1932

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has had a profound impact on human health, economic well-being, and societal function. It is essential that we use this generational experience to better understand the processes that underpin the emergence of COVID-19 and other zoonotic diseases. Herein, I review the mechanisms that determine why and how viruses emerge in new hosts, as well as the barriers to this process. I show that traditional studies of virus emergence have an inherent anthropocentric bias, with disease in humans considered the inevitable outcome of virus emergence, when in reality viruses are integral components of a global ecosystem characterized by continual host jumping with humans also transmitting their viruses to other animals. I illustrate these points using coronaviruses, including severe acute respiratory syndrome coronavirus 2, as a case study. I also outline the potential steps that can be followed to help mitigate and prevent future pandemics, with combating climate change a central component.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100120-015057
2022-09-29
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-100120-015057.html?itemId=/content/journals/10.1146/annurev-virology-100120-015057&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Holmes EC. 2009. The Evolution and Emergence of RNA Viruses Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  2. 2.
    Woolhouse ME, Haydon DT, Antia R. 2005. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20:238–44
    [Crossref] [Google Scholar]
  3. 3.
    Cleaveland S, Haydon DT, Taylor L. 2007. Overviews of pathogen emergence: Which pathogens emerge, when and why?. Curr. Top. Microbiol. Immunol. 315:85–111
    [Google Scholar]
  4. 4.
    Black FL. 1975. Infectious diseases in primitive societies. Science 187:515–18
    [Crossref] [Google Scholar]
  5. 5.
    Hu B, Guo H, Zhou P, Shi ZL. 2021. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19:141–54
    [Crossref] [Google Scholar]
  6. 6.
    French RK, Holmes EC. 2020. An ecosystems perspective on virus evolution and emergence. Trends Microbiol 28:165–75
    [Crossref] [Google Scholar]
  7. 7.
    Roossinck MJ. 2015. Plants, viruses and the environment: ecology and mutualism. Virology 479:271–77
    [Crossref] [Google Scholar]
  8. 8.
    Delwart E. 2012. Animal virus discovery: improving animal health, understanding zoonoses, and opportunities for vaccine development. Curr. Opin. Virol. 2:344–52
    [Crossref] [Google Scholar]
  9. 9.
    Zhang Y-Z, Chen Y-M, Wang W, Qin X-C, Holmes EC. 2019. Expanding the RNA virosphere by unbiased metagenomics. Annu. Rev. Virol. 6:119–39
    [Crossref] [Google Scholar]
  10. 10.
    Zhang YZ, Shi M, Holmes EC. 2018. Using metagenomics to characterize an expanding virosphere. Cell 172:1168–72
    [Crossref] [Google Scholar]
  11. 11.
    Shi M, Lin X-D, Chen X, Tian J-H, Chen L-J et al. 2018. The evolutionary history of vertebrate RNA viruses. Nature 556:197–202
    [Crossref] [Google Scholar]
  12. 12.
    Carlson CJ, Zipfel CM, Garnier R, Bansal S. 2019. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3:1070–75
    [Crossref] [Google Scholar]
  13. 13.
    Peiris JS, de Jong MD, Guan Y 2007. Avian influenza virus (H5N1): a threat to human health. Clin. Microbiol. Rev. 20:243–67
    [Crossref] [Google Scholar]
  14. 14.
    Taubenberger JK, Kash JC. 2010. Influenza virus evolution, host adaptation and pandemic formation. Cell Host Microbe 7:440–51
    [Crossref] [Google Scholar]
  15. 15.
    Baigent SJ, McCauley JW. 2003. Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. Bioessays 25:657–71
    [Crossref] [Google Scholar]
  16. 16.
    He W-T, Hou X, Zhao J, Sun J, He H et al. 2022. Virome characterization of game animals in China reveals a spectrum of emerging viral pathogens. Cell 185:111729.e8
    [Crossref] [Google Scholar]
  17. 17.
