Parvoviruses infect a wide variety of hosts, and their ancestors appear to have emerged tens to hundreds of millions of years ago and to have spread widely ever since. The diversity of parvoviruses is therefore extensive, and although they all appear to descend from a common ancestor and share common structures in their capsid and nonstructural proteins, there is often low homology at the DNA or protein level. The diversity of these viruses is also seen in the widely differing impacts they have on their hosts, which range from severe and even lethal disease to subclinical or nonpathogenic infections. In the past few years, deep sequencing of DNA samples from animals has shown just how widespread the parvoviruses are in nature, but most of the newly discovered viruses have not yet been associated with any disease. However, variants of some parvoviruses have altered their host ranges to create new epidemic or pandemic viruses. Here, we examine the properties of parvoviruses and their interactions with their hosts that are associated with these disparate pathogenic outcomes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA. 1.  et al. 2011. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J. Virol. 85:9863–76 [Google Scholar]
  2. Kapoor A, Simmonds P, Lipkin WI. 2.  2010. Discovery and characterization of mammalian endogenous parvoviruses. J. Virol. 84:12628–35 [Google Scholar]
  3. Katzourakis A, Gifford RJ. 3.  2010. Endogenous viral elements in animal genomes. PLOS Genet. 6:e1001191 [Google Scholar]
  4. Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ. 4.  et al. 2014. The family Parvoviridae. Arch. Virol. 159:1239–47 [Google Scholar]
  5. Canuti M, Eis-Huebinger AM, Deijs M, de Vries M, Drexler JF. 5.  et al. 2011. Two novel parvoviruses in frugivorous New and Old World bats. PLOS ONE 6:e29140 [Google Scholar]
  6. Lau SKP, Woo PCY, Tse H, Fu CTY, Au WK. 6.  et al. 2008. Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. J. Gen. Virol. 89:1840–48 [Google Scholar]
  7. Bodewes R, van der Giessen J, Haagmans BL, Osterhaus ADME, Smits SL. 7.  2013. Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes. J. Virol. 87:7758–64 [Google Scholar]
  8. Berns KI, Hauswirth WW, Fife KH, Lusby E. 8.  1979. Adeno-associated virus DNA replication. Cold Spring Harb. Symp. Quant. Biol. 43:781–87 [Google Scholar]
  9. Kapoor A, Slikas E, Simmonds P, Chieochansin T, Naeem A. 9.  et al. 2009. A newly identified bocavirus species in human stool. J. Infect. Dis. 199:196–200 [Google Scholar]
  10. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. 10.  2005. Cloning of a human parvovirus by molecular screening of respiratory tract samples. PNAS 102:12891–96 [Google Scholar]
  11. Phan TG, Vo NP, Bonkoungou IJO, Kapoor A, Barro N. 11.  et al. 2012. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus. J. Virol. 86:11024–30 [Google Scholar]
  12. Halder S, Ng R, Agbandje-McKenna M. 12.  2012. Parvoviruses: structure and infection. Future Virol. 7:253–78 [Google Scholar]
  13. Tattersall P, Cawte PJ, Shatkin AJ, Ward DC. 13.  1976. Three structural polypeptides coded for by minute virus of mice, a parvovirus. J. Virol. 20:273–89 [Google Scholar]
  14. Becerra SP, Koczot F, Fabisch P, Rose JA. 14.  1988. Synthesis of adeno-associated virus structural proteins requires both alternative mRNA splicing and alternative initiations from a single transcript. J. Virol. 62:2745–54 [Google Scholar]
  15. Johnson FB, Hoggan MD. 15.  1973. Structural proteins of HADEN virus. Virology 51:129–37 [Google Scholar]
