1932

Abstract

Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100220-010653
2022-09-29
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-100220-010653.html?itemId=/content/journals/10.1146/annurev-virology-100220-010653&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shenk TE, Stinski MF, eds. 2008. Human Cytomegalovirus Berlin: Springer
  2. 2.
    Gardner TJ, Tortorella D. 2016. Virion glycoprotein-mediated immune evasion by human cytomegalovirus: A sticky virus makes a slick getaway. Microbiol. Mol. Biol. Rev. 80:663–77
    [Crossref] [Google Scholar]
  3. 3.
    Bate SL, Dollard SC, Cannon MJ. 2010. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988–2004. Clin. Infect. Dis. 50:1439–47
    [Crossref] [Google Scholar]
  4. 4.
    van Zuylen WJ, Hamilton ST, Naing Z, Hall B, Shand A, Rawlinson WD. 2014. Congenital cytomegalovirus infection: clinical presentation, epidemiology, diagnosis and prevention. Obstet. Med. 7:140–46
    [Crossref] [Google Scholar]
  5. 5.
    Boppana SB, Ross SA, Fowler KB. 2013. Congenital cytomegalovirus infection: clinical outcome. Clin. Infect. Dis. 57:S178–81
    [Crossref] [Google Scholar]
  6. 6.
    Hassan J, Connell J. 2007. Translational mini-review series on infectious disease: congenital cytomegalovirus infection: 50 years on. Clin. Exp. Immunol. 149:205–10
    [Crossref] [Google Scholar]
  7. 7.
    Bialas KM, Permar SR. 2016. The march towards a vaccine for congenital CMV: rationale and models. PLOS Pathog. 12:e1005355
    [Crossref] [Google Scholar]
  8. 8.
    Emery VC. 2001. Investigation of CMV disease in immunocompromised patients. J. Clin. Pathol. 54:84–88
    [Crossref] [Google Scholar]
  9. 9.
    Gerna G, Lilleri D. 2019. Human cytomegalovirus (HCMV) infection/re-infection: development of a protective HCMV vaccine. New Microbiol. 42:1–20
    [Google Scholar]
  10. 10.
    Coppola T, Mangold JF, Cantrell S, Permar SR. 2019. Impact of maternal immunity on congenital cytomegalovirus birth prevalence and infant outcomes: a systematic review. Vaccines 7:129
    [Crossref] [Google Scholar]
  11. 11.
    Retzler J, Hex N, Bartlett C, Webb A, Wood S et al. 2019. Economic cost of congenital CMV in the UK. Arch. Dis. Child. 104:559–63
    [Crossref] [Google Scholar]
  12. 12.
    Nelson CS, Herold BC, Permar SR. 2018. A new era in cytomegalovirus vaccinology: considerations for rational design of next-generation vaccines to prevent congenital cytomegalovirus infection. NPJ Vaccines 3:38
    [Crossref] [Google Scholar]
  13. 13.
    Schleiss MR, Permar SR, Plotkin SA. 2017. Progress toward development of a vaccine against congenital cytomegalovirus infection. Clin. Vaccine Immunol. 24:12e00268–17
    [Crossref] [Google Scholar]
  14. 14.
    Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. 2020. Immune correlates of protection against human cytomegalovirus acquisition, replication, and disease. J. Infect. Dis. 221:S45–59
    [Crossref] [Google Scholar]
  15. 15.
    Roark HK, Jenks JA, Permar SR, Schleiss MR. 2020. Animal models of congenital cytomegalovirus transmission: implications for vaccine development. J. Infect. Dis. 221:S60–73
    [Crossref] [Google Scholar]
  16. 16.
    Jenks JA, Nelson CS, Roark HK, Goodwin ML, Pass RF et al. 2020. Antibody binding to native cytomegalovirus glycoprotein B predicts efficacy of the gB/MF59 vaccine in humans. Sci. Transl. Med. 12:568eabb3611
    [Crossref] [Google Scholar]
  17. 17.
    Plotkin SA. 2020. Preventing infection by human cytomegalovirus. J. Infect. Dis. 221:S123–27
    [Crossref] [Google Scholar]
  18. 18.
    Loewendorf A, Benedict CA. 2010. Modulation of host innate and adaptive immune defenses by cytomegalovirus: Timing is everything. J. Intern. Med. 267:483–501
    [Crossref] [Google Scholar]
  19. 19.
    Sun JC, Lanier LL. 2009. The natural selection of herpesviruses and virus-specific NK cell receptors. Viruses 1:362–82
    [Crossref] [Google Scholar]
  20. 20.
    Jost S, Altfeld M. 2013. Control of human viral infections by natural killer cells. Annu. Rev. Immunol. 31:163–94
    [Crossref] [Google Scholar]
  21. 21.
    Leong CC, Chapman TL, Bjorkman PJ, Formankova D, Mocarski ES et al. 1998. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog. J. Exp. Med. 187:1681–87
    [Crossref] [Google Scholar]
  22. 22.
    Biron CA, Byron KS, Sullivan JL. 1989. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320:1731–35
    [Crossref] [Google Scholar]
  23. 23.
    Kuijpers TW, Baars PA, Dantin C, van den Burg M, van Lier RA, Roosnek E 2008. Human NK cells can control CMV infection in the absence of T cells. Blood 112:914–15
    [Crossref] [Google Scholar]
  24. 24.