    Dobson AP, Carper ER. 1996. Infectious diseases and human population history. Bioscience 46:115–26
    [Crossref] [Google Scholar]
  18. 18.
    Düx A, Lequime S, Patrono LV, Vrancken B, Boral S et al. 2020. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 368:1367–70
    [Crossref] [Google Scholar]
  19. 19.
    Field HE, Mackenzie JS, Daszak P. 2007. Henipaviruses: emerging paramyxoviruses associated with fruit bats. Curr. Top. Microbiol. Immunol. 315:133–59
    [Google Scholar]
  20. 20.
    Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B et al. 2001. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg. Infect. Dis. 7:439–41
    [Crossref] [Google Scholar]
  21. 21.
    Corman VM, Muth D, Niemeyer D, Drosten C. 2018. Hosts and sources of endemic human corona-viruses. Adv. Virus Res. 100:163–88
    [Crossref] [Google Scholar]
  22. 22.
    Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM et al. 2021. Independent infections of porcine deltacoronavirus among Haitian children. Nature 600:133–37
    [Crossref] [Google Scholar]
  23. 23.
    Vlasova AN, Diaz A, Damtie D, Xiu L, Toh T-H et al. 2022. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in east Malaysia. Clin. Infect. Dis. 74:446–54
    [Crossref] [Google Scholar]
  24. 24.
    Mahdy MAA, Younis W, Ewaida Z. 2020. An overview of SARS-CoV-2 and animal infection. Front. . Vet. Sci. 7:596391
    [Google Scholar]
  25. 25.
    McAloose D, Laverack M, Wang L, Killian ML, Caserta LC et al. 2020. From people to Panthera: natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. mBio 11:e02220–20
    [Crossref] [Google Scholar]
  26. 26.
    Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E et al. 2021. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371:172–77
    [Crossref] [Google Scholar]
  27. 27.
    van Aart AE, Velkers FC, Fischer EAJ, Broens EM, Egberink H et al. 2021. SARS-CoV-2 infection in cats and dogs in infected mink farms. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14173
    [Crossref] [Google Scholar]
  28. 28.
    Koeppel KN, Mendes A, Strydom A, Rotherham L, Mulumba M, Venter M. 2022. SARS-CoV-2 reverse zoonoses to pumas and lions, South Africa. Viruses 14:120
    [Crossref] [Google Scholar]
  29. 29.
    Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM et al. 2021. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). PNAS 118:e2114828118
    [Crossref] [Google Scholar]
  30. 30.
    Kuchipudi SV, Surendran-Nair M, Ruden RM, Yon M, Nissly RH et al. 2022. Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. PNAS 119:e2121644119
    [Crossref] [Google Scholar]
  31. 31.
    Geoghegan JL, Duchêne S, Holmes EC. 2017. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLOS Pathog 13:e1006215
    [Crossref] [Google Scholar]
  32. 32.
    Harvey E, Holmes EC. 2022. Diversity and evolution of the animal virome. Nat. Rev. Microbiol. 20:32134
    [Crossref] [Google Scholar]
  33. 33.
    CDC (Cent. Dis. Control Prev.) 2003. Prevalence of IgG antibody to SARS-associated coronavirus in animal traders–Guangdong Province, China, 2003. MMWR Morb. Mortal. Wkly. Rep 52:986–87
    [Google Scholar]
  34. 34.
    Antia R, Regoes RR, Koella JC, Bergstrom CT. 2003. The role of evolution in the emergence of infectious diseases. Nature 426:658–61
    [Crossref] [Google Scholar]
  35. 35.
    Wasik BR, de Wit E, Munster V, Lloyd-Smith JO, Martinez-Sobrido L, Parrish CR. 2019. Onward transmission of viruses: How do viruses emerge to cause epidemics after spillover?. Philos. Trans. R. Soc. B 374:20190017
    [Crossref] [Google Scholar]
  36. 36.
