1932

Abstract

Even if a virus successfully binds to a cell, defects in any of the downstream steps of the viral life cycle can preclude the production of infectious virus particles. Such abortive infections are likely common in nature and can provide fundamental insights into the cell and host tropism of viral pathogens. Research over the past 60 years has revealed an incredible diversity of abortive infections by DNA and RNA viruses in various animal cell types. Here we discuss the general causes of abortive infections and provide specific examples from the literature to illustrate the range of abortive infections that have been reported. We also discuss how abortive infections can have critical roles in shaping host immune responses and in the development of virus-induced cancers. Finally, we describe how abortive infections can be applied to basic and clinical research, underscoring the importance of understanding these fascinating aspects of virus biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100422-023037
2024-09-26
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-100422-023037.html?itemId=/content/journals/10.1146/annurev-virology-100422-023037&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Albrecht T, Fons M, Boldogh I, Rabson AS. 1996.. Effects on cells. . In Medical Microbiology, ed. S Baron, ch. 44 . Galveston, TX:: Univ. Texas Med. Branch
    [Google Scholar]
  2. 2.
    Drayman N, Patel P, Vistain L, Tay S. 2019.. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. . eLife 8::e46339
    [Crossref] [Google Scholar]
  3. 3.
    Combe M, Garijo R, Geller R, Cuevas JM, Sanjuan R. 2015.. Single-cell analysis of RNA virus infection identifies multiple genetically diverse viral genomes within single infectious units. . Cell Host Microbe 18::42432
    [Crossref] [Google Scholar]
  4. 4.
    Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. 2015.. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. . Nat. Commun. 6::8938
    [Crossref] [Google Scholar]
  5. 5.
    Zhu Y, Yongky A, Yin J. 2009.. Growth of an RNA virus in single cells reveals a broad fitness distribution. . Virology 385::3946
    [Crossref] [Google Scholar]
  6. 6.
    Swadling L, Maini MK. 2023.. Can T cells abort SARS-CoV-2 and other viral infections?. Int. J. Mol. Sci. 24::4371
    [Crossref] [Google Scholar]
  7. 7.
    Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, Akram M, Riaz M, et al. 2021.. A review: mechanism of action of antiviral drugs. . Int. J. Immunopathol. Pharmacol. 35::20587384211002621
    [Crossref] [Google Scholar]
  8. 8.
    Belon L, Skidmore P, Mehra R, Walter E. 2021.. Effect of a fever in viral infections—the ‘Goldilocks’ phenomenon?. World J. Clin. Cases 9::296307
    [Crossref] [Google Scholar]
  9. 9.
    Kautz TF, Forrester NL. 2018.. RNA virus fidelity mutants: a useful tool for evolutionary biology or a complex challenge?. Viruses 10::600
    [Crossref] [Google Scholar]
  10. 10.
    Studstill CJ, Mac M, Moody CA. 2023.. Interplay between the DNA damage response and the life cycle of DNA tumor viruses. . Tumour Virus Res. 16::200272
    [Crossref] [Google Scholar]
  11. 11.
    Pfeiffer JK, Kirkegaard K. 2003.. A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. . PNAS 100::728994
    [Crossref] [Google Scholar]
  12. 12.
    Long JS, Giotis ES, Moncorge O, Frise R, Mistry B, et al. 2016.. Species difference in ANP32A underlies influenza A virus polymerase host restriction. . Nature 529::1014
    [Crossref] [Google Scholar]
  13. 13.
    Staller E, Sheppard CM, Neasham PJ, Mistry B, Peacock TP, et al. 2019.. ANP32 proteins are essential for influenza virus replication in human cells. . J. Virol. 93::e00217-19
    [Crossref] [Google Scholar]
  14. 14.
    Long JS, Mistry B, Haslam SM, Barclay WS. 2019.. Host and viral determinants of influenza A virus species specificity. . Nat. Rev. Microbiol. 17::6781
    [Crossref] [Google Scholar]
  15. 15.
    Swann OC, Rasmussen AB, Peacock TP, Sheppard CM, Barclay WS. 2023.. Avian influenza A virus polymerase can utilize human ANP32 proteins to support cRNA but not vRNA synthesis. . mBio 14::e0339922
    [Crossref] [Google Scholar]
  16. 16.
    Sheppard CM, Goldhill DH, Swann OC, Staller E, Penn R, et al. 2023.. An influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. . Nat. Commun. 14::6135
    [Crossref] [Google Scholar]
  17. 17.