  16. Lederman M, Bates RC, Stout ER. 16.  1983. In vitro and in vivo studies of bovine parvovirus proteins. J. Virol. 48:10–17 [Google Scholar]
  17. Chen KC, Shull BC, Moses EA, Lederman M, Stout ER, Bates RC. 17.  1986. Complete nucleotide sequence and genome organization of bovine parvovirus. J. Virol. 60:1085–97 [Google Scholar]
  18. Cotmore SF, Tattersall P. 18.  2006. Structure and organization of the viral genome. Parvoviruses J Kerr, S Cotmore, ME Bloom, RM Linden, CR Parrish 73–94 London: Hodder Arnold [Google Scholar]
  19. Bloom ME, Kanno H, Mori S, Wolfinbarger JB. 19.  1994. Aleutian mink disease: puzzles and paradigms. Infect. Agents Dis. 3:279–301 [Google Scholar]
  20. Alexandersen S, Bloom ME, Wolfinbarger J. 22.  1988. Evidence of restricted viral replication in adult mink infected with Aleutian disease of mink parvovirus. J. Virol. 62:1495–507 [Google Scholar]
  21. Viuff B, Aasted B, Alexandersen S. 23.  1994. Role of alveolar type II cells and of surfactant-associated protein C mRNA levels in the pathogenesis of respiratory distress in mink kits infected with Aleutian mink disease parvovirus. J. Virol. 68:2720–25 [Google Scholar]
  22. Mengeling WL, Cutlip RC. 20.  1976. Reproductive disease experimentally induced by exposing pregnant gilts to porcine parvovirus. Am. J. Vet. Res. 37:1393–400 [Google Scholar]
  23. Vihinen-Ranta M, Parrish CR. 21.  2006. Cell infection processes of autonomous parvoviruses. Parvoviruses J Kerr, S Cotmore, ME Bloom, RM Linden, CR Parrish 157–64 London: Hodder Arnold [Google Scholar]
  24. Adeyemi RO, Pintel DJ. 24.  2014. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLOS Pathog. 10:e1003891 [Google Scholar]
  25. Cotmore SF, Tattersall P. 25.  2013. Parvovirus diversity and DNA damage responses. Cold Spring Harb. Perspect. Biol. 5:a012989 [Google Scholar]
  26. Luo Y, Qiu J. 26.  2013. Parvovirus infection-induced DNA damage response. Future Virol. 8:245–57 [Google Scholar]
  27. Vogel R, Seyffert M, Strasser R, de Oliveira AP, Dresch C. 27.  et al. 2012. Adeno-associated virus type 2 modulates the host DNA damage response induced by herpes simplex virus 1 during coinfection. J. Virol. 86:143–55 [Google Scholar]
  28. Adeyemi RO, Landry S, Davis ME, Weitzman MD, Pintel DJ. 28.  2010. Parvovirus minute virus of mice induces a DNA damage response that facilitates viral replication. PLOS Pathog. 6:e1001141 [Google Scholar]
  29. Nüesch JPF, Rommelaere J. 29.  2006. NS1 interaction with CKIIα: novel protein complex mediating parvovirus-induced cytotoxicity. J. Virol. 80:4729–39 [Google Scholar]
  30. Hristov G, Krämer M, Li J, El-Andaloussi N, Mora R. 30.  et al. 2010. Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J. Virol. 84:5909–22 [Google Scholar]
  31. Rayet B, Lopez-Guerrero JA, Rommelaere J, Dinsart C. 31.  1998. Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the tumor necrosis factor alpha signalling pathway. J. Virol. 72:8893–903 [Google Scholar]
  32. Di Piazza M, Mader C, Geletneky K, Herrero y Calle M, Weber E. 32.  et al. 2007. Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells. J. Virol. 81:4186–98 [Google Scholar]
  33. Ran Z, Rayet B, Rommelaere J, Faisst S. 33.  1999. Parvovirus H-1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis. Virus Res. 65:161–74 [Google Scholar]
  34. Moffatt S, Yaegashi N, Tada K, Tanaka N, Sugamura K. 34.  1998. Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J. Virol. 72:3018–28 [Google Scholar]
