar]
  12. Marklewitz M, Zirkel F, Kurth A, Drosten C, Junglen S. 12.  2015. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. PNAS 112:7536–41 [Google Scholar]
  13. Pappu HR, Jones RAC, Jain RK. 13.  2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–36 [Google Scholar]
  14. Gilbertson RL, Batuman O, Webster CG, Adkins S. 14.  2015. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2:67–93 [Google Scholar]
  15. Bag S, Schwartz HF, Cramer CS, Havey MJ, Pappu HR. 15.  2015. Iris yellow spot virus (Tospovirus: Bunyaviridae): from obscurity to research priority. Mol. Plant Pathol. 16:224–37 [Google Scholar]
  16. Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. 16.  2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327–59 [Google Scholar]
  17. de Oliveira AS, Melo FL, Inoue-Nagata AK, Nagata T, Kitajima EW, Resende RO. 17.  2012. Characterization of Bean necrotic mosaic virus: a member of a novel evolutionary lineage within the genus Tospovirus. PLOS ONE 7:e38634 [Google Scholar]
  18. Zhou J, Tzanetakis IE. 18.  2013. Epidemiology of Soybean vein necrosis-associated virus. Phytopathology 103:966–71 [Google Scholar]
  19. Groves C, German T, Dasgupta R, Mueller D, Smith DL. 19.  2016. Seed transmission of Soybean vein necrosis virus: the first Tospovirus implicated in seed transmission. PLOS ONE 11:e0147342 [Google Scholar]
  20. Hassani-Mehraban A, Saaijer J, Peters D, Goldbach R, Kormelink R. 20.  2007. Molecular and biological comparison of two Tomato yellow ring virus (TYRV) isolates: challenging the Tospovirus species concept. Arch. Virol. 152:85–96 [Google Scholar]
  21. Tsompana M, Abad J, Purugganan M, Moyer JW. 21.  2005. The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Mol. Ecol. 14:53–66 [Google Scholar]
  22. Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar JM, Moury B. 22.  2011. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. J. Gen. Virol. 92:961–73 [Google Scholar]
  23. Webster CG, Frantz G, Reitz SR, Funderburk JE, Mellinger HC. 23.  et al. 2015. Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology 105:388–98 [Google Scholar]
  24. Webster CG, Reitz SR, Perry KL, Adkins S. 24.  2011. A natural M RNA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413:216–25 [Google Scholar]
  25. van Knippenberg I, Lamine M, Goldbach R, Kormelink R. 25.  2005. Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. Virology 335:122–30 [Google Scholar]
  26. van Knippenberg I, Goldbach R, Kormelink R. 26.  2005. Tomato spotted wilt virus S-segment mRNAs have overlapping 3′-ends containing a predicted stem-loop structure and conserved sequence motif. Virus Res 110:125–31 [Google Scholar]
  27. Geerts-Dimitriadou C, Lu YY, Geertsema C, Goldbach R, Kormelink R. 27.  2012. Analysis of the Tomato spotted wilt virus ambisense S RNA-encoded hairpin structure in translation. PLOS ONE 7:e31013 [Google Scholar]
  28. Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM. 28.  2005. Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J. Gen. Virol. 86:2615–25 [Google Scholar]
  29. Choi H, Jo Y, Lian S, Jo KM, Chu H. 29.  et al. 2015. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. Plant Mol. Biol. 88:233–48 [Google Scholar]
  30. Catoni M, Miozzi L, Fiorilli V, Lanfranco L, Accotto GP. 30.  2009. Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol. Plant-Microbe Interact. 22:1504–13 [Google Scholar]
  31. Ribeiro D, Borst JW, Goldbach R, Kormelink R. 31.  2009. Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta. Virology 383:121–30 [Google Scholar]
  32. Dietzgen RG, Martin KM, Anderson G, Goodin MM. 32.  2012. In planta localization and interactions of impatiens necrotic spot tospovirus proteins. J. Gen. Virol. 93:2490–95 [Google Scholar]
  33. Montero-Astua M. 33.  2012. Unveiling and blocking the interaction between Tomato spotted wilt virus and its insect vector. Frankliniella occidentalis. PhD Diss. Kansas State Univ. [Google Scholar]