    Jonjic S, Babic M, Polic B, Krmpotic A. 2008. Immune evasion of natural killer cells by viruses. Curr. Opin. Immunol. 20:30–38
    [Crossref] [Google Scholar]
  25. 25.
    Tomasec P, Wang EC, Davison AJ, Vojtesek B, Armstrong M et al. 2005. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat. Immunol. 6:181–88
    [Crossref] [Google Scholar]
  26. 26.
    Wilkinson GW, Tomasec P, Stanton RJ, Armstrong M, Prod'homme V et al. 2008. Modulation of natural killer cells by human cytomegalovirus. J. Clin. Virol. 41:206–12
    [Crossref] [Google Scholar]
  27. 27.
    Forrest C, Gomes A, Reeves M, Male V. 2020. NK cell memory to cytomegalovirus: implications for vaccine development. Vaccines 8:394
    [Crossref] [Google Scholar]
  28. 28.
    Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA et al. 2010. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11:1127–35
    [Crossref] [Google Scholar]
  29. 29.
    Reeves RK, Li H, Jost S, Blass E, Li H et al. 2015. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 16:927–32
    [Crossref] [Google Scholar]
  30. 30.
    Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM. 2009. Cytokine-induced memory-like natural killer cells. PNAS 106:1915–19
    [Crossref] [Google Scholar]
  31. 31.
    Sun JC, Beilke JN, Lanier LL. 2009. Adaptive immune features of natural killer cells. Nature 457:557–61
    [Crossref] [Google Scholar]
  32. 32.
    Weizman OE, Song E, Adams NM, Hildreth AD, Riggan L et al. 2019. Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12. Nat. Immunol. 20:1004–11
    [Crossref] [Google Scholar]
  33. 33.
    Lopez-Verges S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J et al. 2011. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. PNAS 108:14725–32
    [Crossref] [Google Scholar]
  34. 34.
    Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J et al. 2012. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119:2665–74
    [Crossref] [Google Scholar]
  35. 35.
    Beziat V, Liu LL, Malmberg JA, Ivarsson MA, Sohlberg E et al. 2013. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678–88
    [Crossref] [Google Scholar]
  36. 36.
    Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V et al. 2015. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42:443–56
    [Crossref] [Google Scholar]
  37. 37.
    Smith SL, Kennedy PR, Stacey KB, Worboys JD, Yarwood A et al. 2020. Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv. 4:1388–406
    [Crossref] [Google Scholar]
  38. 38.
    Liu LL, Landskron J, Ask EH, Enqvist M, Sohlberg E et al. 2016. Critical role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep. 15:1088–99
    [Crossref] [Google Scholar]
  39. 39.
    Hammer Q, Ruckert T, Borst EM, Dunst J, Haubner A et al. 2018. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19:453–63
    [Crossref] [Google Scholar]
  40. 40.
    Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA. 1992. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med. 326:663–67
    [Crossref] [Google Scholar]
  41. 41.
    Scrivano L, Sinzger C, Nitschko H, Koszinowski UH, Adler B. 2011. HCMV spread and cell tropism are determined by distinct virus populations. PLOS Pathog. 7:e1001256
    [Crossref] [Google Scholar]
  42. 42.
    Gerna G, Sarasini A, Patrone M, Percivalle E, Fiorina L et al. 2008. Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary infection. J. Gen. Virol. 89:853–65
    [Crossref] [Google Scholar]
  43. 43.
    Ryckman BJ, Rainish BL, Chase MC, Borton JA, Nelson JA et al. 2008. Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J. Virol. 82:60–70
    [Crossref] [Google Scholar]
  44. 44.
    Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C, Koszinowski U. 2006. Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J. Gen. Virol. 87:2451–60
    [Crossref] [Google Scholar]
  45. 45.
    Straschewski S, Patrone M, Walther P, Gallina A, Mertens T, Frascaroli G. 2011. Protein pUL128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J. Virol. 85:5150–58
    [Crossref] [Google Scholar]
  46. 46.
    Wang D, Shenk T. 2005. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. PNAS 102:18153–58
    [Crossref] [Google Scholar]
  47. 47.
    Zhou M, Lanchy JM, Ryckman BJ. 2015. Human cytomegalovirus gH/gL/gO promotes the fusion step of entry into all cell types, whereas gH/gL/UL128-131 broadens virus tropism through a distinct mechanism. J. Virol. 89:8999–9009
    [Crossref] [Google Scholar]
  48. 48.
    Compton T, Nepomuceno RR, Nowlin DM. 1992. Human cytomegalovirus penetrates host cells by pH-independent fusion at the cell surface. Virology 191:387–95
    [Crossref] [Google Scholar]
  49. 49.
    Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G et al. 2004. Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol. 78:10023–33
    [Crossref] [Google Scholar]
  50. 50.
    Tabata T, Petitt M, Fang-Hoover J, Freed DC, Li F et al. 2019. Neutralizing monoclonal antibodies reduce human cytomegalovirus infection and spread in developing placentas. Vaccines 7:135
    [Crossref] [Google Scholar]
  51. 51.
    Lilleri D, Kabanova A, Lanzavecchia A, Gerna G. 2012. Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo. J. Clin. Immunol. 32:1324–31
    [Crossref] [Google Scholar]
  52. 52.
    Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A et al. 2013. Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLOS ONE 8:e59863
    [Crossref] [Google Scholar]
  53. 53.
    Chiuppesi F, Wussow F, Johnson E, Bian C, Zhuo M et al. 2015. Vaccine-derived neutralizing antibodies to the human cytomegalovirus gH/gL pentamer potently block primary cytotrophoblast infection. J. Virol. 89:11884–98
    [Crossref] [Google Scholar]
  54. 54.