    Long JS, Idoko-Akoh A, Mistry B, Goldhill D, Staller E, et al. 2019.. Species specific differences in use of ANP32 proteins by influenza A virus. . eLife 8::e45066
    [Crossref] [Google Scholar]
  18. 18.
    Gammon DB, Gowrishankar B, Duraffour S, Andrei G, Upton C, Evans DH. 2010.. Vaccinia virus–encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. . PLOS Pathog. 6::e1000984
    [Crossref] [Google Scholar]
  19. 19.
    Kirby EN, Shue B, Thomas PQ, Beard MR. 2021.. CRISPR tackles emerging viral pathogens. . Viruses 13::2157
    [Crossref] [Google Scholar]
  20. 20.
    McDougall WM, Perreira JM, Reynolds EC, Brass AL. 2018.. CRISPR genetic screens to discover host-virus interactions. . Curr. Opin. Virol. 29::87100
    [Crossref] [Google Scholar]
  21. 21.
    Perreira JM, Meraner P, Brass AL. 2016.. Functional genomic strategies for elucidating human–virus interactions: Will CRISPR knockout RNAi and haploid cells?. Adv. Virus Res. 94::151
    [Crossref] [Google Scholar]
  22. 22.
    Chulanov V, Kostyusheva A, Brezgin S, Ponomareva N, Gegechkori V, et al. 2021.. CRISPR screening: molecular tools for studying virus–host interactions. . Viruses 13::2258
    [Crossref] [Google Scholar]
  23. 23.
    Kumar N, Sharma S, Kumar R, Tripathi BN, Barua S, et al. 2020.. Host-directed antiviral therapy. . Clin. Microbiol. Rev. 33::e00168-19
    [Crossref] [Google Scholar]
  24. 24.
    Schoggins JW. 2019.. Interferon-stimulated genes: What do they all do?. Annu. Rev. Virol. 6::56784
    [Crossref] [Google Scholar]
  25. 25.
    Zhu J, Chiang C, Gack MU. 2023.. Viral evasion of the interferon response at a glance. . J. Cell Sci. 136::jcs260682
    [Crossref] [Google Scholar]
  26. 26.
    Rothenburg S, Brennan G. 2020.. Species-specific host-virus interactions: implications for viral host range and virulence. . Trends Microbiol. 28::4656
    [Crossref] [Google Scholar]
  27. 27.
    Himathongkham S, Luciw PA. 1996.. Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. . Virology 219::48588
    [Crossref] [Google Scholar]
  28. 28.
    Ganser-Pornillos BK, Pornillos O. 2019.. Restriction of HIV-1 and other retroviruses by TRIM5. . Nat. Rev. Microbiol. 17::54656
    [Crossref] [Google Scholar]
  29. 29.
    Fletcher AJ, Vaysburd M, Maslen S, Zeng J, Skehel JM, et al. 2018.. Trivalent RING assembly on retroviral capsids activates TRIM5 ubiquitination and innate immune signaling. . Cell Host Microbe 24::76175.e6
    [Crossref] [Google Scholar]
  30. 30.
    Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, et al. 2011.. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. . Nature 472::36165
    [Crossref] [Google Scholar]
  31. 31.
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. 2004.. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. . Nature 427::84853
    [Crossref] [Google Scholar]
  32. 32.
    Richardson MW, Guo L, Xin F, Yang X, Riley JL. 2014.. Stabilized human TRIM5α protects human T cells from HIV-1 infection. . Mol. Ther. 22::108495
    [Crossref] [Google Scholar]
  33. 33.
    Lin LT, Lu YS, Huang HH, Chen H, Hsu SW, Chang LK. 2022.. Regulation of Epstein-Barr virus minor capsid protein BORF1 by TRIM5α. . Int. J. Mol. Sci. 23::15340
    [Crossref] [Google Scholar]
  34. 34.
    Zhao Y, Lu Y, Richardson S, Sreekumar M, Albarnaz JD, Smith GL. 2023.. TRIM5 regulation of Epstein-Barr virus minor capsid protein BORF1 by TRIM5α restricts poxviruses and is antagonized by CypA and the viral protein C6. . Nature 620::87380
    [Crossref] [Google Scholar]
  35. 35.