  34. Ribeiro D, Jung M, Moling S, Borst JW, Goldbach R, Kormelink R. 34.  2013. The cytosolic nucleoprotein of the plant-infecting bunyavirus Tomato spotted wilt recruits endoplasmic reticulum-resident proteins to endoplasmic reticulum export sites. Plant Cell 25:3602–14 [Google Scholar]
  35. Feng ZK, Chen XJ, Bao YQ, Dong JH, Zhang ZK, Tao XR. 35.  2013. Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytol. 200:1212–24 [Google Scholar]
  36. Li J, Feng ZK, Wu JY, Huang Y, Lu G. 36.  et al. 2015. Structure and function analysis of nucleocapsid protein of Tomato spotted wilt virus interacting with RNA using homology modeling. J. Biol. Chem. 290:3950–61 [Google Scholar]
  37. Kikkert M, Van Lent J, Storms M, Bodegom P, Kormelink R, Goldbach R. 37.  1999. Tomato spotted wilt virus particle morphogenesis in plant cells. J. Virol. 73:2288–97 [Google Scholar]
  38. Kikkert M, vanPoelwijk F, Storms M, Kassies W, Bloksma H. 38.  et al. 1997. A protoplast system for studying Tomato spotted wilt virus infection. J. Gen. Virol. 78:1755–63 [Google Scholar]
  39. Kikkert M, Verschoor A, Kormelink R, Rottier P, Goldbach R. 39.  2001. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J. Virol. 75:1004–12 [Google Scholar]
  40. Sin SH, McNulty BC, Kennedy GG, Moyer JW. 40.  2005. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. PNAS 102:5168–73 [Google Scholar]
  41. Silva MS, Martins CRF, Bezerra IC, Nagata T, de Avila AC, Resende RO. 41.  2001. Sequence diversity of NSm movement protein of tospoviruses. Arch. Virol. 146:1267–81 [Google Scholar]
  42. Schoelz JE, Harries PA, Nelson RS. 42.  2011. Intracellular transport of plant viruses: finding the door out of the cell. Mol. Plant 4:813–31 [Google Scholar]
  43. Li W, Lewandowski DJ, Hilf ME, Adkins S. 43.  2009. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390:110–21 [Google Scholar]
  44. Soellick TR, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH. 44.  2000. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. PNAS 97:2373–78 [Google Scholar]
  45. Tripathi D, Raikhy G, Goodin MM, Dietzgen RG, Pappu HR. 45.  2015. In vivo localization of Iris yellow spot Tospovirus (Bunyaviridae)-encoded proteins and identification of interacting regions of nucleocapsid and movement proteins. PLOS ONE 10:e0118973 [Google Scholar]
  46. Leastro MO, Pallas V, Resende RO, Sanchez-Navarro JA. 46.  2015. The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology 478:39–49 [Google Scholar]
  47. Lewandowski DJ, Adkins S. 47.  2005. The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 342:26–37 [Google Scholar]
  48. Storms MMH, Kormelink R, Peters D, vanLent JWM, Goldbach RW. 48.  1995. The nonstructural NSm protein of Tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–93 [Google Scholar]
  49. von Bargen S, Salchert K, Paape M, Piechulla B, Kellmann JW. 49.  2001. Interactions between the Tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DnaJ-like chaperones. Plant Physiol. Biochem. 39:1083–93 [Google Scholar]
  50. Morozov SY, Makarova SS, Erokhina TN, Kopertekh L, Schiemann J. 50.  et al. 2014. Plant 4/1 protein: potential player in intracellular, cell-to-cell and long-distance signaling. Front. Plant Sci. 5:26 [Google Scholar]
  51. Csorba T, Kontra L, Burgyan J. 51.  2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479:85–103 [Google Scholar]
  52. Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M. 52.  et al. 2002. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 532:75–79 [Google Scholar]
  53. Bucher E, Sijen T, de Haan P, Goldbach R, Prins M. 53.  2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol. 77:1329–36 [Google Scholar]
  54. Schnettler E, Hemmes H, Huismann R, Goldbach R, Prins M, Kormelink R. 54.  2010. Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. J. Virol. 84:11542–54 [Google Scholar]