    Albery GF, Becker DJ, Brierley L, Brook CE, Christofferson RC et al. 2021. The science of the host-virus network. Nat. Microbiol. 6:1483–92
    [Crossref] [Google Scholar]
  37. 37.
    Becker DJ, Albery GF, Sjodin AR, Poisot T, Bergner LM et al. 2022. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe. https://doi.org/10.1016/S2666-5247(21)00245-7
    [Crossref] [Google Scholar]
  38. 38.
    Carlson CJ, Farrell MJ, Grange Z, Han BA, Mollentze N et al. 2021. The future of zoonotic risk prediction. Philos. Trans. R. Soc. B 376:20200358
    [Crossref] [Google Scholar]
  39. 39.
    Mollentze N, Streicker DG. 2020. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. PNAS 117:9423–30
    [Crossref] [Google Scholar]
  40. 40.
    Mollentze N, Babayan SA, Streicker DG. 2021. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLOS Biol 19:e3001390
    [Crossref] [Google Scholar]
  41. 41.
    Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL et al. 2017. Host and viral traits predict zoonotic spillover from mammals. Nature 546:646–50
    [Crossref] [Google Scholar]
  42. 42.
    Luis AD, Hayman DT, O'Shea TJ, Cryan PM, Gilbert AT et al. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. Biol. Sci. 280:20122753
    [Google Scholar]
  43. 43.
    Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X et al. 2017. Global patterns in coronavirus diversity. Virus Evol 3:vex012
    [Crossref] [Google Scholar]
  44. 44.
    Bergner LM, Orton RJ, Broos A, Tello C, Becker DJ et al. 2021. Diversification of mammalian deltaviruses by host shifting. PNAS 118:e2019907118
    [Crossref] [Google Scholar]
  45. 45.
    Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, Frieman MB. 2010. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J. Virol. 84:13004–18
    [Crossref] [Google Scholar]
  46. 46.
    Ge X, Li Y, Yang X, Zhang H, Zhou P et al. 2012. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 86:4620–30
    [Crossref] [Google Scholar]
  47. 47.
    Hardmeier I, Aeberhard N, Qi W, Schoenbaechler K, Kraettli H et al. 2021. Metagenomic analysis of fecal and tissue samples from 18 endemic bat species in Switzerland revealed a diverse virus composition including potentially zoonotic viruses. PLOS ONE 16:e0252534
    [Crossref] [Google Scholar]
  48. 48.
    Kohl C, Brinkmann A, Radonić A, Dabrowski PW, Mühldorfer K et al. 2021. The virome of German bats: comparing virus discovery approaches. Sci. Rep. 11:7430
    [Crossref] [Google Scholar]
  49. 49.
    Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. 2020. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18:461–71
    [Crossref] [Google Scholar]
  50. 50.
    Li L, Victoria JG, Wang C, Jones M, Fellers GM et al. 2010. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J. Virol. 84:6955–65
    [Crossref] [Google Scholar]
  51. 51.
    Mendenhall IH, Wen DLH, Jayakumar J, Gunalan V, Wang L et al. 2019. Diversity and evolution of viral pathogen community in cave nectar bats (Eonycteris spelaea). Viruses 11:250
    [Crossref] [Google Scholar]
  52. 52.
    Smith I, Wang LF. 2013. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 3:84–91
    [Crossref] [Google Scholar]
  53. 53.
    Wu Z, Yang L, Ren X, He G, Zhang J et al. 2016. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10:609–20
    [Crossref] [Google Scholar]
  54. 54.
    Wu Z, Ren X, Yang L, Hu Y, Yang J et al. 2012. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J. Virol. 86:10999–1012
    [Crossref] [Google Scholar]
  55. 55.
    Yinda CK, Ghogomu SM, Conceição-Neto N, Beller L, Deboutte W et al. 2018. Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code. Virus Evol 4:vey008
    [Crossref] [Google Scholar]
  56. 56.
    Zheng XY, Qiu M, Guan WJ, Li JM, Chen SW et al. 2018. Viral metagenomics of six bat species in close contact with humans in southern China. Arch. Virol. 163:73–88
    [Crossref] [Google Scholar]
  57. 57.