    Oguiura N, Spehner D, Drillien R. 1993.. Detection of a protein encoded by the vaccinia virus C7L open reading frame and study of its effect on virus multiplication in different cell lines. . J. Gen. Virol. 74:(7):140913
    [Crossref] [Google Scholar]
  36. 36.
    Zhao Y, Zhao L, Huang P, Ren J, Zhang P, et al. 2020.. Non-replicating vaccinia virus TianTan strain (NTV) translation arrest of viral late protein synthesis associated with anti-viral host factor SAMD9. . Front. Cell Infect. Microbiol. 10::116
    [Crossref] [Google Scholar]
  37. 37.
    Meng X, Chao J, Xiang Y. 2008.. Identification from diverse mammalian poxviruses of host-range regulatory genes functioning equivalently to vaccinia virus C7L. . Virology 372::37283
    [Crossref] [Google Scholar]
  38. 38.
    Liu J, Wennier S, Zhang L, McFadden G. 2011.. M062 is a host range factor essential for myxoma virus pathogenesis and functions as an antagonist of host SAMD9 in human cells. . J. Virol. 85::327082
    [Crossref] [Google Scholar]
  39. 39.
    Sivan G, Ormanoglu P, Buehler EC, Martin SE, Moss B. 2015.. Identification of restriction factors by human genome-wide RNA interference screening of viral host range mutants exemplified by discovery of SAMD9 and WDR6 as inhibitors of the vaccinia virus K1LC7L mutant. . mBio 6::e01122
    [Crossref] [Google Scholar]
  40. 40.
    Meng X, Zhang F, Yan B, Si C, Honda H, et al. 2018.. A paralogous pair of mammalian host restriction factors form a critical host barrier against poxvirus infection. . PLOS Pathog. 14::e1006884
    [Crossref] [Google Scholar]
  41. 41.
    Meng X, Krumm B, Li Y, Deng J, Xiang Y. 2015.. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins. . PNAS 112::1485863
    [Crossref] [Google Scholar]
  42. 42.
    Li Y, Meng X, Xiang Y, Deng J. 2010.. Structure function studies of vaccinia virus host range protein K1 reveal a novel functional surface for ankyrin repeat proteins. . J. Virol. 84::333138
    [Crossref] [Google Scholar]
  43. 43.
    Xiang Y, White A. 2022.. Monkeypox virus emerges from the shadow of its more infamous cousin: Family biology matters. . Emerg. Microbes Infect. 11::176877
    [Crossref] [Google Scholar]
  44. 44.
    Zhang F, Meng X, Townsend MB, Satheshkumar PS, Xiang Y. 2019.. Identification of CP77 as the third orthopoxvirus SAMD9 and SAMD9L inhibitor with unique specificity for a rodent SAMD9L. . J. Virol. 93::e00225-19
    [Google Scholar]
  45. 45.
    Spehner D, Gillard S, Drillien R, Kirn A. 1988.. A cowpox virus gene required for multiplication in Chinese hamster ovary cells. . J. Virol. 62::1297304
    [Crossref] [Google Scholar]
  46. 46.
    Ramsey-Ewing A, Moss B. 1995.. Restriction of vaccinia virus replication in CHO cells occurs at the stage of viral intermediate protein synthesis. . Virology 206::98493
    [Crossref] [Google Scholar]
  47. 47.
    Lemos de Matos A, Liu J, McFadden G, Esteves PJ. 2013.. Evolution and divergence of the mammalian SAMD9/SAMD9L gene family. . BMC Evol. Biol. 13::121
    [Crossref] [Google Scholar]
  48. 48.
    Zhang F, Ji Q, Chaturvedi J, Morales M, Mao Y, et al. 2023.. Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis. . Sci. Adv. 9::eadh8502
    [Crossref] [Google Scholar]
  49. 49.
    Peng S, Meng X, Zhang F, Pathak PK, Chaturvedi J, et al. 2022.. Structure and function of an effector domain in antiviral factors and tumor suppressors SAMD9 and SAMD9L. . PNAS 119::e2116550119
    [Crossref] [Google Scholar]
  50. 50.
    Conrad SJ, Raza T, Peterson EA, Liem J, Connor R, et al. 2022.. Myxoma virus lacking the host range determinant M062 stimulates cGAS-dependent type 1 interferon response and unique transcriptomic changes in human monocytes/macrophages. . PLOS Pathog. 18::e1010316
    [Crossref] [Google Scholar]
  51. 51.
