The retroviral integrases are virally encoded, specialized recombinases that catalyze the insertion of viral DNA into the host cell's DNA, a process that is essential for virus propagation. We have learned a great deal since the existence of an integrated form of retroviral DNA (the provirus) was first proposed by Howard Temin in 1964. Initial studies focused on the genetics and biochemistry of avian and murine virus DNA integration, but the pace of discovery increased substantially with advances in technology, and an influx of investigators focused on the human immunodeficiency virus. We begin with a brief account of the scientific landscape in which some of the earliest discoveries were made, and summarize research that led to our current understanding of the biochemistry of integration. A more detailed account of recent analyses of integrase structure follows, as they have provided valuable insights into enzyme function and raised important new questions.

Associated Article

There are media items related to this article:
Retroviral Integrase: Then and Now: Video 1

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Wollman E, Wollman E. 1.  1937. Les «phases» des bactériophages (facteurs lysogènes). C.R. Soc. Biol. 124:931–34 [Google Scholar]
  2. Lwoff A. 2.  1953. Lysogeny. Bacteriol. Rev. 17:269–337 [Google Scholar]
  3. Jacob F, Wollman E. 3.  1961. Sexuality and the Genetics of Bacteria New York: Academic
  4. Campbell A. 4.  1961. Episomes. Adv. Genet. 11:101–45 [Google Scholar]
  5. Hershey AD, Burgi E, Ingraham L. 5.  1963. Cohesion of DNA molecules isolated from phage lambda. PNAS 49:748–55 [Google Scholar]
  6. Temin HM. 6.  1976. The DNA provirus hypothesis. Science 192:1075–80 [Google Scholar]
  7. Temin HM. 7.  1995 (1964). Text of a presentation at the International Conference on Avian Tumor Viruses, Duke University, Durham, NC, entitled “Nature of the provirus of Rous sarcoma virus,” reproduced with introduction and comments by GM Cooper. DNA Provirus: Howard Temin's Scientific Legacy GM Cooper, R Greenberg, W Sugden 25–40 Washington, DC: ASM Press
  8. Svoboda J, Chyle P, Simkovic D, Hilgert I. 8.  1963. Demonstration of the absence of infectious Rous virus in rat tumour XC, whose structurally intact cells produce Rous sarcoma when transferred to chicks. Folia Biol. 9:77–81 [Google Scholar]
  9. Baltimore D. 9.  1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–11 [Google Scholar]
  10. Temin HM, Mizutani S. 10.  1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–13 [Google Scholar]
  11. Hill M, Hillova J. 11.  1972. Virus recovery in chicken cells tested with Rous sarcoma cell DNA. Nat. New Biol. 237:35–39 [Google Scholar]
  12. Belyi VA, Levine AJ, Skalka AM. 12.  2010. Unexpected inheritance: multiple integrations of ancient Bornavirus and Ebolavirus/Marburgvirus sequences in vertebrate genomes. PLOS Pathog. 6:e1001030 [Google Scholar]
  13. Belyi VA, Levine AJ, Skalka AM. 13.  2010. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: The Parvoviridae and Circoviridae are more than 40 to 50 million years old. J. Virol. 84:12458–62 [Google Scholar]
  14. Tarlinton RE, Meers J, Young PR. 14.  2006. Retroviral invasion of the koala genome. Nature 442:79–81 [Google Scholar]
  15. Skalka AM. 15.  2015. Retroviral DNA transposition: themes and variations. Mobile DNA III S Sandmeyer, N Craig, pp. 1101–23 Washington, DC: ASM Press [Google Scholar]