  35. Fu Y, Ishii KK, Munakata Y, Saitoh T, Kaku M, Sasaki T. 35.  2002. Regulation of tumor necrosis factor alpha promoter by human parvovirus B19 NS1 through activation of AP-1 and AP-2. J. Virol. 76:5395–403 [Google Scholar]
  36. Hsu TC, Wu WJ, Chen MC, Tsay GJ. 36.  2004. Human parvovirus B19 non-structural protein (NS1) induces apoptosis through mitochondria cell death pathway in COS-7 cells. Scand. J. Infect. Dis. 36:570–77 [Google Scholar]
  37. Chen AY, Luo Y, Cheng F, Sun Y, Qiu J. 37.  2010. Bocavirus infection induces mitochondrion-mediated apoptosis and cell cycle arrest at G2/M phase. J. Virol. 84:5615–26 [Google Scholar]
  38. Abdel-Latif L, Murray BK, Renberg RL, O'Neill KL, Porter H. 38.  et al. 2006. Cell death in bovine parvovirus-infected embryonic bovine tracheal cells is mediated by necrosis rather than apoptosis. J. Gen. Virol. 87:2539–48 [Google Scholar]
  39. Best SM, Wolfinbarger JB, Bloom ME. 39.  2002. Caspase activation is required for permissive replication of Aleutian mink disease parvovirus in vitro. Virology 292:224–34 [Google Scholar]
  40. Hickman AB, Ronning DR, Kotin RM, Dyda F. 40.  2002. Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus rep. Mol. Cell 10:327–37 [Google Scholar]
  41. Tewary SK, Zhao H, Shen W, Qiu J, Tang L. 41.  2013. Structure of the NS1 protein N-terminal origin recognition/nickase domain from the emerging human bocavirus. J. Virol. 87:11487–93 [Google Scholar]
  42. Tewary SK, Liang L, Lin Z, Lynn A, Cotmore SF. 42.  et al. 2014. Structures of minute virus of mice replication initiator protein N-terminal domain: insights into DNA nicking and origin binding. Virology 476:61–71 [Google Scholar]
  43. James JA, Escalante CR, Yoon-Robarts M, Edwards TA, Linden RM, Aggarwal AK. 43.  2003. Crystal structure of the SF3 helicase from adeno-associated virus type 2. Structure 11:1025–35 [Google Scholar]
  44. Zádori Z, Szelei J, Tijssen P. 44.  2005. SAT: a late NS protein of porcine parvovirus. J. Virol. 79:13129–38 [Google Scholar]
  45. Simmonds P, Douglas J, Bestetti G, Longhi E, Antinori S. 45.  et al. 2008. A third genotype of the human parvovirus PARV4 in sub-Saharan Africa. J. Gen. Virol. 89:2299–302 [Google Scholar]
  46. Amand JS, Astell CR. 46.  1993. Identification and characterization of a family of 11-kDa proteins encoded by the human parvovirus B19. Virology 192:121–31 [Google Scholar]
  47. St. Amand J, Beard C, Humphries K, Astell CR. 47.  1991. Analysis of splice junctions and in vitro and in vivo translation potential of the small, abundant B19 parvovirus RNAs. Virology 183:133–42 [Google Scholar]
  48. Brunstein J, Söderlund-Venermo M, Hedman K. 48.  2000. Identification of a novel RNA splicing pattern as a basis of restricted cell tropism of erythrovirus B19. Virology 274:284–91 [Google Scholar]
  49. Chen AY, Zhang EY, Guan W, Cheng F, Kleiboeker S. 49.  et al. 2010. The small 11 kDa nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus infection of primary erythroid progenitor cells. Blood 115:1070–80 [Google Scholar]
  50. Sun B, Cai Y, Li Y, Li J, Liu K. 50.  et al. 2013. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in HeLa cells. Virology 440:75–83 [Google Scholar]
  51. Brownstein DG, Smith AL, Johnson EA, Pintel DJ, Naeger LK, Tattersall P. 51.  1992. The pathogenesis of infection with minute virus of mice depends on expression of the small nonstructural protein NS2 and on the genotype of the allotropic determinants VP1 and VP2. J. Virol. 66:3118–24 [Google Scholar]
  52. Cotmore SF, D'Abramo AM, Carbonell LF, Bratton J, Tattersall P. 52.  1997. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells. Virology 231:267–80 [Google Scholar]
  53. Sonntag F, Schmidt K, Kleinschmidt JA. 53.  2010. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. PNAS 107:10220–25 [Google Scholar]
  54. Kapoor A, Hornig M, Asokan A, Williams B, Henriquez JA, Lipkin WI. 54.  2011. Bocavirus episome in infected human tissue contains non-identical termini. PLOS ONE 6:e21362 [Google Scholar]
  55. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. 55.  2002. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. PNAS 99:11854–59 [Google Scholar]
  56. Chen CL, Jensen RL, Schnepp BC, Connell MJ, Shell R. 56.  et al. 2005. Molecular characterization of adeno-associated viruses infecting children. J. Virol. 79:14781–92 [Google Scholar]
  57. Lüsebrink J, Schildgen V, Tillmann RL, Wittleben F, Böhmer A. 57.  et al. 2011. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples. PLOS ONE 6:e19457 [Google Scholar]
  58. Vihinen-Ranta M, Wang D, Weichert WS, Parrish CR. 58.  2002. The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J. Virol. 76:1884–91 [Google Scholar]
  59. Boisvert M, Bouchard-Lévesque V, Fernandes S, Tijssen P. 59.  2014. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins. J. Virol. 88:11748–59 [Google Scholar]
  60. Lombardo E, Ramírez JC, Garcia J, Almendral JM. 60.  2002. Complementary roles of multiple nuclear targeting signals in the capsid proteins of the parvovirus minute virus of mice during assembly and onset of infection. J. Virol. 76:7049–59 [Google Scholar]
  61. Vihinen-Ranta M, Kakkola L, Kalela A, Vilja P, Vuento M. 61.  1997. Characterization of a nuclear localization signal of canine parvovirus capsid proteins. FEBS J. 250:389–94 [Google Scholar]
  62. Grieger JC, Snowdy S, Samulski RJ. 62.  2006. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J. Virol. 80:5199–210 [Google Scholar]
  63. Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M. 63.  et al. 2000. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J. Virol. 74:8635–47 [Google Scholar]
  64. Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA. 64.  2006. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 80:11040–54 [Google Scholar]
  65. Zádori Z, Szelei J, Lacoste MC, Li Y, Gariépy S. 65.  et al. 2001. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell 1:291–302 [Google Scholar]
  66. Girod A, Wobus CE, Zádori Z, Ried M, Leike K. 66.  et al. 2002. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J. Gen. Virol. 83:973–78 [Google Scholar]
  67. Chapman MS, Agbandje-McKenna M. 67.  2006. Atomic structure of viral particles. Parvoviruses J Kerr, S Cotmore, ME Bloom, RM Linden, CR Parrish 107–23 London: Hodder Arnold [Google Scholar]
  68. Halder S, Nam HJ, Govindasamy L, Vogel M, Dinsart C. 68.  et al. 2013. Structural characterization of H-1 parvovirus: comparison of infectious virions to empty capsids. J. Virol. 87:5128–40 [Google Scholar]
  69. Kailasan S, Halder S, Gurda B, Bladek H, Chipman PR. 69.  et al. 2014. Structure of an enteric pathogen bovine parvovirus. J. Virol. 89:2603–14 [Google Scholar]
  70. Govindasamy L, Padron E, McKenna R, Muzyczka N, Kaludov N. 70.  et al. 2006. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J. Virol. 80:11556–70 [Google Scholar]
  71. Kontou M, Govindasamy L, Nam HJ, Bryant N, Llamas-Saiz AL. 71.  et al. 2005. Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice. J. Virol. 79:10931–43 [Google Scholar]
  72. Huang LY, Halder S, Agbandje-McKenna M. 72.  2014. Parvovirus glycan interactions. Curr. Opin. Virol. 7:108–18 [Google Scholar]