    Van Brussel K, Holmes EC. 2022. Zoonotic disease and virome diversity in bats. Curr. Opin. Virol. 52:192–202
    [Crossref] [Google Scholar]
  58. 58.
    Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX et al. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–78
    [Crossref] [Google Scholar]
  59. 59.
    Tu C, Crameri G, Kong X, Chen J, Sun Y et al. 2004. Antibodies to SARS coronavirus in civets. Emerg. Infect. Dis. 10:2244–48
    [Crossref] [Google Scholar]
  60. 60.
    Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. PNAS 102:14040–45
    [Crossref] [Google Scholar]
  61. 61.
    Li W, Shi Z, Yu M, Ren W, Smith C et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–79
    [Crossref] [Google Scholar]
  62. 62.
    Yang X-L, Hu B, Wang B, Wang M-N, Zhang Q et al. 2015. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J. Virol. 90:253–56
    [Google Scholar]
  63. 63.
    Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH et al. 2006. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80:7481–90
    [Crossref] [Google Scholar]
  64. 64.
    Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367:1814–20
    [Crossref] [Google Scholar]
  65. 65.
    Sabir JSM, Lam TT-Y, Ahmed MMA, Li L, Shen Y et al. 2016. Co-circulation of three camel coronavirus species and recombination of MERS-CoV in Saudi Arabia. Science 351:81–84
    [Crossref] [Google Scholar]
  66. 66.
    Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B et al. 2017. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8:e00373–17
    [Crossref] [Google Scholar]
  67. 67.
    Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–54
    [Crossref] [Google Scholar]
  68. 68.
    Yang Y, Du L, Liu C, Wang L, Ma C et al. 2014. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. PNAS 111:12516–21
    [Crossref] [Google Scholar]
  69. 69.
    Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR et al. 2013. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis 19:1697–99
    [Crossref] [Google Scholar]
  70. 70.
    Irving AT, Ahn M, Goh G, Anderson DE, Wang L-F. 2021. Lessons from the host defences of bats, a unique viral reservoir. Nature 589:363–70
    [Crossref] [Google Scholar]
  71. 71.
    Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A et al. 2022. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 20:299314
    [Crossref] [Google Scholar]
  72. 72.
    Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R et al. 2020. Novel insights into immune systems of bats. Front. Immunol. 11:26
    [Crossref] [Google Scholar]
  73. 73.
    Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J et al. 2016. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. PNAS 113:2696–701
    [Crossref] [Google Scholar]
  74. 74.
    Anderson RM, May RM. 1991. Infectious Diseases of Humans: Epidemiology and Control Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  75. 75.
    Gibb R, Albery GF, Mollentze N, Eskew EA, Brierley L et al. 2022. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biol. Lett. 18:20210427
    [Crossref] [Google Scholar]
  76. 76.
    Wille M, Geoghegan JL, Holmes EC. 2021. How accurately can we assess zoonotic risk?. PLOS Biol 19:e3001135
    [Crossref] [Google Scholar]
  77. 77.
    Hayman DTS, Knox MA. 2021. Estimating the age of the subfamily Orthocoronavirinae using host divergence times as calibration ages at two internal nodes. Virology 563:20–27
    [Crossref] [Google Scholar]
  78. 78.
    Gallaher WR. 2020. A palindromic RNA sequence as a common breakpoint contributor to copy-choice recombination in SARS-CoV-2. Arch. Virol. 165:2341–48
    [Crossref] [Google Scholar]
  79. 79.
    Boni MF, Lemey P, Jiang X, Lam TT, Perry BW et al. 2020. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5:1408–17
    [Crossref] [Google Scholar]
  80. 80.
    Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res 117:17–37
    [Crossref] [Google Scholar]
  81. 81.
    Sanjuán R, Domingo-Calap P. 2016. Mechanisms of viral mutation. Cell. Mol. Life Sci. 73:4433–48
    [Crossref] [Google Scholar]
  82. 82.