  16. Flint SJ, Racaniello VR, Rall G, Skalka AM. 16.  2015. Principles of Virology Washington, DC: ASM Press, 4th ed..
  17. Guntaka RV, Mahy BW, Bishop JM, Varmus HE. 17.  1975. Ethidium bromide inhibits appearance of closed circular viral DNA and integration of virus-specific DNA in duck cells infected by avian sarcoma virus. Nature 253:507–11 [Google Scholar]
  18. Panganiban AT, Temin HM. 18.  1984. Circles with two tandem LTRs are precursors to integrated retrovirus DNA. Cell 36:673–79 [Google Scholar]
  19. Brown PO, Bowerman B, Varmus HE, Bishop JM. 19.  1989. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. PNAS 86:2525–29 [Google Scholar]
  20. Brown PO, Bowerman B, Varmus HE, Bishop JM. 20.  1987. Correct integration of retroviral DNA in vitro. Cell 49:347–56 [Google Scholar]
  21. Fujiwara T, Mizuuchi K. 21.  1988. Retroviral DNA integration: structure of an integration intermediate. Cell 54:497–504 [Google Scholar]
  22. Mizuuchi K. 22.  1992. Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61:1011–51 [Google Scholar]
  23. Coffin JM, Hughes SH, Varmus HE. 23.  1997. Retroviruses Cold Spring Harbor, NY: Cold Spring Harbor Press
  24. Dhar R, McClements WL, Enquist LW, Vande Woude GF. 24.  1980. Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. PNAS 77:3937–41 [Google Scholar]
  25. Hughes SH, Mutschler A, Bishop JM, Varmus HE. 25.  1981. A Rous sarcoma virus provirus is flanked by short direct repeats of a cellular DNA sequence present in only one copy prior to integration. PNAS 78:4299–303 [Google Scholar]
  26. Ju G, Hishinuma F, Skalka AM. 26.  1982. Nucleotide sequence analysis of avian retroviruses: structural similarities with transposable elements. Fed. Proc. 41:2659–61 [Google Scholar]
  27. Ju G, Skalka AM. 27.  1980. Nucleotide sequence analysis of the long terminal repeat (LTR) of avian retroviruses: structural similarities with transposable elements. Cell 22:379–86 [Google Scholar]
  28. Majors JE, Varmus HE. 28.  1981. Nucleotide sequences at host-proviral junctions for mouse mammary tumour virus. Nature 289:253–58 [Google Scholar]
  29. Shimotohno K, Mizutani S, Temin HM. 29.  1980. Sequence of retrovirus provirus resembles that of bacterial transposable elements. Nature 285:550–54 [Google Scholar]
  30. Van Beveren C, Goddard JG, Berns A, Verma IM. 30.  1980. Structure of Moloney murine leukemia viral DNA: nucleotide sequence of the 5′ long terminal repeat and adjacent cellular sequences. PNAS 77:3307–11 [Google Scholar]
  31. Hishinuma F, DeBona PJ, Astrin S, Skalka AM. 31.  1981. Nucleotide sequence of acceptor site and termini of integrated avian endogenous provirus ev1: integration creates a 6 bp repeat of host DNA. Cell 23:155–64 [Google Scholar]
  32. Grandgenett DP. 32.  2011. pp32 is hot. See Reference 130 15–22
  33. Craigie R, Fujiwara T, Bushman F. 33.  1990. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62:829–37 [Google Scholar]
  34. Katz RA, Merkel G, Kulkosky J, Leis J, Skalka AM. 34.  1990. The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63:87–95 [Google Scholar]
  35. Katzman M, Katz RA, Skalka AM, Leis J. 35.  1989. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J. Virol. 63:5319–27 [Google Scholar]
  36. Merkel G, Andrake MD, Ramcharan J, Skalka AM. 36.  2009. Oligonucleotide-based assays for integrase activity. Methods 47:243–48 [Google Scholar]
  37. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P. 37.  et al. 2002. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. PNAS 99:6661–66 [Google Scholar]
  38. Roth MJ, Schwartzberg PL, Goff SP. 38.  1989. Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell 58:47–54 [Google Scholar]
  39. Farnet CM, Haseltine WA. 39.  1991. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J. Virol. 65:1910–15 [Google Scholar]
  40. Daniel R, Kao G, Taganov K, Greger JG, Favorova O. 40.  et al. 2003. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. PNAS 100:4778–83 [Google Scholar]
  41. Sakurai Y, Komatsu K, Agematsu K, Matsuoka M. 41.  2009. DNA double strand break repair enzymes function at multiple steps in retroviral infection. Retrovirology 6:114 [Google Scholar]
  42. Skalka AM, Katz RA. 42.  2005. Retroviral DNA integration and the DNA damage response. Cell Death Differ. 12:971–78 [Google Scholar]
  43. Daniel R, Ramcharan J, Rogakou E, Taganov KD, Greger JG. 43.  et al. 2004. Histone H2AX is phosphorylated at sites of retroviral DNA integration but is dispensable for postintegration repair. J. Biol. Chem. 279:45810–14 [Google Scholar]
  44. Roe T, Chow SA, Brown PO. 44.  1997. 3′-End processing and kinetics of 5′-end joining during retroviral integration in vivo. J. Virol. 71:1334–40 [Google Scholar]
  45. Desfarges S, Ciuffi A. 45.  2010. Retroviral integration site selection. Viruses 2:111–30 [Google Scholar]
  46. Benleulmi MS, Matysiak J, Henriquez DR, Vaillant C, Lesbats P. 46.  et al. 2015. Intasome architecture and chromatin density modulate retroviral integration into the nucleosome. Retrovirology 12:13 [Google Scholar]
  47. Lesbats P, Botbol Y, Chevereau G, Vaillant C, Calmels C. 47.  et al. 2011. Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLOS Pathog. 7e1001280
  48. Taganov KD, Cuesta I, Daniel R, Cirillo LA, Katz RA. 48.  et al. 2004. Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J. Virol. 78:5848–55 [Google Scholar]
  49. Engelman A, Cherepanov P. 49.  2008. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLOS Pathog. 4:e1000046 [Google Scholar]
  50. Gupta SS, Maetzig T, Maertens GN, Sharif A, Rothe M. 50.  et al. 2013. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J. Virol. 87:12721–36 [Google Scholar]
  51. Sharma A, Larue RC, Plumb MR, Malani N, Male F. 51.  et al. 2013. BET proteins promote efficient murine leukemia virus integration at transcription start sites. PNAS 110:12036–41 [Google Scholar]
  52. Craigie R, Bushman FD. 52.  2014. Host factors in retroviral integration and the selection of integration target sites. Microbiol. Spectr. 2:MDNA3–0026-2014 [Google Scholar]
  53. Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S. 53.  et al. 2007. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21:1767–78 [Google Scholar]
  54. Bushman FD, Engelman A, Palmer I, Wingfield P, Craigie R. 54.  1993. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. PNAS 90:3428–32 [Google Scholar]
  55. Engelman A, Bushman FD, Craigie R. 55.  1993. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12:3269–75 [Google Scholar]
  56. Khan E, Mack JP, Katz RA, Kulkosky J, Skalka AM. 56.  1991. Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19:851–60 [Google Scholar]
  57. Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM. 57.  1997. Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat. Struct. Biol. 4:567–77 [Google Scholar]
  58. Eijkelenboom AP, van den Ent FM, Vos A, Doreleijers JF, Hard K. 58.  et al. 1997. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr. Biol. 7:739–46 [Google Scholar]
  59. Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM. 59.  1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12:2331–38 [Google Scholar]
  60. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. 60.  1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–86 [Google Scholar]
  61. Bujacz G, Jaskolski M, Alexandratos J, Wlodawer A, Merkel G. 61.  et al. 1995. High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J. Mol. Biol. 253:333–46 [Google Scholar]
  62. Nowotny M. 62.  2009. Retroviral integrase superfamily: the structural perspective. EMBO Rep. 10:144–51 [Google Scholar]
  63. Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA. 63.  1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13:3070–80 [Google Scholar]
  64. Landree MA, Wibbenmeyer JA, Roth DB. 64.  1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13:3059–69 [Google Scholar]
  65. Yang W, Lee JY, Nowotny M. 65.  2006. Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol. Cell 22:5–13 [Google Scholar]