    Sandonis V, Garcia-Rios E, McConnell MJ, Perez-Romero P. 2020. Role of neutralizing antibodies in CMV infection: implications for new therapeutic approaches. Trends Microbiol. 28:900–12
    [Crossref] [Google Scholar]
  55. 55.
    Cranage MP, Kouzarides T, Bankier AT, Satchwell S, Weston K et al. 1986. Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J. 5:3057–63
    [Crossref] [Google Scholar]
  56. 56.
    Bootz A, Karbach A, Spindler J, Kropff B, Reuter N et al. 2017. Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. PLOS Pathog. 13:e1006601
    [Crossref] [Google Scholar]
  57. 57.
    Liu Y, Heim KP, Che Y, Chi X, Qiu X et al. 2021. Prefusion structure of human cytomegalovirus glycoprotein B and structural basis for membrane fusion. Sci. Adv. 7:10eabf3178
    [Crossref] [Google Scholar]
  58. 58.
    Burke HG, Heldwein EE. 2015. Crystal structure of the human cytomegalovirus glycoprotein B. PLOS Pathog 11:e1005227
    [Crossref] [Google Scholar]
  59. 59.
    Fowler KB, Stagno S, Pass RF. 2003. Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA 289:1008–11
    [Crossref] [Google Scholar]
  60. 60.
    Fowler KB, Stagno S, Pass RF. 2004. Interval between births and risk of congenital cytomegalovirus infection. Clin. Infect. Dis. 38:1035–37
    [Crossref] [Google Scholar]
  61. 61.
    Revello MG, Gerna G. 2002. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin. Microbiol. Rev. 15:680–715
    [Crossref] [Google Scholar]
  62. 62.
    Semmes EC, Miller IG, Jenks JA, Wimberly CE, Berendam SJ et al. 2021. Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection. medRxiv 2021.12.05.21267312. https://doi.org/10.1101/2021.12.05.21267312
    [Crossref]
  63. 63.
    Chung AW, Kumar MP, Arnold KB, Yu WH, Schoen MK et al. 2015. Dissecting polyclonal vaccine-induced humoral immunity against HIV using systems serology. Cell 163:988–98
    [Crossref] [Google Scholar]
  64. 64.
    Felber BK, Lu Z, Hu X, Valentin A, Rosati M et al. 2020. Co-immunization of DNA and protein in the same anatomical sites induces superior protective immune responses against SHIV challenge. Cell Rep. 31:107624
    [Crossref] [Google Scholar]
  65. 65.
    Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD et al. 2012. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366:1275–86
    [Crossref] [Google Scholar]
  66. 66.
    Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C et al. 2005. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202:673–85
    [Crossref] [Google Scholar]
  67. 67.
    Borysiewicz LK, Hickling JK, Graham S, Sinclair J, Cranage MP et al. 1988. Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J. Exp. Med. 168:919–31
    [Crossref] [Google Scholar]
  68. 68.
    McLaughlin-Taylor E, Pande H, Forman SJ, Tanamachi B, Li CR et al. 1994. Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J. Med. Virol. 43:103–10
    [Crossref] [Google Scholar]
  69. 69.
    Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP et al. 1996. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J. Virol. 70:7569–79
    [Crossref] [Google Scholar]
  70. 70.
    Papanicolaou GA, Latouche JB, Tan C, Dupont J, Stiles J et al. 2003. Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood 102:2498–505
    [Crossref] [Google Scholar]
  71. 71.
    Diamond DJ, York J, Sun JY, Wright CL, Forman SJ. 1997. Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood 90:1751–67
    [Crossref] [Google Scholar]
  72. 72.
    Gratama JW, van Esser JW, Lamers CH, Tournay C, Lowenberg B et al. 2001. Tetramer-based quantification of cytomegalovirus (CMV)–specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 98:1358–64
    [Crossref] [Google Scholar]
  73. 73.
    Masuoka M, Yoshimuta T, Hamada M, Okamoto M, Fumimori T et al. 2001. Identification of the HLA-A24 peptide epitope within cytomegalovirus protein pp65 recognized by CMV-specific cytotoxic T lymphocytes. Viral Immunol. 14:369–77
    [Crossref] [Google Scholar]
  74. 74.
    Kern F, Surel IP, Faulhaber N, Frommel C, Schneider-Mergener J et al. 1999. Target structures of the CD8+-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J. Virol. 73:8179–84
    [Crossref] [Google Scholar]
  75. 75.
    Prod'homme V, Retiere C, Imbert-Marcille BM, Bonneville M, Hallet MM. 2003. Modulation of HLA-A*0201-restricted T cell responses by natural polymorphism in the IE1315–324 epitope of human cytomegalovirus. J. Immunol. 170:2030–36
    [Crossref] [Google Scholar]
  76. 76.
    Sacre K, Carcelain G, Cassoux N, Fillet AM, Costagliola D et al. 2005. Repertoire, diversity, and differentiation of specific CD8 T cells are associated with immune protection against human cytomegalovirus disease. J. Exp. Med. 201:1999–2010
    [Crossref] [Google Scholar]
  77. 77.
    Stone SF, Price P, French MA. 2006. Cytomegalovirus (CMV)-specific CD8+ T cells in individuals with HIV infection: correlation with protection from CMV disease. J. Antimicrob. Chemother. 57:585–88
    [Crossref] [Google Scholar]
  78. 78.