  73. Lupescu A, Bock CT, Lang PA, Aberle S, Kaiser H. 73.  et al. 2006. Phospholipase A2 activity-dependent stimulation of Ca2+ entry by human parvovirus B19 capsid protein VP1. J. Virol. 80:11370–80 [Google Scholar]
  74. Chiu CC, Shi YF, Yang JJ, Hsiao YC, Tzang BS, Hsu TC. 74.  2014. Effects of human parvovirus B19 and bocavirus VP1 unique region on tight junction of human airway epithelial A549 cells. PLOS ONE 9:e107970 [Google Scholar]
  75. Deng X, Yan Z, Luo Y, Xu J, Cheng F. 75.  et al. 2013. In vitro modeling of human bocavirus 1 infection of polarized primary human airway epithelia. J. Virol. 87:4097–102 [Google Scholar]
  76. Qu XW, Liu WP, Qi ZY, Duan ZJ, Zheng LS. 76.  et al. 2008. Phospholipase A2-like activity of human bocavirus VP1 unique region. Biochem. Biophys. Res. Commun. 365:158–63 [Google Scholar]
  77. Willwand K, Kaaden OR. 77.  1988. Capsid protein VP1 (p85) of Aleutian disease virus is a major DNA-binding protein. Virology 166:52–57 [Google Scholar]
  78. Allison AB, Kohler DJ, Fox KA, Brown JD, Gerhold RW. 78.  et al. 2013. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts. J. Virol. 87:2342–47 [Google Scholar]
  79. Parker JS, Parrish CR. 79.  1997. Canine parvovirus host range is determined by the specific conformation of an additional region of the capsid. J. Virol. 71:9214–22 [Google Scholar]
  80. Llamas-Saiz AL, Agbandje-McKenna M, Parker JS, Wahid AT, Parrish CR, Rossmann MG. 80.  1996. Structural analysis of a mutation in canine parvovirus which controls antigenicity and host range. Virology 225:65–71 [Google Scholar]
  81. Shackelton LA, Parrish CR, Truyen U, Holmes EC. 81.  2005. High rate of viral evolution associated with the emergence of carnivore parvovirus. PNAS 102:379–84 [Google Scholar]
  82. Palermo LM, Hueffer K, Parrish CR. 82.  2003. Residues in the apical domain of the feline and canine transferrin receptors control host-specific binding and cell infection of canine and feline parvoviruses. J. Virol. 77:8915–23 [Google Scholar]
  83. Kaelber JT, Demogines A, Harbison CE, Allison AB, Goodman LB. 83.  et al. 2012. Evolutionary reconstructions of the transferrin receptor of caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs. PLOS Pathog. 8:e1002666 [Google Scholar]
  84. Itah R, Tal J, Davis C. 84.  2004. Host cell specificity of minute virus of mice in the developing mouse embryo. J. Virol. 78:9474–86 [Google Scholar]
  85. Kimsey PB, Engers HD, Hirt B, Jongeneel CV. 85.  1986. Pathogenicity of fibroblast- and lymphocyte-specific variants of minute virus of mice. J. Virol. 59:8–13 [Google Scholar]
  86. Spalholz BA, Tattersall P. 86.  1983. Interaction of minute virus of mice with differentiated cells: Strain-dependent target cell specificity is mediated by intracellular factors. J. Virol. 46:937–43 [Google Scholar]
  87. Gardiner EM, Tattersall P. 87.  1988. Mapping of the fibrotropic and lymphotropic host range determinants of the parvovirus minute virus of mice. J. Virol. 62:2605–13 [Google Scholar]
  88. Tattersall P, Bratton J. 88.  1983. Reciprocal productive and restrictive virus-cell interactions of immunosuppressive and prototype strains of minute virus of mice. J. Virol. 46:944–55 [Google Scholar]
  89. Allaume X, El-Andaloussi N, Leuchs B, Bonifati S, Kulkarni A. 89.  et al. 2012. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid. J. Virol. 86:3452–65 [Google Scholar]
  90. Bergeron J, Menezes J, Tijssen P. 90.  1993. Genomic organization and mapping of transcription and translation products of the NADL-2 strain of porcine parvovirus. Virology 197:86–98 [Google Scholar]