  66. Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A. 66.  et al. 1995. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34:9826–33 [Google Scholar]
  67. Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hard K. 67.  1995. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat. Struct. Biol. 2:807–10 [Google Scholar]
  68. Andrake MD, Skalka AM. 68.  1995. Multimerization determinants reside in both the catalytic core and C terminus of avian sarcoma virus integrase. J. Biol. Chem. 270:29299–306 [Google Scholar]
  69. Engelman A, Hickman AB, Craigie R. 69.  1994. The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J. Virol. 68:5911–17 [Google Scholar]
  70. Bao KK, Wang H, Miller JK, Erie DA, Skalka AM, Wong I. 70.  2003. Functional oligomeric state of avian sarcoma virus integrase. J. Biol. Chem. 278:1323–27 [Google Scholar]
  71. Jones KS, Coleman J, Merkel GW, Laue TM, Skalka AM. 71.  1992. Retroviral integrase functions as a multimer and can turn over catalytically. J. Biol. Chem. 267:16037–40 [Google Scholar]
  72. Engelman A, Bushman FD, Craigie R. 72.  1993. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12:3269–75 [Google Scholar]
  73. Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont-Sarcos A. 73.  et al. 2005. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res. 33:977–86 [Google Scholar]
  74. Li M, Mizuuchi M, Burke TR Jr, Craigie R. 74.  2006. Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J. 25:1295–304 [Google Scholar]
  75. Wang JY, Ling H, Yang W, Craigie R. 75.  2001. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J. 20:7333–43 [Google Scholar]
  76. Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH. 76.  et al. 2000. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. PNAS 97:8233–38 [Google Scholar]
  77. Chen Z, Yan Y, Munshi S, Li Y, Zugay-Murphy J. 77.  et al. 2000. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50–293)—an initial glance of the viral DNA binding platform. J. Mol. Biol. 296:521–33 [Google Scholar]
  78. Yang ZN, Mueser TC, Bushman FD, Hyde CC. 78.  2000. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. J. Mol. Biol. 296:535–48 [Google Scholar]
  79. Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P. 79.  2009. Structural basis for functional tetramerization of lentiviral integrase. PLOS Pathog. 5:e1000515 [Google Scholar]
  80. Shi K, Pandey KK, Bera S, Vora AC, Grandgenett DP, Aihara H. 80.  2013. A possible role for the asymmetric C-terminal domain dimer of Rous sarcoma virus integrase in viral DNA binding. PLOS ONE 8:e56892 [Google Scholar]
  81. Valkov E, Gupta SS, Hare S, Helander A, Roversi P. 81.  et al. 2009. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res. 37:243–55 [Google Scholar]
  82. Juretzek T, Holm T, Gartner K, Kanzler S, Lindemann D. 82.  et al. 2004. Foamy virus integration. J. Virol. 78:2472–77 [Google Scholar]
  83. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. 83.  2010. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–36 [Google Scholar]
  84. Katz RA, DiCandeloro P, Kukolj G, Skalka AM. 84.  2001. Role of DNA end distortion in catalysis by avian sarcoma virus integrase. J. Biol. Chem. 276:34213–20 [Google Scholar]
  85. Katz RA, Merkel G, Andrake MD, Roder H, Skalka AM. 85.  2011. Retroviral integrases promote fraying of viral DNA ends. J. Biol. Chem. 286:25710–18 [Google Scholar]
  86. van Gent DC, Vink C, Groeneger AA, Plasterk RH. 86.  1993. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12:3261–67 [Google Scholar]
  87. Gupta K, Curtis JE, Krueger S, Hwang Y, Cherepanov P. 87.  et al. 2012. Solution conformations of prototype foamy virus integrase and its stable synaptic complex with U5 viral DNA. Structure 20:1918–28 [Google Scholar]
  88. Maertens GN, Hare S, Cherepanov P. 88.  2010. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326–29 [Google Scholar]
  89. Hare S, Maertens GN, Cherepanov P. 89.  2012. 3′-Processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J. 31:3020–28 [Google Scholar]