    Simon-Loriere E, Holmes EC. 2011. Why do RNA viruses recombine?. Nat. Rev. Microbiol. 9:617–26
    [Crossref] [Google Scholar]
  83. 83.
    Geoghegan JL, Senior AM, Di Giallonardo F, Holmes EC. 2016. Virological factors that increase the transmissibility of emerging human viruses. PNAS 113:4170–75
    [Crossref] [Google Scholar]
  84. 84.
    Telenti A, Arvin A, Corti D, Diamond MS, García-Sastre A et al. 2021. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 596:495–504
    [Crossref] [Google Scholar]
  85. 85.
    Geoghegan JL, Holmes EC. 2018. The phylogenomics of evolving virus virulence. Nat. Rev. Genet. 19:756–69
    [Crossref] [Google Scholar]
  86. 86.
    Read AF. 1994. The evolution of virulence. Trends Microbiol 2:73–76
    [Crossref] [Google Scholar]
  87. 87.
    Kerr PJ, Ghedin E, DePasse JV, Fitch A, Cattadori IM et al. 2012. Evolutionary history and attenuation of myxoma virus on two continents. PLOS Pathog 8:e1002950
    [Crossref] [Google Scholar]
  88. 88.
    Elsworth P, Cooke BD, Kovaliski J, Sinclair R, Holmes EC, Strive T. 2014. Increased virulence of Rabbit Haemorrhagic Disease Virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus). Virology 464–465:415–23
    [Crossref] [Google Scholar]
  89. 89.
    Halfmann PJ, Iida S, Iwatsuki-Horimoto K, Maemura T, Kiso M et al. 2022. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603:687–92
    [Crossref] [Google Scholar]
  90. 90.
    Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A et al. 2022. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature 603:70614
    [Crossref] [Google Scholar]
  91. 91.
    Shuai H, Chan JF, Hu B, Chai Y, Yuen TT et al. 2022. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603:69399
    [Crossref] [Google Scholar]
  92. 92.
    Horimoto T, Kawaoka Y. 2005. Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 3:591–600
    [Crossref] [Google Scholar]
  93. 93.
    Kelly TR, Karesh WB, Johnson CK, Gilardi KVK, Anthony SJ et al. 2017. One Health proof of concept: bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev. Vet. Med. 137:112–18
    [Crossref] [Google Scholar]
  94. 94.
    Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–25
    [Crossref] [Google Scholar]
  95. 95.
    Shinde V, Bridges CB, Uyeki TM, Shu B, Balish A et al. 2009. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N. Engl. J. Med. 360:2616–25
    [Crossref] [Google Scholar]
  96. 96.
    Nelson MI, Gramer MR, Vincent AL, Holmes EC. 2012. Global transmission of influenza viruses from humans to swine, 2009–2011. J. Gen. Virol. 93:2195–203
    [Crossref] [Google Scholar]
  97. 97.
    Dobson A. 2004. Population dynamics of pathogens with multiple host species. Am. Nat. 164:S64–78
    [Crossref] [Google Scholar]
  98. 98.
    Holdo RM, Sinclair AR, Dobson AP, Metzger KL, Bolker BM et al. 2009. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLOS Biol 7:e1000210
    [Crossref] [Google Scholar]
  99. 99.
    Fountain-Jones NM, Kraberger S, Gagne RB, Gilbertson MLJ, Trumbo DR et al. 2022. Hunting alters viral transmission and evolution in a large carnivore. Nat. Ecol. Evol. 6:174–82
    [Crossref] [Google Scholar]
  100. 100.
    Zinsstag J, Crump L, Schelling E, Hattendorf J, Maidane YO et al. 2018. Climate change and One Health. FEMS Microbiol. Lett. 365:fny085
    [Crossref] [Google Scholar]
  101. 101.