    Sacre K, Nguyen S, Deback C, Carcelain G, Vernant JP et al. 2008. Expansion of human cytomegalovirus (HCMV) immediate-early 1-specific CD8+ T cells and control of HCMV replication after allogeneic stem cell transplantation. J. Virol. 82:10143–52
    [Crossref] [Google Scholar]
  79. 79.
    Bestard O, Lucia M, Crespo E, Van Liempt B, Palacio D et al. 2013. Pretransplant immediately early-1-specific T cell responses provide protection for CMV infection after kidney transplantation. Am. J. Transplant. 13:1793–805
    [Crossref] [Google Scholar]
  80. 80.
    Gibson L, Dooley S, Trzmielina S, Somasundaran M, Fisher D et al. 2007. Cytomegalovirus (CMV) IE1- and pp65-specific CD8+ T cell responses broaden over time after primary CMV infection in infants. J. Infect. Dis. 195:1789–98
    [Crossref] [Google Scholar]
  81. 81.
    Lilleri D, Fornara C, Furione M, Zavattoni M, Revello MG, Gerna G. 2007. Development of human cytomegalovirus-specific T cell immunity during primary infection of pregnant women and its correlation with virus transmission to the fetus. J. Infect. Dis. 195:1062–70
    [Crossref] [Google Scholar]
  82. 82.
    Fornara C, Cassaniti I, Zavattoni M, Furione M, Adzasehoun KMG et al. 2017. Human cytomegalovirus-specific memory CD4+ T-cell response and its correlation with virus transmission to the fetus in pregnant women with primary infection. Clin. Infect. Dis. 65:1659–65
    [Crossref] [Google Scholar]
  83. 83.
    Bialas KM, Tanaka T, Tran D, Varner V, Cisneros de la Rosa E et al. 2015. Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. PNAS 112:13645–50
    [Crossref] [Google Scholar]
  84. 84.
    Collins-McMillen D, Kamil J, Moorman N, Goodrum F. 2020. Control of immediate early gene expression for human cytomegalovirus reactivation. Front. Cell. Infect. Microbiol. 10:476
    [Crossref] [Google Scholar]
  85. 85.
    Schleiss MR, Diamond DJ. 2020. Exciting times for cytomegalovirus (CMV) vaccine development: navigating the pathways toward the goal of protecting infants against congenital CMV infection. Vaccines 8:526
    [Crossref] [Google Scholar]
  86. 86.
    Kirchmeier M, Fluckiger AC, Soare C, Bozic J, Ontsouka B et al. 2014. Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity. Clin. Vaccine Immunol. 21:174–80
    [Crossref] [Google Scholar]
  87. 87.
    Gantt S, Quach C, Anderson DE, Diaz-Mitoma F, Langley J. 2018. LB18. An enveloped virus-like particle (eVLP) cytomegalovirus (CMV) vaccine is immunogenic and safe: results of a first-in-humans study. Open Forum Infect. Dis. 5:S765
    [Crossref] [Google Scholar]
  88. 88.
    VBI Vaccines Inc 2018. VBI Vaccines announces Phase 2 clinical study design of its prophylactic CMV vaccine candidate. Press Release, Dec. 20. https://www.vbivaccines.com/cytomegalovirus-cmv/cmv-vaccines-phase-2-design/
  89. 89.
    John S, Yuzhakov O, Woods A, Deterling J, Hassett K et al. 2018. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 36:1689–99
    [Crossref] [Google Scholar]
  90. 90.
    Khare MD, Sharland M. 2001. Cytomegalovirus treatment options in immunocompromised patients. Expert Opin. Pharmacother. 2:1247–57
    [Crossref] [Google Scholar]
  91. 91.
    Nelson CS, Huffman T, Jenks JA, Cisneros de la Rosa E, Xie G et al. 2018. HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions. PNAS 115:6267–72
    [Crossref] [Google Scholar]
  92. 92.
    Schleiss MR. 2013. Cytomegalovirus in the neonate: immune correlates of infection and protection. Clin. Dev. Immunol. 2013:501801
    [Crossref] [Google Scholar]
  93. 93.
    Saccoccio FM, Jenks JA, Itell HL, Li SH, Berry M et al. 2019. Humoral immune correlates for prevention of postnatal cytomegalovirus acquisition. J. Infect. Dis. 220:772–80
    [Crossref] [Google Scholar]
  94. 94.
    Itell HL, Nelson CS, Martinez DR, Permar SR. 2017. Maternal immune correlates of protection against placental transmission of cytomegalovirus. Placenta 60:S73–79
    [Crossref] [Google Scholar]
  95. 95.
    Barron MA, Gao D, Springer KL, Patterson JA, Brunvand MW et al. 2009. Relationship of reconstituted adaptive and innate cytomegalovirus (CMV)-specific immune responses with CMV viremia in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49:1777–83
    [Crossref] [Google Scholar]
  96. 96.
    Plotkin SA, Wang D, Oualim A, Diamond DJ, Kotton CN et al. 2020. The status of vaccine development against the human cytomegalovirus. J. Infect. Dis. 221:S113–22
    [Crossref] [Google Scholar]
  97. 97.
    Shackelton LA, Holmes EC. 2004. The evolution of large DNA viruses: combining genomic information of viruses and their hosts. Trends Microbiol. 12:458–65
    [Crossref] [Google Scholar]
  98. 98.