  90. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. 90.  2010. Structure-based modeling of the functional HIV-1 intasome and its inhibition. PNAS 107:15910–15 [Google Scholar]
  91. Ballandras-Colas A, Naraharisetty H, Li X, Serrao E, Engelman A. 91.  2013. Biochemical characterization of novel retroviral integrase proteins. PLOS ONE 8:e76638 [Google Scholar]
  92. Jenkins TM, Engelman A, Ghirlando R, Craigie R. 92.  1996. A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. J. Biol. Chem. 271:7712–18 [Google Scholar]
  93. Bojja RS, Andrake MD, Merkel G, Weigand S, Dunbrack RL Jr, Skalka AM. 93.  2013. Architecture and assembly of HIV integrase multimers in the absence of DNA substrates. J. Biol. Chem. 288:7373–86 [Google Scholar]
  94. Bojja RS, Andrake MD, Weigand S, Merkel G, Yarychkivska O. 94.  et al. 2011. Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. J. Biol. Chem. 286:17047–59 [Google Scholar]
  95. Pandey KK, Bera S, Grandgenett DP. 95.  2011. The HIV-1 integrase monomer induces a specific interaction with LTR DNA for concerted integration. Biochemistry 50:9788–96 [Google Scholar]
  96. Horton R, Mumm S, Grandgenett DP. 96.  1988. Avian retrovirus pp32 DNA endonuclease is phosphorylated on Ser in the carboxyl-terminal region. J. Virol. 62:2067–75 [Google Scholar]
  97. Zheng Y, Yao X. 97.  2013. Posttranslational modifications of HIV-1 integrase by various cellular proteins during viral replication. Viruses 5:1787–801 [Google Scholar]
  98. Mousnier A, Kubat N, Massias-Simon A, Segeral E, Rain JC. 98.  et al. 2007. Von Hippel-Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step. PNAS 104:13615–20 [Google Scholar]
  99. Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A. 99.  et al. 2005. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 24:3070–81 [Google Scholar]
  100. Terreni M, Valentini P, Liverani V, Gutierrez MI, Di Primio C. 100.  et al. 2010. GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology 7:18 [Google Scholar]
  101. Zamborlini A, Coiffic A, Beauclair G, Delelis O, Paris J. 101.  et al. 2011. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J. Biol. Chem. 286:21013–22 [Google Scholar]
  102. Hizi A, Leis JP, Joklik WK. 102.  1977. RNA-dependent DNA polymerase of avian sarcoma virus B77. II. Comparison of the catalytic properties of the α, β2, and αβ enzyme forms. J. Biol. Chem. 252:2290–95 [Google Scholar]
  103. Herschhorn A, Hizi A. 103.  2010. Retroviral reverse transcriptases. Cell. Mol. Life Sci. 67:2717–47 [Google Scholar]
  104. Herschhorn A, Oz-Gleenberg I, Hizi A. 104.  2008. Quantitative analysis of the interactions between HIV-1 integrase and retroviral reverse transcriptases. Biochem. J. 412:163–70 [Google Scholar]
  105. Lai L, Liu H, Wu X, Kappes JC. 105.  2001. Moloney murine leukemia virus integrase protein augments viral DNA synthesis in infected cells. J. Virol. 75:11365–72 [Google Scholar]
  106. Wu X, Liu H, Xiao H, Conway JA, Hehl E. 106.  et al. 1999. Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. J. Virol. 73:2126–35 [Google Scholar]
  107. Engelman A. 107.  1999. In vivo analysis of retroviral integrase structure and function. Adv. Virus Res. 52:411–26 [Google Scholar]
  108. Zhu K, Dobard C, Chow SA. 108.  2004. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. J. Virol. 78:5045–55 [Google Scholar]
  109. Hehl EA, Joshi P, Kalpana GV, Prasad VR. 109.  2004. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J. Virol. 78:5056–67 [Google Scholar]
  110. Dobard CW, Briones MS, Chow SA. 110.  2007. Molecular mechanisms by which human immunodeficiency virus type 1 integrase stimulates the early steps of reverse transcription. J. Virol. 81:10037–46 [Google Scholar]
  111. Wilkinson TA, Januszyk K, Phillips ML, Tekeste SS, Zhang M. 111.  et al. 2009. Identifying and characterizing a functional HIV-1 reverse transcriptase-binding site on integrase. J. Biol. Chem. 284:7931–39 [Google Scholar]
  112. Studamire B, Goff SP. 112.  2010. Interactions of host proteins with the murine leukemia virus integrase. Viruses 2:1110–45 [Google Scholar]
  113. Raghavendra NK, Shkriabai N, Graham R, Hess S, Kvaratskhelia M, Wu L. 113.  2010. Identification of host proteins associated with HIV-1 preintegration complexes isolated from infected CD4+ cells. Retrovirology 7:66 [Google Scholar]
  114. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE. 114.  et al. 2012. Global landscape of HIV–human protein complexes. Nature 481:365–70 [Google Scholar]
  115. Kalpana GV, Marmon S, Wang W, Crabtree GR, Goff SP. 115.  1994. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266:2002–6 [Google Scholar]
  116. Mathew S, Nguyen M, Wu X, Pal A, Shah VB. 116.  et al. 2013. INI1/hSNF5-interaction defective HIV-1 IN mutants exhibit impaired particle morphology, reverse transcription and integration in vivo. Retrovirology 10:66 [Google Scholar]
  117. Engelman A. 117.  2011. Pleiotropic nature of HIV-1 integrase mutations. See Reference 130, pp. 67–81
  118. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA. 118.  et al. 2010. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol. 6:442–48 [Google Scholar]
  119. Fenwick CW, Tremblay S, Wardrop E, Bethell R, Coulomb R. 119.  et al. 2011. Resistance studies with HIV-1 non-catalytic site integrase inhibitors. Antivir. Ther. 16:A9 [Google Scholar]
  120. Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A. 120.  et al. 2012. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem. 287:16801–11 [Google Scholar]
  121. Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB. 121.  et al. 2012. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J. Biol. Chem. 287:21189–203 [Google Scholar]
  122. Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ. 122.  et al. 2013. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. PNAS 110:8690–95 [Google Scholar]
  123. Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C. 123.  et al. 2013. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 10:57 [Google Scholar]
  124. Balakrishnan M, Yant SR, Tsai L, O'Sullivan C, Bam RA. 124.  et al. 2013. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLOS ONE 8:e74163 [Google Scholar]
  125. Wei SQ, Mizuuchi K, Craigie R. 125.  1997. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16:7511–20 [Google Scholar]
  126. Chen H, Wei SQ, Engelman A. 126.  1999. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J. Biol. Chem. 274:17358–64 [Google Scholar]
  127. Poiesz BJ, Ruscetti FW, Reitz MS, Kalyanaraman VS, Gallo RC. 127.  1981. Isolation of a new type C retrovirus (HTLV) in primary uncultured cells of a patient with Sezary T-cell leukaemia. Nature 294:268–71 [Google Scholar]
  128. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S. 128.  et al. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–71 [Google Scholar]
  129. Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E. 129.  et al. 1983. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220:865–67 [Google Scholar]
  130. Neamati N. 130.  2011. HIV-1 Integrase: Mechanism and Inhibitor Design Hoboken, NJ: Wiley
  131. Jurado KA, Engelman A. 131.  2013. Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors. Expert Rev. Mol. Med. 15:e14 [Google Scholar]
  132. Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. 132.  2014. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res. 42:10209–25 [Google Scholar]
  133. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM. 133.  et al. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–12 [Google Scholar]
  134. Vallée H, Carré H. 134.  1904. Sur la nature infectieuse de l'anémie ducheval. C.R. Acad. Sci. 139:331–33 [Google Scholar]
  135. Ellermann V, Bang O. 135.  1908. . Experimentelle Leukämie bei Hühnern. Zent. Bakt. Parasitenkd. Infekt. 46:595–609 [Google Scholar]
  136. Rous P. 136.  1911. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13:397–411 [Google Scholar]
  137. Bittner JJ. 137.  1936. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 84:162 [Google Scholar]
  138. Gross L. 138.  1951. “Spontaneous” leukemia developing in C3H mice following inoculation in infancy, with AK-leukemic extracts, or AK-embryos. Proc. Soc. Exp. Biol. Med. 76:27–32 [Google Scholar]
  139. Gross L. 139.  1957. Development and serial cell-free passage of a highly potent strain of mouse leukemia virus. Proc. Soc. Exp. Biol. Med. 94:767–71 [Google Scholar]
  140. Enders JF, Peebles TC. 140.  1954. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc. Soc. Exp. Biol. Med. 86:277–86 [Google Scholar]
  141. Temin HM, Rubin H. 141.  1958. Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology 6:669–88 [Google Scholar]
  142. Lieberman M, Kaplan HS. 142.  1959. Leukemogenic activity of filtrates from radiation-induced lymphoid tumors of mice. Science 130:387–88 [Google Scholar]
  143. Muhlbock O. 143.  1965. Note on a new inbred mouse-strain GR-A. Eur. J. Cancer 1:123–24 [Google Scholar]
  144. Hughes SH, Shank PR, Spector DH, Kung HJ, Bishop JM. 144.  et al. 1978. Proviruses of avian sarcoma virus are terminally redundant, co-extensive with unintegrated linear DNA and integrated at many sites. Cell 15:1397–410 [Google Scholar]
  145. Dhar R, McClements WL, Enquist LW, Vande Woude GF. 145.  1980. Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. PNAS 77:3937–41 [Google Scholar]
  146. Grandgenett DP, Vora AC, Schiff RD. 146.  1978. A 32,000-Dalton nucleic acid-binding protein from avian retravirus cores possesses DNA endonuclease activity. Virology 89:119–32 [Google Scholar]
  147. Donehower LA, Varmus HE. 147.  1984. A mutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. PNAS 81:6461–65 [Google Scholar]
  148. Schwartzberg P, Colicelli J, Goff SP. 148.  1984. Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 37:1043–52 [Google Scholar]
  149. Panganiban AT, Temin HM. 149.  1984. The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. PNAS 81:7885–89 [Google Scholar]
  150. Brown PO, Bowerman B, Varmus HE, Bishop JM. 150.  1987. Correct integration of retroviral DNA in vitro. Cell 49:347–56 [Google Scholar]
  151. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. 151.  2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–29 [Google Scholar]
  152. Narezkina A, Taganov KD, Litwin S, Stoyanova R, Hayashi J. 152.  et al. 2004. Genome-wide analyses of avian sarcoma virus integration sites. J. Virol. 78:11656–63 [Google Scholar]
  153. Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J. 153.  et al. 2003. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278:372–81 [Google Scholar]
  154. Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A. 154.  2005. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. PNAS 102:17308–13 [Google Scholar]
  155. Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ. 155.  et al. 2014. A new class of multimerization selective inhibitors of HIV-1 integrase. PLOS Pathog. 10:e1004171 [Google Scholar]
  156. Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R. 156.  et al. 2015. Structural basis for retroviral integration into nucleosomes. Nature 523:366–69 [Google Scholar]

Data & Media loading...

Supplemental Material

    Assembly of the prototype foamy virus (PFV) intasome (see ). This brief video portrays one possible scenario for how the PFV intasome may be assembled from PFV integrase (IN) monomers, the predominant multimer found in solution. The complex is shown in ribbon representation, with the inner subunits in red and blue. Viral DNA oligonucleotides are in orange ribbon ladder representation and the target DNA in yellow and black. The outer IN subunits only show the catalytic core domains and are colored gray. After the target DNA moves into place, the view zooms in to one active site to show the location of active site metals (depicted as green spheres) and the DDE residues (shown in stick representation) that are required for metal binding. This video was generated using UCSF Chimera software [Pettersen et al., 25:1605–12 (2004)] with the coordinates of PDB 4E7K.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error