  55. Hedil M, Sterken MG, de Ronde D, Lohuis D, Kormelink R. 55.  2015. Analysis of tospovirus NSs proteins in suppression of systemic silencing. PLOS ONE 10:e0134517 [Google Scholar]
  56. de Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R. 56.  2014. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol. Plant Pathol. 15:185–95 [Google Scholar]
  57. Zhai Y, Bag S, Mitter N, Turina M, Pappu HR. 57.  2014. Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by Tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae). Arch. Virol. 159:1499–504 [Google Scholar]
  58. Bhushan L, Abraham A, Choudhury NR, Rana VS, Mukherjee SK, Savithri HS. 58.  2015. Demonstration of helicase activity in the nonstructural protein, NSs, of the negative-sense RNA virus, Groundnut bud necrosis virus. Arch. Virol. 160:959–67 [Google Scholar]
  59. Lokesh B, Rashmi PR, Amruta BS, Srisathiyanarayanan D, Murthy MRN, Savithri HS. 59.  2010. NSs encoded by Groundnut bud necrosis virus is a bifunctional enzyme. PLOS ONE 5:e9757 [Google Scholar]
  60. Hagen C, Frizzi A, Kao J, Jia LJ, Huang MY. 60.  et al. 2011. Using small RNA sequences to diagnose, sequence, and investigate the infectivity characteristics of vegetable-infecting viruses. Arch. Virol. 156:1209–16 [Google Scholar]
  61. Mitter N, Koundal V, Williams S, Pappu H. 61.  2013. Differential expression of Tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLOS ONE 8:e76276 [Google Scholar]
  62. Hedil M, Hassani-Mehraban A, Lohuis D, Kormelink R. 62.  2014. Analysis of the A-U rich hairpin from the intergenic region of tospovirus S RNA as target and inducer of RNA silencing. PLOS ONE 9:e106027 [Google Scholar]
  63. Margaria P, Miozzi L, Rosa C, Axtell MJ, Pappu HR, Turina M. 63.  2015. Small RNA profiles of wild-type and silencing suppressor-deficient Tomato spotted wilt virus infected Nicotiana benthamiana. Virus Res. 208:30–38 [Google Scholar]
  64. Montero-Astua M, Ullman DE, Whitfield AE. 64.  2016. Salivary gland morphology, tissue tropism and the progression to Tospovirus infection in Frankliniella occidentalis. Virology 493:39–51 [Google Scholar]
  65. van de Wetering F, Goldbach R, Peters D. 65.  1996. Tomato spotted wilt tospovirus ingestion by first instar larvae of Frankliniella occidentalis is a prerequisite for transmission. Phytopathology 86:900–5 [Google Scholar]
  66. Kritzman A, Gera A, Raccah B, van Lent JWM, Peters D. 66.  2002. The route of Tomato spotted wilt virus inside the thrips body in relation to transmission efficiency. Arch. Virol. 147:2143–56 [Google Scholar]
  67. Rotenberg D, Krishna Kumar NK, Ullman DE, Montero-Astua M, Willis DK. 67.  et al. 2009. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission. Phytopathology 99:404–10 [Google Scholar]
  68. Nagata T, Inoue-Nagata AK, Prins M, Goldbach R, Peters D. 68.  2000. Impeded thrips transmission of defective Tomato spotted wilt virus isolates. Phytopathology 90:454–59 [Google Scholar]
  69. Whitfield AE, Ullman DE, German TL. 69.  2004. Expression and characterization of a soluble form of Tomato spotted wilt virus glycoprotein GN. J. Virol. 78:13197–206 [Google Scholar]
  70. Whitfield AE, Kumar NKK, Rotenberg D, Ullman DE, Wyman EA. 70.  et al. 2008. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein GN (GN-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathology 98:45–50 [Google Scholar]
  71. Garcia S, Billecocq A, Crance JM, Prins M, Garin D, Bouloy M. 71.  2006. Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J. Gen. Virol. 87:1985–89 [Google Scholar]
  72. Margaria P, Bosco L, Vallino M, Ciuffo M, Mautino GC. 72.  et al. 2014. The NSs protein of Tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J. Virol. 88:5788–802 [Google Scholar]