  91. Simpson AA, Hébert B, Sullivan GM, Parrish CR, Zádori Z. 91.  et al. 2002. The structure of porcine parvovirus: comparison with related viruses. J. Mol. Biol. 315:1189–98 [Google Scholar]
  92. Stevenson MA, Fox JM, Wolfinbarger JB, Bloom ME. 92.  2001. Effect of a valine residue at codon 352 of the VP2 capsid protein on in vivo replication and pathogenesis of Aleutian disease parvovirus in mink. Am. J. Vet. Res. 62:1658–63 [Google Scholar]
  93. Bloom ME, Alexandersen S, Perryman S, Lechner D, Wolfinbarger JB. 93.  1988. Nucleotide sequence and genomic organization of Aleutian mink disease parvovirus (ADV): sequence comparisons between a nonpathogenic and a pathogenic strain of ADV. J. Virol. 62:2903–15 [Google Scholar]
  94. McKenna R, Olson NH, Chipman PR, Baker TS, Booth TF. 94.  et al. 1999. Three-dimensional structure of Aleutian mink disease parvovirus: implications for disease pathogenicity. J. Virol. 73:6882–91 [Google Scholar]
  95. Bloom ME, Race RE, Wolfinbarger JB. 95.  1982. Identification of a nonvirion protein of Aleutian disease virus: mink with Aleutian disease have antibody to both virion and nonvirion proteins. J. Virol. 43:608–16 [Google Scholar]
  96. Bloom ME, Race RE, Hadlow WJ, Chesebro B. 96.  1975. Aleutian disease of mink: the antibody response of sapphire and pastel mink to Aleutian disease virus. J. Immunol. 115:1034–37 [Google Scholar]
  97. Aasted B, Tierney GS, Bloom ME. 97.  1984. Analysis of the quantity of antiviral antibodies from mink infected with different Aleutian disease virus strains. Scand. J. Immunol. 19:395–402 [Google Scholar]
  98. Aasted B, Bloom ME. 98.  1984. Mink with Aleutian disease have high-affinity antiviral antibodies. Scand. J. Immunol. 19:411–18 [Google Scholar]
  99. Porter DD. 99.  1986. Aleutian disease: a persistent parvovirus infection of mink with a maximal but ineffective host humoral immune response. Prog. Med. Virol. 33:42–60 [Google Scholar]
  100. Kanno H, Wolfinbarger JB, Bloom ME. 100.  1993. Aleutian mink disease parvovirus infection of mink peritoneal macrophages and human macrophage cell lines. J. Virol. 67:2075–82 [Google Scholar]
  101. Stolze B, Kaaden OR. 101.  1987. Apparent lack of neutralizing antibodies in Aleutian disease is due to masking of antigenic sites by phospholipids. Virology 158:174–80 [Google Scholar]
  102. Kanno H, Wolfinbarger JB, Bloom ME. 102.  1993. Aleutian mink disease parvovirus infection of mink macrophages and human macrophage cell line U937: demonstration of antibody-dependent enhancement of infection. J. Virol. 67:7017–24 [Google Scholar]
  103. Aasted B, Alexandersen S, Christensen J. 103.  1998. Vaccination with Aleutian mink disease parvovirus (AMDV) capsid proteins enhances disease, while vaccination with the major non-structural AMDV protein causes partial protection from disease. Vaccine 16:1158–65 [Google Scholar]
  104. Porter DD, Larsen AE, Porter HG. 104.  1972. The pathogenesis of Aleutian disease of mink. II. Enhancement of tissue lesions following the administration of a killed virus vaccine or passive antibody. J. Immunol. 109:1–7 [Google Scholar]
  105. Bloom ME, Martin DA, Oie KL, Huhtanen ME, Costello F. 105.  et al. 1997. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions. J. Virol. 71:705–14 [Google Scholar]
  106. Bloom ME, Best SM, Hayes SF, Wells RD, Wolfinbarger JB. 106.  et al. 2001. Identification of Aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation. J. Virol. 75:11116–27 [Google Scholar]