    Andreu-Moreno I, Bou JV, Sanjuan R. 2020.. Cooperative nature of viral replication. . Sci. Adv. 6::eabd4942
    [Crossref] [Google Scholar]
  52. 52.
    Andreu-Moreno I, Sanjuan R. 2018.. Collective infection of cells by viral aggregates promotes early viral proliferation and reveals a cellular-level Allee effect. . Curr. Biol. 28::321219
    [Crossref] [Google Scholar]
  53. 53.
    Baumann JG, Unutmaz D, Miller MD, Breun SK, Grill SM, et al. 2004.. Murine T cells potently restrict human immunodeficiency virus infection. . J. Virol. 78::1253747
    [Crossref] [Google Scholar]
  54. 54.
    Whitaker-Dowling P, Youngner JS. 1983.. Vaccinia rescue of VSV from interferon-induced resistance: reversal of translation block and inhibition of protein kinase activity. . Virology 131::12836
    [Crossref] [Google Scholar]
  55. 55.
    Berger Rentsch M, Zimmer G. 2011.. A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon. . PLOS ONE 6::e25858
    [Crossref] [Google Scholar]
  56. 56.
    Hwang M, Bergmann CC. 2019.. Intercellular communication is key for protective IFNα/β signaling during viral central nervous system infection. . Viral Immunol. 32::16
    [Crossref] [Google Scholar]
  57. 57.
    Salas-Benito JS, De Nova-Ocampo M. 2015.. Viral interference and persistence in mosquito-borne flaviviruses. . J. Immunol. Res. 2015::873404
    [Crossref] [Google Scholar]
  58. 58.
    Piret J, Boivin G. 2022.. Viral interference between respiratory viruses. . Emerg. Infect. Dis. 28::27381
    [Crossref] [Google Scholar]
  59. 59.
    Shirata N, Ikeda M, Kobayashi M. 2010.. Identification of a Hyphantria cunea nucleopolyhedrovirus (NPV) gene that is involved in global protein synthesis shutdown and restricted Bombyx mori NPV multiplication in a B. mori cell line. . Virology 398::14957
    [Crossref] [Google Scholar]
  60. 60.
    Shinjoh M, Omoe K, Saito N, Matsuo N, Nerome K. 2000.. In vitro growth profiles of respiratory syncytial virus in the presence of influenza virus. . Acta Virol. 44::9197
    [Google Scholar]
  61. 61.
    Dee K, Goldfarb DM, Haney J, Amat JAR, Herder V, et al. 2021.. Human rhinovirus infection blocks severe acute respiratory syndrome coronavirus 2 replication within the respiratory epithelium: implications for COVID-19 epidemiology. . J. Infect. Dis. 224::3138
    [Crossref] [Google Scholar]
  62. 62.
    Essaidi-Laziosi M, Alvarez C, Puhach O, Sattonnet-Roche P, Torriani G, et al. 2022.. Sequential infections with rhinovirus and influenza modulate the replicative capacity of SARS-CoV-2 in the upper respiratory tract. . Emerg. Microbes Infect. 11::41223
    [Crossref] [Google Scholar]
  63. 63.
    Wu A, Mihaylova VT, Landry ML, Foxman EF. 2020.. Interference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study. . Lancet Microbe 1::e25462
    [Crossref] [Google Scholar]
  64. 64.
    Vignuzzi M, Lopez CB. 2019.. Defective viral genomes are key drivers of the virus–host interaction. . Nat. Microbiol. 4::107587
    [Crossref] [Google Scholar]
  65. 65.
    Genoyer E, Lopez CB. 2019.. The impact of defective viruses on infection and immunity. . Annu. Rev. Virol. 6::54766
    [Crossref] [Google Scholar]
  66. 66.
    Kilcher S, Mercer J. 2015.. DNA virus uncoating. . Virology 479–480::57890
    [Crossref] [Google Scholar]
  67. 67.
    Hall L, Rueckert RR. 1971.. Infection of mouse fibroblasts by cardioviruses: premature uncoating and its prevention by elevated pH and magnesium chloride. . Virology 43::15265
    [Crossref] [Google Scholar]
  68. 68.
    Rohrmann GF. 2019.. Baculovirus Molecular Biology. Bethesda, MD:: Natl. Cent. Biotechnol. Inf. , 4th ed..
    [Google Scholar]
  69. 69.
    Katou Y, Ikeda M, Kobayashi M. 2006.. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: defective nuclear transport of the virions. . Virology 347::45565
    [Crossref] [Google Scholar]
  70. 70.
    Pidre ML, Arrias PN, Amoros Morales LC, Romanowski V. 2022.. The magic staff: a comprehensive overview of baculovirus-based technologies applied to human and animal health. . Viruses 15::80
    [Crossref] [Google Scholar]
  71. 71.
    Shin HY, Choi H, Kim N, Park N, Kim H, et al. 2020.. Unraveling the genome-wide impact of recombinant baculovirus infection in mammalian cells for gene delivery. . Genes 11::1306
    [Crossref] [Google Scholar]
  72. 72.
    Bogdanow B, Wang X, Eichelbaum K, Sadewasser A, Husic I, et al. 2019.. The dynamic proteome of influenza A virus infection identifies M segment splicing as a host range determinant. . Nat. Commun. 10::5518
    [Crossref] [Google Scholar]
  73. 73.
    Thompson MG, Dittmar M, Mallory MJ, Bhat P, Ferretti MB, et al. 2020.. Viral-induced alternative splicing of host genes promotes influenza replication. . eLife 9::e55500
    [Crossref] [Google Scholar]
  74. 74.
    Inglis SC, Brown CM. 1984.. Differences in the control of virus mRNA splicing during permissive or abortive infection with influenza A (fowl plague) virus. . J. Gen. Virol. 65:(1):15364
    [Crossref] [Google Scholar]
  75. 75.
    Moser TS, Sabin LR, Cherry S. 2010.. RNAi screening for host factors involved in Vaccinia virus infection using Drosophila cells. . J. Vis. Exp. 42::e2137
    [Google Scholar]
  76. 76.
    Bengali Z, Satheshkumar PS, Yang Z, Weisberg AS, Paran N, Moss B. 2011.. Drosophila S2 cells are non-permissive for vaccinia virus DNA replication following entry via low pH-dependent endocytosis and early transcription. . PLOS ONE 6::e17248
    [Crossref] [Google Scholar]
  77. 77.
    DeLange AM, McFadden G. 1986.. Sequence-nonspecific replication of transfected plasmid DNA in poxvirus-infected cells. . PNAS 83::61418
    [Crossref] [Google Scholar]
  78. 78.
    Li Y, Yuan S, Moyer RW. 1998.. The non-permissive infection of insect (gypsy moth) LD-652 cells by vaccinia virus. . Virology 248::7482
    [Crossref] [Google Scholar]
  79. 79.
    Potenza MN, Lerner MR. 1991.. A recombinant vaccinia virus infects Xenopus melanophores. . Pigment Cell Res. 4::18692
    [Crossref] [Google Scholar]
  80. 80.
    Londrigan SL, Short KR, Ma J, Gillespie L, Rockman SP, et al. 2015.. Infection of mouse macrophages by seasonal influenza viruses can be restricted at the level of virus entry and at a late stage in the virus life cycle. . J. Virol. 89::1231929
    [Crossref] [Google Scholar]
  81. 81.
    Yu WC, Chan RW, Wang J, Travanty EA, Nicholls JM, et al. 2011.. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. . J. Virol. 85::684455
    [Crossref] [Google Scholar]
  82. 82.
    Li H, Wang A, Zhang Y, Wei F. 2023.. Diverse roles of lung macrophages in the immune response to influenza A virus. . Front. Microbiol. 14::1260543
    [Crossref] [Google Scholar]
  83. 83.
    Cline TD, Beck D, Bianchini E. 2017.. Influenza virus replication in macrophages: balancing protection and pathogenesis. . J. Gen. Virol. 98::240112
    [Crossref] [Google Scholar]
  84. 84.
    Bedi S, Noda T, Kawaoka Y, Ono A. 2018.. A defect in influenza A virus particle assembly specific to primary human macrophages. . mBio 9::e01916-18
    [Crossref] [Google Scholar]
  85. 85.
    Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, et al. 2010.. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. . Cell 143::789801
    [Crossref] [Google Scholar]
  86. 86.
    Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, et al. 2014.. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. . Science 343::42832
    [Crossref] [Google Scholar]
  87. 87.
    Younan P, Iampietro M, Bukreyev A. 2018.. Disabling of lymphocyte immune response by Ebola virus. . PLOS Pathog. 14::e1006932
    [Crossref] [Google Scholar]
  88. 88.
    Younan P, Santos RI, Ramanathan P, Iampietro M, Nishida A, et al. 2019.. Ebola virus-mediated T-lymphocyte depletion is the result of an abortive infection. . PLOS Pathog. 15::e1008068
    [Crossref] [Google Scholar]
  89. 89.
    Zheng J, Wang Y, Li K, Meyerholz DK, Allamargot C, Perlman S. 2021.. Severe acute respiratory syndrome coronavirus 2-induced immune activation and death of monocyte-derived human macrophages and dendritic cells. . J. Infect. Dis. 223::78595
    [Crossref] [Google Scholar]
  90. 90.
    Scheuplein VA, Seifried J, Malczyk AH, Miller L, Hocker L, et al. 2015.. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. . J. Virol. 89::385969
    [Crossref] [Google Scholar]
  91. 91.
    Londrigan SL, Wakim LM, Smith J, Haverkate AJ, Brooks AG, Reading PC. 2020. IFITM3 and type I interferons are important for the control of influenza A virus replication in murine macrophages. . Virology 540::1722
    [Crossref] [Google Scholar]
  92. 92.
    Shepherd N, Lan J, Li W, Rane S, Yu Q. 2019.. Primary human B cells at different differentiation and maturation stages exhibit distinct susceptibilities to vaccinia virus binding and infection. . J. Virol. 93:(19):e00973-19
    [Crossref] [Google Scholar]
  93. 93.
    Sarmiento M, Kleinerman ES. 1990.. Innate resistance to herpes simplex virus infection. Human lymphocyte and monocyte inhibition of viral replication. . J. Immunol. 144::194253
    [Crossref] [Google Scholar]
  94. 94.
    Engelmayer J, Larsson M, Subklewe M, Chahroudi A, Cox WI, et al. 1999.. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. . J. Immunol. 163::676268
    [Crossref] [Google Scholar]
  95. 95.
    Jenne L, Hauser C, Arrighi JF, Saurat JH, Hugin AW. 2000.. Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. . Gene Ther. 7::157583
    [Crossref] [Google Scholar]
  96. 96.
    Ioannidis LJ, Verity EE, Crawford S, Rockman SP, Brown LE. 2012.. Abortive replication of influenza virus in mouse dendritic cells. . J. Virol. 86::592225
    [Crossref] [Google Scholar]
  97. 97.
    Bender A, Albert M, Reddy A, Feldman M, Sauter B, et al. 1998.. The distinctive features of influenza virus infection of dendritic cells. . Immunobiology 198::55267
    [Crossref] [Google Scholar]
  98. 98.
    Verkhratsky A, Parpura V, Li B, Scuderi C. 2021.. Astrocytes: the housekeepers and guardians of the CNS. . Adv. Neurobiol. 26::2153
    [Crossref] [Google Scholar]
  99. 99.
    Jorgacevski J, Potokar M. 2023.. Immune functions of astrocytes in viral neuroinfections. . Int. J. Mol. Sci. 24::3514
    [Crossref] [Google Scholar]
  100. 100.
    Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, et al. 2016.. Abortively infected astrocytes appear to represent the main source of interferon beta in the virus-infected brain. . J. Virol. 90::203138
    [Crossref] [Google Scholar]
  101. 101.
    Lindqvist R, Mundt F, Gilthorpe JD, Wolfel S, Gekara NO, et al. 2016.. Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. . J. Neuroinflamm. 13::277
    [Crossref] [Google Scholar]
  102. 102.
    Tian B, Zhou M, Yang Y, Yu L, Luo Z, et al. 2017.. Lab-attenuated rabies virus causes abortive infection and induces cytokine expression in astrocytes by activating mitochondrial antiviral-signaling protein signaling pathway. . Front. Immunol. 8::2011
    [Crossref] [Google Scholar]
  103. 103.
    Bauer L, Rijsbergen LC, Leijten L, Benavides FF, Noack D, et al. 2023.. The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells. . Life Sci. Alliance 6::e202201837
    [Crossref] [Google Scholar]
  104. 104.
    Martinez-Colon GJ, Ratnasiri K, Chen H, Jiang S, Zanley E, et al. 2022.. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. . Sci. Transl. Med. 14::eabm9151
    [Crossref] [Google Scholar]
  105. 105.
    Krump NA, You J. 2018.. Molecular mechanisms of viral oncogenesis in humans. . Nat. Rev. Microbiol. 16::68498
    [Crossref] [Google Scholar]
  106. 106.
    Krump NA, You J. 2021.. From Merkel cell polyomavirus infection to Merkel cell carcinoma oncogenesis. . Front. Microbiol. 12::739695
    [Crossref] [Google Scholar]
  107. 107.
    Graham SV. 2017.. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. . Clin. Sci. 131::220121
    [Crossref] [Google Scholar]
  108. 108.
    Evande R, Rana A, Biswas-Fiss EE, Biswas SB. 2023.. Protein–DNA interactions regulate human papillomavirus DNA replication, transcription, and oncogenesis. . Int. J. Mol. Sci. 24::8493
    [Crossref] [Google Scholar]
  109. 109.
    Williams VM, Filippova M, Soto U, Duerksen-Hughes PJ. 2011.. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. . Future Virol. 6::4557
    [Crossref] [Google Scholar]
  110. 110.
    Ferber MJ, Montoya DP, Yu C, Aderca I, McGee A, et al. 2003.. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. . Oncogene 22::381320
    [Crossref] [Google Scholar]
  111. 111.
    Kamal M, Lameiras S, Deloger M, Morel A, Vacher S, et al. 2021.. Human papilloma virus (HPV) integration signature in cervical cancer: identification of MACROD2 gene as HPV hot spot integration site. . Br. J. Cancer 124::77785
    [Crossref] [Google Scholar]
  112. 112.
    Warburton A, Redmond CJ, Dooley KE, Fu H, Gillison ML, et al. 2018.. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression. . PLOS Genet. 14::e1007179
    [Crossref] [Google Scholar]
  113. 113.
    Moody C. 2017.. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. . Viruses 9::261
    [Crossref] [Google Scholar]
  114. 114.
    Sunshine JC, Jahchan NS, Sage J, Choi J. 2018.. Are there multiple cells of origin of Merkel cell carcinoma?. Oncogene 37::140916
    [Crossref] [Google Scholar]
  115. 115.
    Feng H, Shuda M, Chang Y, Moore PS. 2008.. Clonal integration of a polyomavirus in human Merkel cell carcinoma. . Science 319::1096100
    [Crossref] [Google Scholar]
  116. 116.
    Passerini S, Prezioso C, Babini G, Ferlosio A, Cosio T, et al. 2023.. Detection of Merkel cell polyomavirus (MCPyV) DNA and transcripts in Merkel cell carcinoma (MCC). . Pathogens 12::894
    [Crossref] [Google Scholar]
  117. 117.
    Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS. 2011.. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. . J. Clin. Invest. 121::362334
    [Crossref] [Google Scholar]
  118. 118.
    Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G. 2016.. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. . FEBS J. 283::100424
    [Crossref] [Google Scholar]
  119. 119.
    Musa J, Orth MF, Dallmayer M, Baldauf M, Pardo C, et al. 2016.. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. . Oncogene 35::467588
    [Crossref] [Google Scholar]
  120. 120.
    Shuda M, Feng H, Kwun HJ, Rosen ST, Gjoerup O, et al. 2008.. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. . PNAS 105::1627277
    [Crossref] [Google Scholar]
  121. 121.
    Borchert S, Czech-Sioli M, Neumann F, Schmidt C, Wimmer P, et al. 2014.. High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens. . J. Virol. 88::314460
    [Crossref] [Google Scholar]
  122. 122.
    Houben R, Adam C, Baeurle A, Hesbacher S, Grimm J, et al. 2012.. An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. . Int. J. Cancer 130::84756
    [Crossref] [Google Scholar]
  123. 123.
    Pipas JM. 2009.. SV40: cell transformation and tumorigenesis. . Virology 384::294303
    [Crossref] [Google Scholar]
  124. 124.
    Munz C. 2020.. Tumor microenvironment conditioning by abortive lytic replication of oncogenic γ-herpesviruses. . Adv. Exp. Med. Biol. 1225::12735
    [Crossref] [Google Scholar]
  125. 125.
    Okamura S, Yoshida A, Miyazato P, Matsumoto M, Ebina H. 2023.. Protocol to isolate temperature-sensitive SARS-CoV-2 mutants and identify associated mutations. . STAR Protoc. 4::102352
    [Crossref] [Google Scholar]
  126. 126.
    Garriga D, Headey S, Accurso C, Gunzburg M, Scanlon M, Coulibaly F. 2018.. Structural basis for the inhibition of poxvirus assembly by the antibiotic rifampicin. . PNAS 115::842429
    [Crossref] [Google Scholar]
  127. 127.
    Kato SE, Moussatche N, D'Costa SM, Bainbridge TW, Prins C, et al. 2008.. Marker rescue mapping of the combined Condit/Dales collection of temperature-sensitive vaccinia virus mutants. . Virology 375::21322
    [Crossref] [Google Scholar]
  128. 128.
    Deng X, Mettelman RC, O'Brien A, Thompson JA, O'Brien TE, Baker SC. 2019.. Analysis of coronavirus temperature-sensitive mutants reveals an interplay between the macrodomain and papain-like protease impacting replication and pathogenesis. . J. Virol. 93:(12):e02140-18
    [Crossref] [Google Scholar]
  129. 129.
    Eccles R. 2021.. Why is temperature sensitivity important for the success of common respiratory viruses?. Rev. Med. Virol. 31::18
    [Crossref] [Google Scholar]
  130. 130.
    Liu SW, Katsafanas GC, Liu R, Wyatt LS, Moss B. 2015.. Poxvirus decapping enzymes enhance virulence by preventing the accumulation of dsRNA and the induction of innate antiviral responses. . Cell Host Microbe 17::32031
    [Crossref] [Google Scholar]
  131. 131.
    Rempel RE, Anderson MK, Evans E, Traktman P. 1990.. Temperature-sensitive vaccinia virus mutants identify a gene with an essential role in viral replication. . J. Virol. 64::57483
    [Crossref] [Google Scholar]
  132. 132.
    Ibrahim N, Wicklund A, Jamin A, Wiebe MS. 2013.. Barrier to autointegration factor (BAF) inhibits vaccinia virus intermediate transcription in the absence of the viral B1 kinase. . Virology 444::36373
    [Crossref] [Google Scholar]
  133. 133.
    Wiebe MS, Jamin A. 2016.. The barrier to autointegration factor: interlocking antiviral defense with genome maintenance. . J. Virol. 90::38069
    [Crossref] [Google Scholar]
  134. 134.
    Wiebe MS, Traktman P. 2007.. Poxviral B1 kinase overcomes barrier to autointegration factor, a host defense against virus replication. . Cell Host Microbe 1::18797
    [Crossref] [Google Scholar]
  135. 135.
    Ibrahim N, Wicklund A, Wiebe MS. 2011.. Molecular characterization of the host defense activity of the barrier to autointegration factor against vaccinia virus. . J. Virol. 85::11588600
    [Crossref] [Google Scholar]
  136. 136.
    Lafay F. 1974.. Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V. . J. Virol. 14::122028
    [Crossref] [Google Scholar]
  137. 137.
    Kreis TE, Lodish HF. 1986.. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. . Cell 46::92937
    [Crossref] [Google Scholar]
  138. 138.
    Boncompain G, Perez F. 2013.. Fluorescence-based analysis of trafficking in mammalian cells. . Methods Cell Biol. 118::17994
    [Crossref] [Google Scholar]
  139. 139.
    Rex EA, Seo D, Gammon DB. 2018.. Arbovirus infections as screening tools for the identification of viral immunomodulators and host antiviral factors. . J. Vis. Exp. 139::e58244
    [Google Scholar]
  140. 140.
    Gammon DB, Duraffour S, Rozelle DK, Hehnly H, Sharma R, et al. 2014.. A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection. . eLife 3::e02910
    [Crossref] [Google Scholar]
  141. 141.
    Peng C, Wyatt LS, Glushakow-Smith SG, Lal-Nag M, Weisberg AS, Moss B. 2020.. Zinc-finger antiviral protein (ZAP) is a restriction factor for replication of modified vaccinia virus Ankara (MVA) in human cells. . PLOS Pathog. 16::e1008845
    [Crossref] [Google Scholar]
  142. 142.
    Panda D, Fernandez DJ, Lal M, Buehler E, Moss B. 2017.. Triad of human cellular proteins, IRF2, FAM111A, and RFC3, restrict replication of orthopoxvirus SPI-1 host-range mutants. . PNAS 114::372025
    [Crossref] [Google Scholar]
  143. 143.
    Zhu J, Gao X, Li Y, Zhang Z, Xie S, et al. 2023.. Human FAM111A inhibits vaccinia virus replication by degrading viral protein I3 and is antagonized by poxvirus host range factor SPI-1. . PNAS 120::e2304242120
    [Crossref] [Google Scholar]
  144. 144.
    Rahman MM, