1932

Abstract

Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein–coupled receptors (vGPCRs), chemokines, and chemokine-binding proteins. This review focuses on the vGPCRs encoded by the human β- and γ-herpesviruses. These include receptors from human cytomegalovirus, which encodes four vGPCRs: US27, US28, UL33, and UL78; human herpesvirus 6 and 7 with two receptors: U12 and U51; Epstein-Barr virus with one: BILF1; and Kaposi's sarcoma-associated herpesvirus with one: open reading frame 74, ORF74. We discuss ligand binding, signaling, and structures of the vGPCRs in light of robust differences from endogenous receptors. Finally, we briefly discuss the therapeutic targeting of vGPCRs as future treatment of acute and chronic herpesvirus infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100220-113942
2022-09-29
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-100220-113942.html?itemId=/content/journals/10.1146/annurev-virology-100220-113942&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Birkenbach M, Josefsen K, Yalamanchili R, Lenoir G, Kieff E. 1993. Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J. Virol. 67:2209–20
    [Crossref] [Google Scholar]
  2. 2.
    Rosenkilde MM, Benned-Jensen T, Andersen H, Holst PJ, Kledal TN et al. 2006. Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity. J. Biol. Chem. 281:13199–208
    [Crossref] [Google Scholar]
  3. 3.
    Yoshida R, Imai T, Hieshima K, Kusuda J, Baba M et al. 1997. Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J. Biol. Chem 272:13803–9
    [Crossref] [Google Scholar]
  4. 4.
    Liu C, Yang XV, Wu J, Kuei C, Mani NS et al. 2011. Oxysterols direct B-cell migration through EBI2. Nature 475:519–23
    [Crossref] [Google Scholar]
  5. 5.
    Rosenkilde MM, Kledal TN. 2006. Targeting herpesvirus reliance of the chemokine system. Curr. Drug Targets 7:103–18
    [Crossref] [Google Scholar]
  6. 6.
    Knipe DM, Howley PM. 2013. Fields Virology Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health
  7. 7.
    Cohen JI. 2020. Herpesvirus latency. J. Clin. Invest. 130:3361–69
    [Crossref] [Google Scholar]
  8. 8.
    Munk C, Mutt E, Isberg V, Nikolajsen LF, Bibbe JM et al. 2019. An online resource for GPCR structure determination and analysis. Nat. Methods 16:151–62
    [Crossref] [Google Scholar]
  9. 9.
    Wacker D, Stevens RC, Roth BL. 2017. How ligands illuminate GPCR molecular pharmacology. Cell 170:414–27
    [Crossref] [Google Scholar]
  10. 10.
    Hauser AS, Kooistra AJ, Munk C, Heydenreich FM, Veprintsev DB et al. 2021. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28:879–88
    [Crossref] [Google Scholar]
  11. 11.
    Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM et al. 2013. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66:179
    [Crossref] [Google Scholar]
  12. 12.
    Rosenkilde MM, Schwartz TW. 2004. The chemokine system—a major regulator of angiogenesis in disease and health. APMIS 112:481–95
    [Crossref] [Google Scholar]
  13. 13.
    Flock T, Hauser AS, Lund N, Gloriam DE, Balaji S, Babu MM. 2017. Selectivity determinants of GPCR–G-protein binding. Nature 545:317–22
    [Crossref] [Google Scholar]
  14. 14.
    Zlotnik A, Yoshie O 2012. The chemokine superfamily revisited. Immunity 36:705–16
    [Crossref] [Google Scholar]
  15. 15.
    Chakera A, Seeber RM, John AE, Eidne KA, Greaves DR. 2008. The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol. Pharmacol. 73:1362–70
    [Crossref] [Google Scholar]
  16. 16.
    Borroni EM, Cancellieri C, Vacchini A, Benureau Y, Lagane B et al. 2013. β-Arrestin–dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6. Sci. Signal. 6:273ra30
    [Google Scholar]
  17. 17.
    Zarca A, Perez C, van den Bor J, Bebelman JP, Heuninck J et al. 2021. Differential involvement of ACKR3 C-tail in β-arrestin recruitment, trafficking and internalization. Cells 10:618
    [Crossref] [Google Scholar]
  18. 18.
    Decaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P. 2011. CXCR7/CXCR4 heterodimer constitutively recruits β-arrestin to enhance cell migration. J. Biol. Chem. 286:32188–97
    [Crossref] [Google Scholar]
  19. 19.
    Watts AO, Verkaar F, van der Lee MM, Timmerman CA, Kuijer M et al. 2013. β-Arrestin recruitment and G protein signaling by the atypical human chemokine decoy receptor CCX-CKR. J. Biol. Chem. 288:7169–81
    [Crossref] [Google Scholar]
  20. 20.
    Vinet J, van Zwam M, Dijkstra IM, Brouwer N, van Weering HR et al. 2013. Inhibition of CXCR3-mediated chemotaxis by the human chemokine receptor-like protein CCX-CKR. Br. J. Pharmacol. 168:1375–87
    [Crossref] [Google Scholar]
  21. 21.
    De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. 2021. Viral G protein–coupled receptors: attractive targets for herpesvirus-associated diseases. Pharmacol. Rev. 73:828–46
    [Crossref] [Google Scholar]
  22. 22.
    Holst PJ, Luttichau HR, Schwartz TW, Rosenkilde MM. 2003. Virally encoded chemokines and chemokine receptors in the role of viral infections. Contrib. Microbiol. 10:232–52
    [Crossref] [Google Scholar]
  23. 23.
    Pontejo SM, Murphy PM. 2017. Chemokines encoded by herpesviruses. J. Leukoc. Biol. 102:1199–217
    [Crossref] [Google Scholar]
  24. 24.
    Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH et al. 1997. A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science 277:1656–59
    [Crossref] [Google Scholar]
  25. 25.
    Boshoff C, Endo Y, Collins PD, Takeuchi Y, Reeves JD et al. 1997. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278:290–94
    [Crossref] [Google Scholar]
  26. 26.
    Endres MJ, Garlisi CG, Xiao H, Shan L, Hedrick JA. 1999. The Kaposi's sarcoma–related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J. Exp. Med. 189:1993–98
    [Crossref] [Google Scholar]
  27. 27.
    Luttichau HR, Johnsen AH, Jurlander J, Rosenkilde MM, Schwartz TW. 2007. Kaposi sarcoma-associated herpes virus targets the lymphotactin receptor with both a broad spectrum antagonist vCCL2 and a highly selective and potent agonist vCCL3. J. Biol. Chem. 282:17794–805
    [Crossref] [Google Scholar]
  28. 28.
    Dewin DR, Catusse J, Gompels UA. 2006. Identification and characterization of U83A viral chemokine, a broad and potent β-chemokine agonist for human CCRs with unique selectivity and inhibition by spliced isoform. J. Immunol. 176:544–56
    [Crossref] [Google Scholar]
  29. 29.
    Zou P, Isegawa Y, Nakano K, Haque M, Horiguchi Y, Yamanishi K. 1999. Human herpesvirus 6 open reading frame U83 encodes a functional chemokine. J. Virol. 73:5926–33
    [Crossref] [Google Scholar]
  30. 30.
    Luttichau HR. 2010. The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. J. Biol. Chem. 285:9137–46
    [Crossref] [Google Scholar]
  31. 31.
    Gonzalez-Motos V, Kropp KA, Viejo-Borbolla A. 2016. Chemokine binding proteins: an immunomodulatory strategy going viral. Cytokine Growth Factor Rev 30:71–80
    [Crossref] [Google Scholar]
  32. 32.
    Wang D, Bresnahan W, Shenk T. 2004. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. PNAS 101:16642–47
    [Crossref] [Google Scholar]
  33. 33.
    Gonzalez-Motos V, Jurgens C, Ritter B, Kropp KA, Duran V et al. 2017. Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLOS Pathog 13:e1006346
    [Crossref] [Google Scholar]
  34. 34.
    Gao JL, Murphy PM. 1994. Human cytomegalovirus open reading frame US28 encodes a functional β chemokine receptor. J. Biol. Chem. 269:28539–42
    [Crossref] [Google Scholar]
  35. 35.
    Kuhn DE, Beall CJ, Kolattukudy PE. 1995. The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem. Biophys. Res. Commun. 211:325–30
    [Crossref] [Google Scholar]
  36. 36.
    Kledal TN, Rosenkilde MM, Schwartz TW. 1998. Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441:209–14
    [Crossref] [Google Scholar]
  37. 37.
    Billstrom MA, Johnson GL, Avdi NJ, Worthen GS. 1998. Intracellular signaling by the chemokine receptor US28 during human cytomegalovirus infection. J. Virol. 72:5535–44
    [Crossref] [Google Scholar]
  38. 38.
    Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H et al. 2001. Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J. Biol. Chem. 276:1133–37
    [Crossref] [Google Scholar]
  39. 39.
    Waldhoer M, Kledal TN, Farrell H, Schwartz TW. 2002. Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J. Virol. 76:8161–68
    [Crossref] [Google Scholar]
  40. 40.
    Minisini R, Tulone C, Luske A, Michel D, Mertens T et al. 2003. Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J. Virol. 77:4489–501
    [Crossref] [Google Scholar]
  41. 41.
    Waldhoer M, Casarosa P, Rosenkilde MM, Smit MJ, Leurs R et al. 2003. The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J. Biol. Chem. 278:19473–82
    [Crossref] [Google Scholar]
  42. 42.
    McLean KA, Holst PJ, Martini L, Schwartz TW, Rosenkilde MM. 2004. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325:241–51
    [Crossref] [Google Scholar]
  43. 43.
    Vieira J, Schall TJ, Corey L, Geballe AP 1998. Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J. Virol. 72:8158–65
    [Crossref] [Google Scholar]
  44. 44.
    Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E et al. 1999. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–20
    [Crossref] [Google Scholar]
  45. 45.
    Melnychuk RM, Streblow DN, Smith PP, Hirsch AJ, Pancheva D, Nelson JA. 2004. Human cytomegalovirus-encoded G protein-coupled receptor US28 mediates smooth muscle cell migration through Gα12. J. Virol. 78:8382–91
    [Crossref] [Google Scholar]
  46. 46.
    Fraile-Ramos A, Kledal TN, Pelchen-Matthews A, Bowers K, Schwartz TW, Marsh M. 2001. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol. Biol. Cell 12:1737–49
    [Crossref] [Google Scholar]
  47. 47.
    Fraile-Ramos A, Kohout TA, Waldhoer M, Marsh M. 2003. Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic 4:243–53
    [Crossref] [Google Scholar]
  48. 48.
    Mavri M, Spiess K, Rosenkilde MM, Rutland CS, Vrecl M, Kubale V. 2020. Methods for studying endocytotic pathways of herpesvirus encoded G protein-coupled receptors. Molecules 25:5710
    [Crossref] [Google Scholar]
  49. 49.
    Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M. 2002. Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3:218–32
    [Crossref] [Google Scholar]
  50. 50.
    Wagner S, Arnold F, Wu Z, Schubert A, Walliser C et al. 2012. The 7-transmembrane protein homologue UL78 of the human cytomegalovirus forms oligomers and traffics between the plasma membrane and different intracellular compartments. Arch. Virol. 157:935–49
    [Crossref] [Google Scholar]
  51. 51.
    Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L et al. 2003. Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J. Biol. Chem. 278:50456–65
    [Crossref] [Google Scholar]
  52. 52.
    Vomaske J, Melnychuk RM, Smith PP, Powell J, Hall L et al. 2009. Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type–specific motility. PLOS Pathog 5:e1000304
    [Crossref] [Google Scholar]
  53. 53.
    Maussang D, Verzijl D, Van Walsum M, Leurs R, Holl J et al. 2006. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. PNAS 103:13068–73
    [Crossref] [Google Scholar]
  54. 54.
    Maussang D, Langemeijer E, Fitzsimons CP, Stigter-van Walsum M, Dijkman R et al. 2009. The human cytomegalovirus–encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res 69:2861–69
    [Crossref] [Google Scholar]
  55. 55.
    Bongers G, Maussang D, Muniz LR, Noriega VM, Fraile-Ramos A et al. 2010. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. J. Clin. Invest. 120:3969–78
    [Crossref] [Google Scholar]
  56. 56.
    Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A et al. 2010. HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6–STAT3 axis. Sci. Signal. 3:ra58
    [Crossref] [Google Scholar]
  57. 57.
    Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L et al. 1998. Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J. Exp. Med. 188:855–66
    [Crossref] [Google Scholar]
  58. 58.
    Billstrom SM, Worthen GS. 2001. Viral regulation of RANTES expression during human cytomegalovirus infection of endothelial cells. J. Virol. 75:3383–90
    [Crossref] [Google Scholar]
  59. 59.
    Spiess K, Jeppesen MG, Malmgaard-Clausen M, Krzywkowski K, Dulal K et al. 2015. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo. PNAS 112:8427–32
    [Crossref] [Google Scholar]
  60. 60.
    Spiess K, Jeppesen MG, Malmgaard-Clausen M, Krzywkowski K, Kledal TN, Rosenkilde MM. 2017. Novel chemokine-based immunotoxins for potent and selective targeting of cytomegalovirus infected cells. J. Immunol. Res. 2017:4069260
    [Crossref] [Google Scholar]
  61. 61.
    Krishna BA, Spiess K, Poole EL, Lau B, Voigt S et al. 2017. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein. Nat. Commun. 8:14321
    [Crossref] [Google Scholar]
  62. 62.
    Ribeiro RVP, Ku T, Wang A, Pires L, Ferreira VH et al. 2021. Ex vivo treatment of cytomegalovirus in human donor lungs using a novel chemokine-based immunotoxin. J. Heart Lung Transplant. 41:3287–97
    [Crossref] [Google Scholar]
  63. 63.
    Noriega VM, Gardner TJ, Redmann V, Bongers G, Lira SA, Tortorella D. 2014. Human cytomegalovirus US28 facilitates cell-to-cell viral dissemination. Viruses 6:1202–18
    [Crossref] [Google Scholar]
  64. 64.
    Humby MS, O'Connor CM. 2015. Human cytomegalovirus US28 is important for latent infection of hematopoietic progenitor cells. J. Virol. 90:2959–70
    [Crossref] [Google Scholar]
  65. 65.
    Lollinga WT, de Wit RH, Rahbar A, Vasse GF, Davoudi B et al. 2017. Human cytomegalovirus-encoded receptor US28 is expressed in renal allografts and facilitates viral spreading in vitro. Transplantation 101:531–40
    [Crossref] [Google Scholar]
  66. 66.
    Pleskoff O, Treboute C, Alizon M. 1998. The cytomegalovirus-encoded chemokine receptor US28 can enhance cell-cell fusion mediated by different viral proteins. J. Virol. 72:6389–97
    [Crossref] [Google Scholar]
  67. 67.
    Krishna BA, Humby MS, Miller WE, O'Connor CM. 2019. Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos. PNAS 116:1755–64
    [Crossref] [Google Scholar]
  68. 68.
    Elder E, Krishna B, Williamson J, Aslam Y, Farahi N et al. 2019. Monocytes latently infected with human cytomegalovirus evade neutrophil killing. iScience 12:13–26
    [Crossref] [Google Scholar]
  69. 69.
    Tadagaki K, Tudor D, Gbahou F, Tschische P, Waldhoer M et al. 2012. Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood 119:4908–18
    [Crossref] [Google Scholar]
  70. 70.
    Frank T, Reichel A, Larsen O, Stilp AC, Rosenkilde MM et al. 2016. Attenuation of chemokine receptor function and surface expression as an immunomodulatory strategy employed by human cytomegalovirus is linked to vGPCR US28. Cell Commun. Signal. 14:31
    [Crossref] [Google Scholar]
  71. 71.
    Stapleton LK, Arnolds KL, Lares AP, Devito TM, Spencer JV. 2012. Receptor chimeras demonstrate that the C-terminal domain of the human cytomegalovirus US27 gene product is necessary and sufficient for intracellular receptor localization. Virol. J. 9:42
    [Crossref] [Google Scholar]
  72. 72.
    Boeck JM, Spencer JV. 2017. Effect of human cytomegalovirus (HCMV) US27 on CXCR4 receptor internalization measured by fluorogen-activating protein (FAP) biosensors. PLOS ONE 12:e0172042
    [Crossref] [Google Scholar]
  73. 73.
    Boeck JM, Stowell GA, O'Connor CM, Spencer JV. 2018. The human cytomegalovirus US27 gene product constitutively activates antioxidant response element-mediated transcription through Gβγ, phosphoinositide 3-kinase, and nuclear respiratory factor 1. J. Virol. 92:23e00644–18
    [Crossref] [Google Scholar]
  74. 74.
    Arnolds KL, Lares AP, Spencer JV. 2013. The US27 gene product of human cytomegalovirus enhances signaling of host chemokine receptor CXCR4. Virology 439:122–31
    [Crossref] [Google Scholar]
  75. 75.
    Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A et al. 2015. Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science 347:1113–17
    [Crossref] [Google Scholar]
  76. 76.
    Miles TF, Spiess K, Jude KM, Tsutsumi N, Burg JS et al. 2018. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. eLife 7:e35850
    [Crossref] [Google Scholar]
  77. 77.
    Tsutsumi N, Maeda S, Qu Q, Vögele M, Jude KM et al. 2022. Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. Sci. Adv. 8:3eabl5442
    [Crossref] [Google Scholar]
  78. 78.
    Scarborough JA, Paul JR, Spencer JV. 2017. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV). Infect. Genet. Evol. 51:46–53
    [Crossref] [Google Scholar]
  79. 79.
    Imai T, Hieshima K, Haskell C, Baba M, Nagira M et al. 1997. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91:521–30
    [Crossref] [Google Scholar]
  80. 80.
    Liu K, Wu L, Yuan S, Wu M, Xu Y et al. 2020. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 585:135–40
    [Crossref] [Google Scholar]
  81. 81.
    Qin L, Kufareva I, Holden LG, Wang C, Zheng Y et al. 2015. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347:1117–22
    [Crossref] [Google Scholar]
  82. 82.
    Nakano K, Tadagaki K, Isegawa Y, Aye MM, Zou P, Yamanishi K. 2003. Human herpesvirus 7 open reading frame U12 encodes a functional β-chemokine receptor. J. Virol. 77:8108–15
    [Crossref] [Google Scholar]
  83. 83.
    Tadagaki K, Nakano K, Yamanishi K. 2005. Human herpesvirus 7 open reading frames U12 and U51 encode functional β-chemokine receptors. J. Virol. 79:7068–76
    [Crossref] [Google Scholar]
  84. 84.
    Isegawa Y, Ping Z, Nakano K, Sugimoto N, Yamanishi K. 1998. Human herpesvirus 6 open reading frame U12 encodes a functional β-chemokine receptor. J. Virol. 72:6104–12
    [Crossref] [Google Scholar]
  85. 85.
    Catusse J, Spinks J, Mattick C, Dyer A, Laing K et al. 2008. Immunomodulation by herpesvirus U51A chemokine receptor via CCL5 and FOG-2 down-regulation plus XCR1 and CCR7 mimicry in human leukocytes. Eur. J. Immunol. 38:763–77
    [Crossref] [Google Scholar]
  86. 86.
    Zhen Z, Bradel-Tretheway B, Sumagin S, Bidlack JM, Dewhurst S. 2005. The human herpesvirus 6 G protein-coupled receptor homolog U51 positively regulates virus replication and enhances cell-cell fusion in vitro. J. Virol. 79:11914–24
    [Crossref] [Google Scholar]
  87. 87.
    Spiess K, Fares S, Sparre-Ulrich AH, Hilgenberg E, Jarvis MA et al. 2015. Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses. J. Virol. 89:2253–67
    [Crossref] [Google Scholar]
  88. 88.
    Ahuja SK, Murphy PM. 1993. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J. Biol. Chem. 268:20691–94
    [Crossref] [Google Scholar]
  89. 89.
    Rosenkilde MM, McLean KA, Holst PJ, Schwartz TW. 2004. The CXC chemokine receptor encoded by herpesvirus saimiri, ECRF3, shows ligand-regulated signaling through Gi, Gq, and G12/13 proteins but constitutive signaling only through Gi and G12/13 proteins. J. Biol. Chem. 279:32524–33
    [Crossref] [Google Scholar]
  90. 90.
    Rosenkilde MM, Kledal TN, Schwartz TW. 2005. High constitutive activity of a virus-encoded 7TM receptor in the absence of the conserved DRY-motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol. Pharmacol. 68:111–19
    [Crossref] [Google Scholar]
  91. 91.
    Wakeling MN, Roy DJ, Nash AA, Stewart JP. 2001. Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor. J. Gen. Virol. 82:1187–97
    [Crossref] [Google Scholar]
  92. 92.
    Epstein MA, Achong BG, Barr YM. 1964. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1:702–3
    [Crossref] [Google Scholar]
  93. 93.
    Knerr JM, Kledal TN, Rosenkilde MM. 2021. Molecular properties and therapeutic targeting of the EBV-encoded receptor BILF1. Cancers 13:4079
    [Crossref] [Google Scholar]
  94. 94.
    Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN. 2005. Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J. Virol. 79:536–46
    [Crossref] [Google Scholar]
  95. 95.
    Beisser PS, Verzijl D, Gruijthuijsen YK, Beuken E, Smit MJ et al. 2005. The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J. Virol. 79:441–49
    [Crossref] [Google Scholar]
  96. 96.
    Lyngaa R, Norregaard K, Kristensen M, Kubale V, Rosenkilde MM, Kledal TN. 2010. Cell transformation mediated by the Epstein-Barr virus G protein-coupled receptor BILF1 is dependent on constitutive signaling. Oncogene 29:4388–98
    [Crossref] [Google Scholar]
  97. 97.
    Tsutsumi N, Qu Q, Mavri M, Baggesen MS, Maeda S et al. 2021. Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1. Immunity 54:1405–16.e7
    [Crossref] [Google Scholar]
  98. 98.
    Vischer HF, Nijmeijer S, Smit MJ, Leurs R. 2008. Viral hijacking of human receptors through heterodimerization. Biochem. Biophys. Res. Commun. 377:93–97
    [Crossref] [Google Scholar]
  99. 99.
    Nijmeijer S, Leurs R, Smit MJ, Vischer HF. 2010. The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning. J. Biol. Chem. 285:29632–41
    [Crossref] [Google Scholar]
  100. 100.
    Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA et al. 2009. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLOS Pathog 5:e1000255
    [Crossref] [Google Scholar]
  101. 101.
    Zuo J, Quinn LL, Tamblyn J, Thomas WA, Feederle R et al. 2011. The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J. Virol. 85:1604–14
    [Crossref] [Google Scholar]
  102. 102.
    Griffin BD, Gram AM, Mulder A, Van Leeuwen D, Claas FH et al. 2013. EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. J. Immunol. 190:1672–84
    [Crossref] [Google Scholar]
  103. 103.
    Fares S, Spiess K, Olesen ETB, Zuo J, Jackson S et al. 2019. Distinct roles of extracellular domains in the Epstein-Barr virus-encoded BILF1 receptor for signaling and major histocompatibility complex class I downregulation. mBio 10:1e01707–18
    [Crossref] [Google Scholar]
  104. 104.
    Lin X, Li M, Wang N, Wu Y, Luo Z et al. 2020. Structural basis of ligand recognition and self-activation of orphan GPR52. Nature 579:152–57
    [Crossref] [Google Scholar]
  105. 105.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J et al. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–69
    [Crossref] [Google Scholar]
  106. 106.
    Schulz TF. 2006. The pleiotropic effects of Kaposi's sarcoma herpesvirus. J. Pathol. 208:187–98
    [Crossref] [Google Scholar]
  107. 107.
    Bottero V, Sharma-Walia N, Kerur N, Paul AG, Sadagopan S et al. 2009. Kaposi sarcoma-associated herpes virus (KSHV) G protein-coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: a potential positive feedback loop for sustained ORF50 gene expression. Virology 392:34–51
    [Crossref] [Google Scholar]
  108. 108.
    Guo HG, Browning P, Nicholas J, Hayward GS, Tschachler E et al. 1997. Characterization of a chemokine receptor-related gene in human herpesvirus 8 and its expression in Kaposi's sarcoma. Virology 228:371–78
    [Crossref] [Google Scholar]
  109. 109.
    Telford EA, Watson MS, Aird HC, Perry J, Davison AJ 1995. The DNA sequence of equine herpesvirus 2. J. Mol. Biol. 249:520–28
    [Crossref] [Google Scholar]
  110. 110.
    Estep RD, Axthelm MK, Wong SW. 2003. A G protein-coupled receptor encoded by rhesus rhadinovirus is similar to ORF74 of Kaposi's sarcoma-associated herpesvirus. J. Virol. 77:1738–46
    [Crossref] [Google Scholar]
  111. 111.
    Verzijl D, Fitzsimons CP, Van Dijk M, Stewart JP, Timmerman H et al. 2004. Differential activation of murine herpesvirus 68- and Kaposi's sarcoma-associated herpesvirus-encoded ORF74 G protein-coupled receptors by human and murine chemokines. J. Virol. 78:3343–51
    [Crossref] [Google Scholar]
  112. 112.
    Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E. 1997. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–50
    [Crossref] [Google Scholar]
  113. 113.
    Rosenkilde MM, Kledal TN, Brauner-Osborne H, Schwartz TW. 1999. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J. Biol. Chem. 274:956–61
    [Crossref] [Google Scholar]
  114. 114.
    Rosenkilde MM, Schwartz TW. 2000. Potency of ligands correlates with affinity measured against agonist and inverse agonists but not against neutral ligand in constitutively active chemokine receptor. Mol. Pharmacol. 57:602–9
    [Crossref] [Google Scholar]
  115. 115.
    Geras-Raaka E, Varma A, Clark-Lewis I, Gershengorn MC 1998. Kaposi's sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1α inhibit signaling by KSHV G protein-coupled receptor. Biochem. Biophys. Res. Commun. 253:725–27
    [Crossref] [Google Scholar]
  116. 116.
    Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG et al. 1998. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89
    [Crossref] [Google Scholar]
  117. 117.
    Geras-Raaka E, Arvanitakis L, Bais C, Cesarman E, Mesri EA, Gershengorn MC. 1998. Inhibition of constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor by protein kinases in mammalian cells in culture. J. Exp. Med. 187:801–6
    [Crossref] [Google Scholar]
  118. 118.
    Liu C, Sandford G, Fei G, Nicholas J. 2004. Gα protein selectivity determinant specified by a viral chemokine receptor-conserved region in the C tail of the human herpesvirus 8 G protein-coupled receptor. J. Virol. 78:2460–71
    [Crossref] [Google Scholar]
  119. 119.
    Sodhi A, Montaner S, Patel V, Zohar M, Bais C et al. 2000. The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1α. Cancer Res 60:4873–80
    [Google Scholar]
  120. 120.
    Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS. 2001. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–48
    [Google Scholar]
  121. 121.
    Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y et al. 2004. Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. PNAS 101:4821–26
    [Crossref] [Google Scholar]
  122. 122.
    Shepard LW, Yang M, Xie P, Browning DD, Voyno-Yasenetskaya T et al. 2001. Constitutive activation of NF-κB and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve Gα13 and RhoA. J. Biol. Chem. 276:45979–87
    [Crossref] [Google Scholar]
  123. 123.
    Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R. 2002. Kaposi's sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via Gi and phospholipase C-dependent signaling pathways. J. Virol. 76:1744–52
    [Crossref] [Google Scholar]
  124. 124.
    Shelby BD, LaMarca HL, McFerrin HE, Nelson AB, Lasky JA et al. 2007. Kaposi's sarcoma associated herpesvirus G-protein coupled receptor activation of cyclooxygenase-2 in vascular endothelial cells. Virol. J. 4:87
    [Crossref] [Google Scholar]
  125. 125.
    Liu G, Yu FX, Kim YC, Meng Z, Naipauer J et al. 2015. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 34:3536–46
    [Crossref] [Google Scholar]
  126. 126.
    Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M. 2003. Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J. Virol. 77:2631–39
    [Crossref] [Google Scholar]
  127. 127.
    Yang TY, Chen SC, Leach MW, Manfra D, Homey B et al. 2000. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J. Exp. Med. 191:445–54
    [Crossref] [Google Scholar]
  128. 128.
    Rosenkilde MM, Kledal TN, Holst PJ, Schwartz TW. 2000. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J. Biol. Chem. 275:26309–15
    [Crossref] [Google Scholar]
  129. 129.
    Holst PJ, Rosenkilde MM, Manfra D, Chen SC, Wiekowski MT et al. 2001. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J. Clin. Invest. 108:1789–96
    [Crossref] [Google Scholar]
  130. 130.
    de Munnik SM, Kooistra AJ, van Offenbeek J, Nijmeijer S, de Graaf C et al. 2015. The viral G protein-coupled receptor ORF74 hijacks β-arrestins for endocytic trafficking in response to human chemokines. PLOS ONE 10:e0124486
    [Crossref] [Google Scholar]
  131. 131.
    Efstathiou S, Ho YM, Hall S, Styles CJ, Scott SD, Gompels UA. 1990. Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. J. Gen. Virol. 71:61365–72
    [Crossref] [Google Scholar]
  132. 132.
    Virgin HW, Latreille P, Wamsley P, Hallsworth K, Weck KE et al. 1997. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71:5894–904
    [Crossref] [Google Scholar]
  133. 133.
    Efstathiou S, Ho YM, Minson AC. 1990. Cloning and molecular characterization of the murine herpesvirus 68 genome. J. Gen. Virol. 71:61355–64
    [Crossref] [Google Scholar]
  134. 134.
    Flano E, Husain SM, Sample JT, Woodland DL, Blackman MA. 2000. Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J. Immunol. 165:1074–81
    [Crossref] [Google Scholar]
  135. 135.
    Moorman NJ, Virgin HW, Speck SH. 2003. Disruption of the gene encoding the γHV68 v-GPCR leads to decreased efficiency of reactivation from latency. Virology 307:179–90
    [Crossref] [Google Scholar]
  136. 136.
    Lopez-Rodriguez DM, Kirillov V, Krug LT, Mesri EA, Andreansky S. 2019. A role of hypoxia-inducible factor 1 alpha in Murine Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency. PLOS Pathog 15:e1008192
    [Crossref] [Google Scholar]
  137. 137.
    Chen J, Ye F, Xie J, Kuhne K, Gao SJ. 2009. Genome-wide identification of binding sites for Kaposi's sarcoma-associated herpesvirus lytic switch protein, RTA. Virology 386:290–302
    [Crossref] [Google Scholar]
  138. 138.
    Sandford G, Choi YB, Nicholas J. 2009. Role of ORF74-encoded viral G protein-coupled receptor in human herpesvirus 8 lytic replication. J. Virol. 83:13009–14
    [Crossref] [Google Scholar]
  139. 139.
    Ho HH, Ganeshalingam N, Rosenhouse-Dantsker A, Osman R, Gershengorn MC. 2001. Charged residues at the intracellular boundary of transmembrane helices 2 and 3 independently affect constitutive activity of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J. Biol. Chem. 276:1376–82
    [Crossref] [Google Scholar]
  140. 140.
    Pati S, Cavrois M, Guo HG, Foulke JS Jr., Kim J et al. 2001. Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi's sarcoma pathogenesis. J. Virol. 75:8660–73
    [Crossref] [Google Scholar]
  141. 141.
    Verzijl D, Pardo L, Van Dijk M, Gruijthuijsen YK, Jongejan A et al. 2006. Helix 8 of the viral chemokine receptor ORF74 directs chemokine binding. J. Biol. Chem. 281:35327–35
    [Crossref] [Google Scholar]
  142. 142.
    Azzi S, Smith SS, Dwyer J, Leclair HM, Alexia C et al. 2014. YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions. Oncogene 33:5609–18
    [Crossref] [Google Scholar]
  143. 143.
    Ho HH, Du D, Gershengorn MC. 1999. The N terminus of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor is necessary for high affinity chemokine binding but not for constitutive activity. J. Biol. Chem. 274:31327–32
    [Crossref] [Google Scholar]
  144. 144.
    Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. 2017. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16:12829–42
    [Crossref] [Google Scholar]
  145. 145.
    Casarosa P, Menge WM, Minisini R, Otto C, van Heteren J et al. 2003. Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J. Biol. Chem. 278:5172–78
    [Crossref] [Google Scholar]
  146. 146.
    Luckmann M, Amarandi RM, Papargyri N, Jakobsen MH, Christiansen E et al. 2017. Structure-based discovery of novel US28 small molecule ligands with different modes of action. Chem. Biol. Drug Des. 89:289–96
    [Crossref] [Google Scholar]
  147. 147.
    Amarandi RM, Luckmann M, Melynis M, Jakobsen MH, Fallah Z et al. 2018. Ligand-selective small molecule modulators of the constitutively active vGPCR US28. Eur. J. Med. Chem. 155:244–54
    [Crossref] [Google Scholar]
  148. 148.
    De Groof TWM, Mashayekhi V, Fan TS, Bergkamp ND, Sastre TJ et al. 2019. Nanobody-targeted photodynamic therapy selectively kills viral GPCR-expressing glioblastoma cells. Mol. Pharm. 16:3145–56
    [Crossref] [Google Scholar]
  149. 149.
    De Groof TWM, Elder EG, Lim EY, Heukers R, Bergkamp ND et al. 2021. Targeting the latent human cytomegalovirus reservoir for T-cell-mediated killing with virus-specific nanobodies. Nat. Commun. 12:4436
    [Crossref] [Google Scholar]
  150. 150.
    Heukers R, Fan TS, de Wit RH, van Senten JR, De Groof TWM et al. 2018. The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene 37:4110–21
    [Crossref] [Google Scholar]
  151. 151.
    De Groof TWM, Bergkamp ND, Heukers R, Giap T, Bebelman MP et al. 2021. Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies. Nat. Commun. 12:4357
    [Crossref] [Google Scholar]
  152. 152.
    Steen A, Larsen O, Thiele S, Rosenkilde MM. 2014. Biased and G protein-independent signaling of chemokine receptors. Front. Immunol. 5:277
    [Crossref] [Google Scholar]
  153. 153.
    Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS et al. 2021. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30:70–82
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100220-113942
Loading
/content/journals/10.1146/annurev-virology-100220-113942
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error