    Davison AJ. 2002. Evolution of the herpesviruses. Vet. Microbiol. 86:69–88
    [Crossref] [Google Scholar]
  99. 99.
    Kaufmann P, Davidoff M. 1977. The guinea-pig placenta. Adv. Anat. Embryol. Cell Biol. 53:5–91
    [Google Scholar]
  100. 100.
    Buse E, Markert UR. 2019. The immunology of the macaque placenta: a detailed analysis and critical comparison with the human placenta. Crit. Rev. Clin. Lab. Sci. 56:118–45
    [Crossref] [Google Scholar]
  101. 101.
    Carter AM. 2020. Animal models of human pregnancy and placentation: alternatives to the mouse. Reproduction 160:R129–43
    [Crossref] [Google Scholar]
  102. 102.
    Itell HL, Kaur A, Deere JD, Barry PA, Permar SR. 2017. Rhesus monkeys for a nonhuman primate model of cytomegalovirus infections. Curr. Opin. Virol. 25:126–33
    [Crossref] [Google Scholar]
  103. 103.
    Schleiss MR, Bourne N, Bernstein DI. 2003. Preconception vaccination with a glycoprotein B (gB) DNA vaccine protects against cytomegalovirus (CMV) transmission in the guinea pig model of congenital CMV infection. J. Infect. Dis. 188:1868–74
    [Crossref] [Google Scholar]
  104. 104.
    Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH et al. 2012. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 12:290–99
    [Crossref] [Google Scholar]
  105. 105.
    Vincenti F, Budde K, Merville P, Shihab F, Ram Peddi V et al. 2018. A randomized, phase 2 study of ASP0113, a DNA-based vaccine, for the prevention of CMV in CMV-seronegative kidney transplant recipients receiving a kidney from a CMV-seropositive donor. Am. J. Transplant. 18:2945–54
    [Crossref] [Google Scholar]
  106. 106.
    Ljungman P, Bermudez A, Logan AC, Kharfan-Dabaja MA, Chevallier P et al. 2021. A randomised, placebo-controlled phase 3 study to evaluate the efficacy and safety of ASP0113, a DNA-based CMV vaccine, in seropositive allogeneic haematopoietic cell transplant recipients. EClinicalMedicine 33:100787
    [Crossref] [Google Scholar]
  107. 107.
    Choi KY, El-Hamdi N, Hornig J, McGregor A. 2021. Guinea pig cytomegalovirus protective T cell antigen GP83 is a functional pp65 homolog for innate immune evasion and pentamer-dependent virus tropism. J. Virol. 95:10e00324–21
    [Crossref] [Google Scholar]
  108. 108.
    Schleiss MR, Buus R, Choi KY, McGregor A. 2013. An attenuated CMV vaccine with a deletion in tegument protein GP83 (pp65 homolog) protects against placental infection and improves pregnancy outcome in a guinea pig challenge model. Future Virol. 8:1151–60
    [Crossref] [Google Scholar]
  109. 109.
    Leviton MP, Lacayo JC, Choi KY, Hernandez-Alvarado N, Wey A, Schleiss MR. 2013. An attenuated cytomegalovirus vaccine with a deletion of a viral chemokine gene is protective against congenital CMV transmission in a guinea pig model. Clin. Dev. Immunol. 2013:906948
    [Crossref] [Google Scholar]
  110. 110.
    Heineman TC. 2007. Human cytomegalovirus vaccines. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, et al., pp. 1274–91 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  111. 111.
    Plotkin SA, Higgins R, Kurtz JB, Morris PJ, Campbell DA Jr. et al. 1994. Multicenter trial of Towne strain attenuated virus vaccine in seronegative renal transplant recipients. Transplantation 58:1176–78
    [Google Scholar]
  112. 112.
    Adler SP, Starr SE, Plotkin SA, Hempfling SH, Buis J et al. 1995. Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J. Infect. Dis. 171:26–32
    [Crossref] [Google Scholar]
  113. 113.
    Starr SE, Glazer JP, Friedman HM, Farquhar JD, Plotkin SA. 1981. Specific cellular and humoral immunity after immunization with live Towne strain cytomegalovirus vaccine. J. Infect. Dis. 143:585–89
    [Crossref] [Google Scholar]
  114. 114.
    Suarez NM, Lau B, Kemble GM, Lee R, Mocarski ES et al. 2017. Genomic analysis of chimeric human cytomegalovirus vaccine candidates derived from strains Towne and Toledo. Virus Genes 53:650–55
    [Crossref] [Google Scholar]
  115. 115.
    Gonczol E, Ianacone J, Furlini G, Ho W, Plotkin SA. 1989. Humoral immune response to cytomegalovirus Towne vaccine strain and to Toledo low-passage strain. J. Infect. Dis. 159:851–59
    [Crossref] [Google Scholar]
  116. 116.
    Adler SP, Manganello AM, Lee R, McVoy MA, Nixon DE et al. 2016. A Phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimera vaccines in cytomegalovirus-seronegative men. J. Infect. Dis. 214:1341–48
    [Crossref] [Google Scholar]
  117. 117.
    Heineman TC, Schleiss M, Bernstein DI, Spaete RR, Yan L et al. 2006. A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines. J. Infect. Dis. 193:1350–60
    [Crossref] [Google Scholar]
  118. 118.
    Forrester A, Farrell H, Wilkinson G, Kaye J, Davis-Poynter N, Minson T. 1992. Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J. Virol. 66:341–48
    [Crossref] [Google Scholar]
  119. 119.
    McLean CS, Erturk M, Jennings R, Challanain DN, Minson AC et al. 1994. Protective vaccination against primary and recurrent disease caused by herpes simplex virus (HSV) type 2 using a genetically disabled HSV-1. J. Infect. Dis. 170:1100–9
    [Crossref] [Google Scholar]
  120. 120.
    Adler SP, Lewis N, Conlon A, Christiansen MP, Al-Ibrahim M et al. 2019. Phase 1 clinical trial of a conditionally replication-defective human cytomegalovirus (CMV) vaccine in CMV-seronegative subjects. J. Infect. Dis. 220:411–19
    [Crossref] [Google Scholar]
  121. 121.
    Cox KS, Zhang L, Freed DC, Tang A, Zhang S et al. 2021. Functional evaluation and genetic evolution of human T-cell responses after vaccination with a conditionally replication-defective cytomegalovirus vaccine. J. Infect. Dis. 223:2001–12
    [Crossref] [Google Scholar]
  122. 122.
    Li L, Freed DC, Liu Y, Li F, Barrett DF et al. 2021. A conditionally replication-defective cytomegalovirus vaccine elicits potent and diverse functional monoclonal antibodies in a phase I clinical trial. NPJ Vaccines 6:79
    [Crossref] [Google Scholar]
  123. 123.
    Das R, Blazquez-Gamero D, Bernstein DI, Gantt S, Bautista O et al. 2021. 1048: Double-blind, randomized, placebo-controlled phase 2b multicenter trial of V160, a replication-defective human cytomegalovirus (CMV) vaccine. Open Forum Infect. Dis. 8:S615–16
    [Crossref] [Google Scholar]
  124. 124.
    Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ et al. 2013. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340:1237874
    [Crossref] [Google Scholar]
  125. 125.
    Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE et al. 2018. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat. Med. 24:130–43
    [Crossref] [Google Scholar]
  126. 126.
    Hansen SG, Womack J, Scholz I, Renner A, Edgel KA et al. 2019. Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLOS ONE 14:e0210252
    [Crossref] [Google Scholar]
  127. 127.
    Abad-Fernandez M, Goonetilleke N 2019. Human cytomegalovirus-vectored vaccines against HIV. Curr. Opin. HIV AIDS 14:137–42
    [Crossref] [Google Scholar]
  128. 128.
    Frey SE, Harrison C, Pass RF, Yang E, Boken D et al. 1999. Effects of antigen dose and immunization regimens on antibody responses to a cytomegalovirus glycoprotein B subunit vaccine. J. Infect. Dis. 180:1700–3
    [Crossref] [Google Scholar]
  129. 129.
    Mitchell DK, Holmes SJ, Burke RL, Duliege AM, Adler SP. 2002. Immunogenicity of a recombinant human cytomegalovirus gB vaccine in seronegative toddlers. Pediatr. Infect. Dis. J. 21:133–38
    [Crossref] [Google Scholar]
  130. 130.
    Pass RF, Zhang C, Evans A, Simpson T, Andrews W et al. 2009. Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 360:1191–99
    [Crossref] [Google Scholar]
  131. 131.
    Bernstein DI, Munoz FM, Callahan ST, Rupp R, Wootton SH et al. 2016. Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: a randomized clinical trial. Vaccine 34:313–19
    [Crossref] [Google Scholar]
  132. 132.
    Selinsky C, Luke C, Wloch M, Geall A, Hermanson G et al. 2005. A DNA-based vaccine for the prevention of human cytomegalovirus-associated diseases. Hum. Vaccines 1:16–23
    [Crossref] [Google Scholar]
  133. 133.
    Wloch MK, Smith LR, Boutsaboualoy S, Reyes L, Han C et al. 2008. Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J. Infect. Dis. 197:1634–42
    [Crossref] [Google Scholar]
  134. 134.
    Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A et al. 2021. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 19:59
    [Crossref] [Google Scholar]
  135. 135.
    Ura T, Okuda K, Shimada M. 2014. Developments in viral vector-based vaccines. Vaccines 2:624–41
    [Crossref] [Google Scholar]
  136. 136.
    Adler SP, Plotkin SA, Gonczol E, Cadoz M, Meric C et al. 1999. A canarypox vector expressing cytomegalovirus (CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine (Towne). J. Infect. Dis. 180:843–46
    [Crossref] [Google Scholar]
  137. 137.
    La Rosa C, Longmate J, Martinez J, Zhou Q, Kaltcheva TI et al. 2017. MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults. Blood 129:114–25
    [Crossref] [Google Scholar]
  138. 138.
    Berencsi K, Gyulai Z, Gonczol E, Pincus S, Cox WI et al. 2001. A canarypox vector-expressing cytomegalovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV-seronegative subjects. J. Infect. Dis. 183:1171–79
    [Crossref] [Google Scholar]
  139. 139.
    Cardin RD, Bravo FJ, Pullum DA, Orlinger K, Watson EM et al. 2016. Replication-defective lymphocytic choriomeningitis virus vectors expressing guinea pig cytomegalovirus gB and pp65 homologs are protective against congenital guinea pig cytomegalovirus infection. Vaccine 34:1993–99
    [Crossref] [Google Scholar]
  140. 140.
    Schleiss MR, Berka U, Watson E, Aistleithner M, Kiefmann B et al. 2017. Additive protection against congenital cytomegalovirus conferred by combined glycoprotein B/pp65 vaccination using a lymphocytic choriomeningitis virus vector. Clin. Vaccine Immunol. 24:e00300–16
    [Google Scholar]
  141. 141.