    Morse SS. 1995. Factors in the emergence of infectious diseases. Emerg. Infect. Dis. 1:7–15
    [Crossref] [Google Scholar]
  102. 102.
    Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI et al. 2017. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15:502–10
    [Crossref] [Google Scholar]
  103. 103.
    Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. 2015. Climate change and vector-borne diseases: What are the implications for public health research and policy?. Philos. Trans. R. Soc. B 370:20130552
    [Crossref] [Google Scholar]
  104. 104.
    Gould EA, Higgs S. 2009. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 103:109–21
    [Crossref] [Google Scholar]
  105. 105.
    Tabachnick WJ. 2016. Climate change and the arboviruses: lessons from the evolution of the dengue and yellow fever viruses. Annu. Rev. Virol. 3:125–45
    [Crossref] [Google Scholar]
  106. 106.
    Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK. 2011. Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol. Lett. 14:1108–16
    [Crossref] [Google Scholar]
  107. 107.
    Johnson PTJ, Preston DL, Hoverman JT, Richgels KLD. 2013. Biodiversity decreases disease through predictable changes in host community competence. Nature 494:230–33
    [Crossref] [Google Scholar]
  108. 108.
    Schmidt KA, Ostfeld RS. 2001. Biodiversity and the dilution effect in disease ecology. Ecology 82:609–19
    [Crossref] [Google Scholar]
  109. 109.
    Peng Y, Wu P, Schartup AT, Zhang Y. 2021. Plastic waste release caused by COVID-19 and its fate in the global ocean. PNAS 118:e2111530118
    [Crossref] [Google Scholar]
  110. 110.
    Shams M, Alam I, Mahbub MS. 2021. Plastic pollution during COVID-19: plastic waste directives and its long-term impact on the environment. Environ. Adv. 5:100119
    [Crossref] [Google Scholar]
  111. 111.
    Lu R, Zhao X, Li J, Niu P, Yang B et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–74
    [Crossref] [Google Scholar]
  112. 112.
    Wu F, Zhao S, Yu B, Chen Y-M, Wang W et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579:265–69
    [Crossref] [Google Scholar]
  113. 113.
    Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–73
    [Crossref] [Google Scholar]
  114. 114.
    Pekar J, Worobey M, Moshiri N, Scheffler K, Wertheim JO. 2021. Timing the SARS-CoV-2 index case in Hubei province. Science 372:412–17
    [Crossref] [Google Scholar]
  115. 115.
    Gianotti R, Barberis M, Fellegara G, Galván-Casas C, Gianotti E. 2021. COVID-19-related dermatosis in November 2019: Could this case be Italy's patient zero?. Br. J. Dermatol. 184:970–71
    [Crossref] [Google Scholar]
  116. 116.
    Kong WH, Li Y, Peng MW, Kong DG, Yang XB et al. 2020. SARS-CoV-2 detection in patients with influenza-like illness. Nat. Microbiol. 5:675–78
    [Crossref] [Google Scholar]
  117. 117.
    Shi M, Zhao S, Yu B, Wu W-C, Hu Y et al. 2022. Total infectome characterization of respiratory infections in pre-COVID-19 Wuhan, China. PLOS Pathog 18:e1010259
    [Crossref] [Google Scholar]
  118. 118.
    Worobey M. 2021. Dissecting the early COVID-19 cases in Wuhan. Science 374:1202–4
    [Crossref] [Google Scholar]
  119. 119.
    Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, Crits-Christoph A et al. 2021. The origins of SARS-CoV-2: a critical review. Cell 184:4848–56
    [Crossref] [Google Scholar]
  120. 120.
    Xiao X, Newman C, Buesching CD, Macdonald DW, Zhou Z-M. 2021. Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic. Sci. Rep. 11:11898
    [Crossref] [Google Scholar]
  121. 121.
    Freuling CM, Breithaupt A, Müller T, Sehl J, Balkema-Buschmann A et al. 2020. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg. Infect. Dis. 26:2982–85
    [Crossref] [Google Scholar]
  122. 122.
    Niu S, Wang J, Bai B, Wu L, Zheng A et al. 2021. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. EMBO J 40:e107786
    [Crossref] [Google Scholar]
  123. 123.
    Delaune D, Hul V, Karlsson EA, Hassanin A, Tey PO et al. 2021. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12:6563
    [Crossref] [Google Scholar]
  124. 124.
    Latinne A, Hu B, Olival KJ, Zhu G, Zhang L et al. 2020. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11:4235
    [Crossref] [Google Scholar]
  125. 125.
    Li LL, Wang JL, Ma XH, Sun XM, Li JS et al. 2021. A novel SARS-CoV-2 related coronavirus with complex recombination isolated from bats in Yunnan province, China. Emerg. Microbes Infect 10:1683–90
    [Crossref] [Google Scholar]
  126. 126.
    Murakami S, Kitamura T, Suzuki J, Sato R, Aoi T et al. 2020. Detection and characterization of bat sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis 26:3025–29
    [Crossref] [Google Scholar]
  127. 127.
    Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M et al. 2022. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 604:33036
    [Crossref] [Google Scholar]
  128. 128.
    Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F et al. 2021. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12:972
    [Crossref] [Google Scholar]
  129. 129.
    Zhou H, Chen X, Hu T, Li J, Song H et al. 2020. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30:2196–203
    [Crossref] [Google Scholar]
  130. 130.
    Zhou H, Ji J, Chen X, Bi Y, Li J et al. 2021. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184:4380–91
    [Crossref] [Google Scholar]
  131. 131.
    Lam TT-Y, Jia N, Zhang Y-W, Shum MH-H, Juan J-F et al. 2020. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583:282–85
    [Crossref] [Google Scholar]
  132. 132.
    Gao W-H, Lin X-D, Chen Y-M, Xie C-G, Tan Z-Z et al. 2020. Newly identified viral genomes in pangolins with fatal disease. Virus Evol 6:veaa020
    [Crossref] [Google Scholar]
  133. 133.
    Holmes EC. 2022. COVID-19—lessons for zoonotic disease. Science 375:1114–15
    [Crossref] [Google Scholar]
  134. 134.
    Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD et al. 2015. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348:aaa0698
    [Crossref] [Google Scholar]
  135. 135.
    Holmes EC, Rambaut A, Andersen KG. 2018. Pandemics: spend on surveillance, not prediction. Nature 558:180–82
    [Crossref] [Google Scholar]
  136. 136.
    Hilderink MH, de Winter II. 2021. No need to beat around the bushmeat—the role of wildlife trade and conservation initiatives in the emergence of zoonotic diseases. Heliyon 7:e07692
    [Crossref] [Google Scholar]
  137. 137.
    Karesh WB, Noble E 2009. The bushmeat trade: increased opportunities for transmission of zoonotic disease. Mt. Sinai J. Med. 76:429–34
    [Crossref] [Google Scholar]
  138. 138.
    Carbis Bay G7 Summit Commun 2021. Our shared agenda for global action to build back better https://www.consilium.europa.eu/media/50361/carbis-bay-g7-summit-communique.pdf
    [Google Scholar]
  139. 139.
    Sokolow SH, Nova N, Pepin KM, Peel AJ, Pulliam JRC et al. 2019. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philos. Trans. R. Soc. B 374:20180342
    [Crossref] [Google Scholar]
  140. 140.
    Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S et al. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–71
    [Crossref] [Google Scholar]
  141. 141.
    Hahn BH, Shaw GM, de Cock KM, Sharp PM. 2000. AIDS as a zoonosis: scientific and public health implications. Science 287:607–14
    [Crossref] [Google Scholar]
  142. 142.
    Sharp PM, Hahn BH. 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. . Perspect. Med. 1:a006841
    [Google Scholar]
/content/journals/10.1146/annurev-virology-100120-015057
Loading
/content/journals/10.1146/annurev-virology-100120-015057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error