  107. Lehmann HW, von Landenberg P, Modrow S. 107.  2003. Parvovirus B19 infection and autoimmune disease. Autoimmun. Rev. 2:218–23 [Google Scholar]
  108. Kaufmann B, Simpson AA, Rossmann MG. 108.  2004. The structure of human parvovirus B19. PNAS 101:11628–33 [Google Scholar]
  109. Rosenfeld SJ, Yoshimoto K, Kajigaya S, Anderson S, Young NS. 109.  et al. 1992. Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface. J. Clin. Investig. 89:2023–29 [Google Scholar]
  110. Sato H, Hirata J, Kuroda N, Shiraki H, Maeda Y, Okochi K. 110.  1991. Identification and mapping of neutralizing epitopes of human parvovirus B19 by using human antibodies. J. Virol. 65:5485–90 [Google Scholar]
  111. Sato H, Hirata J, Furukawa M, Kuroda N, Shiraki H. 111.  et al. 1991. Identification of the region including the epitope for a monoclonal antibody which can neutralize human parvovirus B19. J. Virol. 65:1667–72 [Google Scholar]
  112. Mitchell LA, Leong R, Rosenke KA. 112.  2001. Lymphocyte recognition of human parvovirus B19 non-structural (NS1) protein: associations with occurrence of acute and chronic arthropathy?. J. Med. Microbiol. 50:627–35 [Google Scholar]
  113. Saikawa T, Anderson S, Momoeda M, Kajigaya S, Young NS. 113.  1993. Neutralizing linear epitopes of B19 parvovirus cluster in the VP1 unique and VP1-VP2 junction regions. J. Virol. 67:3004–9 [Google Scholar]
  114. Wobus CE, Hügle-Dörr B, Girod A, Petersen G, Hallek M, Kleinschmidt JA. 114.  2000. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J. Virol. 74:9281–93 [Google Scholar]
  115. Tseng YS, Agbandje-McKenna M. 115.  2014. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Microb. Immunol. 5:9 [Google Scholar]
  116. Mori S, Takeuchi T, Kanda T. 116.  2008. Antibody-dependent enhancement of adeno-associated virus infection of human monocytic cell lines. Virology 375:141–47 [Google Scholar]
  117. Best SM, Shelton JF, Pompey JM, Wolfinbarger JB, Bloom ME. 117.  2003. Caspase cleavage of the nonstructural protein NS1 mediates replication of Aleutian mink disease parvovirus. J. Virol. 77:5305–12 [Google Scholar]
  118. Luo Y, Deng X, Cheng F, Li Y, Qiu J. 118.  2013. SMC1-mediated intra-S-phase arrest facilitates bocavirus DNA replication. J. Virol. 87:4017–32 [Google Scholar]
  119. Schmidt M, Afione S, Kotin RM. 119.  2000. Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J. Virol. 74:9441–50 [Google Scholar]
  120. Sol N, Le Junter J, Vassias I, Freyssinier JM, Thomas A. 120.  et al. 1999. Possible interactions between the NS-1 protein and tumor necrosis factor alpha pathways in erythroid cell apoptosis induced by human parvovirus B19. J. Virol. 73:8762–70 [Google Scholar]
  121. Li J, Werner E, Hergenhahn M, Poirey R, Luo Z. 121.  et al. 2005. Expression profiling of human hepatoma cells reveals global repression of genes involved in cell proliferation, growth, and apoptosis upon infection with parvovirus H-1. J. Virol. 79:2274–86 [Google Scholar]
  122. Van Leengoed LA, Vos J, Gruys E, Rondhuis P, Brand A. 122.  1983. Porcine parvovirus infection: review and diagnosis in a sow herd with reproductive failure. Vet. Q. 5:131–41 [Google Scholar]
  123. DeLano WL. 123.  2012. The PyMOL Molecular Graphic System San Carlos, CA: DeLano Scientific [Google Scholar]
  124. Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC. 124.  et al. 2012. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol. 179:269–78 [Google Scholar]
  125. Xiao C, Rossmann MG. 125.  2007. Interpretation of electron density with stereographic roadmap projections. J. Struct. Biol. 158:182–87 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error