    Schwendinger M, Thiry G, De Vos B, Leroux-Roels G, Bruhwyler J et al. 2022. A randomized dose-escalating phase I trial of a replication-deficient lymphocytic choriomeningitis virus vector-based vaccine against human cytomegalovirus. J. Infect. Dis. 225:1399–410
    [Crossref] [Google Scholar]
  142. 142.
    Plotkin SA, Gilbert PB. 2012. Nomenclature for immune correlates of protection after vaccination. Clin. Infect. Dis. 54:1615–17
    [Crossref] [Google Scholar]
  143. 143.
    Qin L, Gilbert PB, Corey L, McElrath MJ, Self SG. 2007. A framework for assessing immunological correlates of protection in vaccine trials. J. Infect. Dis. 196:1304–12
    [Crossref] [Google Scholar]
  144. 144.
    Britt WJ. 2017. Congenital human cytomegalovirus infection and the enigma of maternal immunity. J. Virol. 91:15e02392–16
    [Crossref] [Google Scholar]
  145. 145.
    Scarpini S, Morigi F, Betti L, Dondi A, Biagi C, Lanari M. 2021. Development of a vaccine against human cytomegalovirus: advances, barriers, and implications for the clinical practice. Vaccines 9:551
    [Crossref] [Google Scholar]
  146. 146.
    Griffiths PD, Stanton A, McCarrell E, Smith C, Osman M et al. 2011. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet 377:1256–63
    [Crossref] [Google Scholar]
  147. 147.
    Baraniak I, Kropff B, McLean GR, Pichon S, Piras-Douce F et al. 2018. Epitope-specific humoral responses to human cytomegalovirus glycoprotein-B vaccine with MF59: Anti-AD2 levels correlate with protection from viremia. J. Infect. Dis. 217:1907–17
    [Crossref] [Google Scholar]
  148. 148.
    Boppana SB, Britt WJ. 1995. Antiviral antibody responses and intrauterine transmission after primary maternal cytomegalovirus infection. J. Infect. Dis. 171:1115–21
    [Crossref] [Google Scholar]
  149. 149.
    Bialas KM, Westreich D, Cisneros de la Rosa E, Nelson CS, Kauvar LM et al. 2016. Maternal antibody responses and nonprimary congenital cytomegalovirus infection of HIV-1-exposed infants. J. Infect. Dis. 214:1916–23
    [Crossref] [Google Scholar]
  150. 150.
    Baraniak I, Kropff B, Ambrose L, McIntosh M, McLean GR et al. 2018. Protection from cytomegalovirus viremia following glycoprotein B vaccination is not dependent on neutralizing antibodies. PNAS 115:6273–78
    [Crossref] [Google Scholar]
  151. 151.
    Si Z, Zhang J, Shivakoti S, Atanasov I, Tao CL et al. 2018. Different functional states of fusion protein gB revealed on human cytomegalovirus by cryo electron tomography with Volta phase plate. PLOS Pathog. 14:e1007452
    [Crossref] [Google Scholar]
  152. 152.
    Nigro G, Adler SP, La Torre R, Best AM 2005. Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med. 353:1350–62
    [Crossref] [Google Scholar]
  153. 153.
    Planitzer CB, Saemann MD, Gajek H, Farcet MR, Kreil TR. 2011. Cytomegalovirus neutralization by hyperimmune and standard intravenous immunoglobulin preparations. Transplantation 92:267–70
    [Crossref] [Google Scholar]
  154. 154.
    Nigro G, Adler SP. 2013. Hyperimmunoglobulin for prevention of congenital cytomegalovirus disease. Clin. Infect. Dis. 57:S193–95
    [Crossref] [Google Scholar]
  155. 155.
    Ishida JH, Patel A, Mehta AK, Gatault P, McBride JM et al. 2017. Phase 2 randomized, double-blind, placebo-controlled trial of RG7667, a combination monoclonal antibody, for prevention of cytomegalovirus infection in high-risk kidney transplant recipients. Antimicrob. Agents Chemother. 61:2e01794–16
    [Crossref] [Google Scholar]
  156. 155a.
    Jenks JA, Amin S, Kumar A, Sponholtz MR, Wrapp Det al 2022. A single, improbable B cell receptor mutation confers potent neutralization against cytomegalovirus. bioRxiv 2022.01.19.476974 https://doi.org/10.1101/2022.01.19.476974
    [Crossref] [Google Scholar]
  157. 156.
    Haynes BF, Kelsoe G, Harrison SC, Kepler TB. 2012. B-cell–lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 30:423–33
    [Crossref] [Google Scholar]
  158. 157.
    Tian M, Cheng C, Chen X, Duan H, Cheng HL et al. 2016. Induction of HIV neutralizing antibody lineages in mice with diverse precursor repertoires. Cell 166:1471–84.e18
    [Crossref] [Google Scholar]
  159. 158.
    Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. 2014. HIV DNA vaccine: Stepwise improvements make a difference. Vaccines 2:354–79
    [Crossref] [Google Scholar]
  160. 159.
    Hu X, Valentin A, Cai Y, Dayton F, Rosati M et al. 2018. DNA vaccine–induced long-lasting cytotoxic T cells targeting conserved elements of human immunodeficiency virus Gag are boosted upon DNA or recombinant Modified Vaccinia Ankara vaccination. Hum. Gene Ther. 29:1029–43
    [Crossref] [Google Scholar]
  161. 160.
    Stephenson KE, Le Gars M, Sadoff J, de Groot AM, Heerwegh D et al. 2021. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA 325:1535–44
    [Crossref] [Google Scholar]
  162. 161.
    Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S et al. 2020. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586:567–71
    [Crossref] [Google Scholar]
  163. 162.
    Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A et al. 2020. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383:2603–15
    [Crossref] [Google Scholar]
  164. 163.
    Cid R, Bolivar J. 2021. Platforms for production of protein-based vaccines: from classical to next-generation strategies. Biomolecules 11:81072
    [Crossref] [Google Scholar]
  165. 164.
    Mothe B, Hu X, Llano A, Rosati M, Olvera A et al. 2015. A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques. J. Transl. Med. 13:60
    [Crossref] [Google Scholar]
  166. 165.
    Kulkarni V, Rosati M, Bear J, Pilkington GR, Jalah R et al. 2013. Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques. Hum. Vaccines Immunother. 9:2081–94
    [Crossref] [Google Scholar]
  167. 166.
    Rosati M, Valentin A, Jalah R, Patel V, von Gegerfelt A et al. 2008. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine 26:5223–29
    [Crossref] [Google Scholar]
  168. 167.
    Tebas P, Roberts CC, Muthumani K, Reuschel EL, Kudchodkar SB et al. 2021. Safety and immunogenicity of an anti-Zika virus DNA vaccine. N. Engl. J. Med. 385:e35
    [Crossref] [Google Scholar]
  169. 168.
    Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. 2022. Intranasal COVID-19 vaccines: from bench to bed. EBioMedicine 76:103841
    [Crossref] [Google Scholar]
  170. 169.
    Rolle A, Pollmann J, Ewen EM, Le VTK, Halenius A et al. 2014. IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J. Clin. Invest. 124:5305–16
    [Crossref] [Google Scholar]
  171. 170.
    Firdaus FZ, Skwarczynski M, Toth I. 2022. Developments in vaccine adjuvants. Methods Mol. Biol. 2412:145–78
    [Crossref] [Google Scholar]
  172. 171.
    Kuwata T, Shioda T, Igarashi T, Ido E, Ibuki K et al. 1996. Chimeric viruses between SIVmac and various HIV-1 isolates have biological properties that are similar to those of the parental HIV-1. AIDS 10:1331–37
    [Crossref] [Google Scholar]
  173. 172.
    Lu Y, Salvato MS, Pauza CD, Li J, Sodroski J et al. 1996. Utility of SHIV for testing HIV-1 vaccine candidates in macaques. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 12:99–106
    [Crossref] [Google Scholar]
  174. 173.
    Koenig J, Theobald SJ, Stripecke R. 2020. Modeling human cytomegalovirus in humanized mice for vaccine testing. Vaccines 8:89
    [Crossref] [Google Scholar]
  175. 174.
    Todd CA, Sanchez AM, Garcia A, Denny TN, Sarzotti-Kelsoe M. 2014. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL). J. Immunol. Methods 409:91–98
    [Crossref] [Google Scholar]
  176. 175.
    Schleiss MR. 2009. VCL-CB01, an injectable bivalent plasmid DNA vaccine for potential protection against CMV disease and infection. Curr. Opin. Mol. Ther. 11:572–78
    [Google Scholar]
  177. 176.
    Mori T, Kanda Y, Takenaka K, Okamoto S, Kato J et al. 2017. Safety of ASP0113, a cytomegalovirus DNA vaccine, in recipients undergoing allogeneic hematopoietic cell transplantation: an open-label phase 2 trial. Int. J. Hematol. 105:206–12
    [Crossref] [Google Scholar]
  178. 177.
    Bonate PL, Van Sant C, Cho K, Zook EC, Smith LR et al. 2020. Pharmacokinetics and immunogenicity of ASP0113 in CMV-seronegative dialysis patients and CMV-seronegative and -seropositive healthy subjects. Clin. Pharmacol. Drug Dev. 9:444–55
    [Crossref] [Google Scholar]
  179. 178.
    Bernstein DI, Reap EA, Katen K, Watson A, Smith K et al. 2009. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 28:484–93
    [Crossref] [Google Scholar]
  180. 179.
    Nakamura R, La Rosa C, Longmate J, Drake J, Slape C et al. 2016. Viraemia, immunogenicity, and survival outcomes of cytomegalovirus chimeric epitope vaccine supplemented with PF03512676 (CMVPepVax) in allogeneic haemopoietic stem-cell transplantation: randomised phase 1b trial. Lancet Haematol. 3:e87–98
    [Crossref] [Google Scholar]
  181. 180.
    La Rosa C, Longmate J, Lingaraju CR, Zhou Q, Kaltcheva T et al. 2019. Rapid acquisition of cytomegalovirus-specific T cells with a differentiated phenotype, in nonviremic hematopoietic stem transplant recipients vaccinated with CMVPepVax. Biol. Blood Marrow Transplant. 25:771–84
    [Crossref] [Google Scholar]
  182. 181.
    La Rosa C, Longmate J, Lacey SF, Kaltcheva T, Sharan R et al. 2012. Clinical evaluation of safety and immunogenicity of PADRE-cytomegalovirus (CMV) and tetanus-CMV fusion peptide vaccines with or without PF03512676 adjuvant. J. Infect. Dis. 205:1294–304
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100220-010653
Loading
/content/journals/10.1146/annurev-virology-100220-010653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error