  73. Jacobson AL, Kennedy GG. 73.  2013. Specific insect-virus interactions are responsible for variation in competency of different Thrips tabaci isolines to transmit different Tomato spotted wilt virus isolates. PLOS ONE 8:e54567 [Google Scholar]
  74. Nagata T, Inoue-Nagata AK, van Lent J, Goldbach R, Peters D. 74.  2002. Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus. J. Gen. Virol. 83:663–71 [Google Scholar]
  75. Cabrera-La Rosa JC, Kennedy GG. 75.  2007. Thrips tabaci and Tomato spotted wilt virus: inheritance of vector competence. Entomol. Exp. Appl. 124:161–66 [Google Scholar]
  76. Badillo-Vargas IE, Rotenberg D, Schneweis DJ, Hiromasa Y, Tomich JM, Whitfield AE. 76.  2012. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to Tomato spotted wilt virus infection. J. Virol. 86:8793–809 [Google Scholar]
  77. Rotenberg D, Whitfield AE. 77.  2010. Analysis of expressed sequence tags for Frankliniella occidentalis, the western flower thrips. Insect Mol. Biol. 19:537–51 [Google Scholar]
  78. Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE. 78.  2015. RNA interference tools for the western flower thrips, Frankliniella occidentalis. J. Insect Physiol. 76:36–46 [Google Scholar]
  79. Maris PC, Joosten NN, Goldbach RW, Peters D. 79.  2004. Decreased preference and reproduction, and increased mortality of Frankliniella occidentalis on thrips-resistant pepper plants. Entomol. Exp. Appl. 113:149–55 [Google Scholar]
  80. Belliure B, Janssen A, Maris PC, Peters D, Sabelis MW. 80.  2005. Herbivore arthropods benefit from vectoring plant viruses. Ecol. Lett. 8:70–79 [Google Scholar]
  81. Stumpf CF, Kennedy GG. 81.  2007. Effects of Tomato spotted wilt virus isolates, host plants, and temperature on survival, size, and development time of Frankliniella occidentalis. Entomol. Exp. Appl. 123:139–47 [Google Scholar]
  82. Nachappa P, Margolies DC, Nechols JR, Whitfield AE, Rotenberg D. 82.  2013. Tomato spotted wilt virus benefits a non-vector arthropod, Tetranychus urticae, by modulating different plant responses in tomato. PLOS ONE 8:e75909 [Google Scholar]
  83. Shrestha A, Srinivasan R, Riley DG, Culbreath AK. 83.  2012. Direct and indirect effects of a thrips-transmitted tospovirus on the preference and fitness of its vector, Frankliniella fusca. Entomol. Exp. Appl. 145:260–71 [Google Scholar]
  84. Stumpf CF, Kennedy GG. 84.  2005. Effects of Tomato spotted wilt virus (TSWV) isolates, host plants, and temperature on survival, size, and development time of Frankliniella fusca. Entomol. Exp. Appl. 114:215–25 [Google Scholar]
  85. Stafford CA, Walker GP, Ullman DE. 85.  2011. Infection with a plant virus modifies vector feeding behavior. PNAS 108:9350–55 [Google Scholar]
  86. Culbreath AK, Todd JW, Brown SL. 86.  2003. Epidemiology and management of tomato spotted wilt in peanut. Annu. Rev. Phytopathol. 41:53–75 [Google Scholar]
  87. Wilson CR. 87.  1998. Incidence of weed reservoirs and vectors of tomato spotted wilt tospovirus on southern Tasmanian lettuce farms. Plant Pathol. 47:171–76 [Google Scholar]
  88. Chappell TM, Beaudoin ALP, Kennedy GG. 88.  2013. Interacting virus abundance and transmission intensity underlie Tomato spotted wilt virus incidence: an example weather-based model for cultivated tobacco. PLOS ONE 8:e73321 [Google Scholar]
  89. Morsello SC, Kennedy GG. 89.  2009. Spring temperature and precipitation affect tobacco thrips, Frankliniella fusca, population growth and Tomato spotted wilt virus spread within patches of the winter annual weed Stellaria media. Entomol. Exp. Appl. 130:138–48 [Google Scholar]
  90. Riley DG, Pappu HR. 90.  2004. Tactics for management of thrips (Thysanoptera: Thripidae) and Tomato spotted wilt virus in tomato. J. Econ. Entomol. 97:1648–58 [Google Scholar]
  91. Jones RAC. 91.  2004. Using epidemiological information to develop effective integrated virus disease management strategies. Virus Res. 100:5–30 [Google Scholar]
  92. Bielza P. 92.  2008. Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Manag. Sci. 64:1131–38 [Google Scholar]
  93. Boiteux LS, Deavila AC. 93.  1994. Inheritance of a resistance specific to Tomato spotted wilt tospovirus in Capsicum chinese ‘PI-159236.’. Euphytica 75:139–42 [Google Scholar]
  94. Stevens MR, Scott SJ, Gergerich RC. 94.  1991. Inheritance of a gene for resistance to Tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59:9–17 [Google Scholar]
  95. Peiro A, Canizares MC, Rubio L, Lopez C, Moriones E. 95.  et al. 2014. The movement protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance. Mol. Plant Pathol. 15:802–13 [Google Scholar]
  96. de Ronde D, Butterbach P, Lohuis D, Hedil M, Van Lent JWM, Kormelink R. 96.  2013. Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus. Mol. Plant Pathol. 14:405–15 [Google Scholar]
  97. Margaria P, Ciuffo M, Pacifico D, Turina M. 97.  2007. Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Mol. Plant-Microbe Interact. 20:547–58 [Google Scholar]
  98. Ciuffo M, Finetti-Sialer MM, Gallitelli D, Turina M. 98.  2005. First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. Plant Pathol. 54:564–64 [Google Scholar]
  99. Bucher E, Lohuis D, van Poppel PMJA, Geerts-Dimitriadou C, Goldbach R, Prins M. 99.  2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol. 87:3697–701 [Google Scholar]
  100. Peng JC, Chen TC, Raja JAJ, Yang CF, Chien WC. 100.  et al. 2014. Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLOS ONE 9:e96073 [Google Scholar]
  101. Sundaraj S, Srinivasan R, Culbreath AK, Riley DG, Pappu HR. 101.  2014. Host plant resistance against Tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival. Phytopathology 104:202–10 [Google Scholar]
  102. Riley DG, Joseph SV, Kelley WT, Olson S, Scott J. 102.  2011. Host plant resistance to Tomato spotted wilt virus (Bunyaviridae: Tospovirus) in tomato. HortScience 46:1626–33 [Google Scholar]
  103. Guo HY, Song XG, Wang GL, Yang K, Wang Y. 103.  et al. 2014. Plant-generated artificial small RNAs mediated aphid resistance. PLOS ONE 9:e97410 [Google Scholar]
  104. Whitfield AE, Rotenberg D. 104.  2015. Disruption of insect transmission of plant viruses. Curr. Opin. Insect Sci. 8:79–87 [Google Scholar]
  105. Montero-Astua M, Rotenberg D, Leach-Kieffaber A, Schneweis BA, Park S. 105.  et al. 2014. Disruption of vector transmission by a plant-expressed viral glycoprotein. Mol. Plant-Microbe Interact. 27:296–304 [Google Scholar]
  106. Riley DG, Joseph SV, Srinivasan R, Diffie S. 106.  2011. Thrips vectors of tospoviruses. J. Integr. Pest Manag. 2: doi: 10.1603/IPM10020 [Google Scholar]
  107. Meng JR, Liu PP, Zhu LL, Zou CW, Li JQ, Chen BS. 107.  2015. Complete genome sequence of Mulberry vein banding associated virus, a new tospovirus infecting mulberry. PLOS ONE 10:e0136196 [Google Scholar]
  108. Yin YY, Zheng KY, Dong JH, Fang Q, Wu SP. 108.  et al. 2014. Identification of a new tospovirus causing necrotic ringspot on tomato in China. Virol. J. 11:2133 [Google Scholar]
  109. Shimomoto Y, Kobayashi K, Okuda M. 109.  2014. Identification and characterization of Lisianthus necrotic ringspot virus, a novel distinct tospovirus species causing necrotic disease of lisianthus (Eustoma grandiflorum). J. Gen. Plant Pathol. 80:169–75 [Google Scholar]
  110. Buckman RS, Mound LA, Whiting MF. 110.  2013. Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Syst. Entomol. 38:123–33 [Google Scholar]
  111. Lewis T. 111.  1997. Thrips as Crop Pests Wallingford, UK: CAB Int. [Google Scholar]
  112. Falk BW, Tsai JH. 112.  1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annu. Rev. Phytopathol. 36:139–63 [Google Scholar]
/content/journals/10.1146/annurev-virology-100114-055036
Loading
/content/journals/10.1146/annurev-virology-100114-055036
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error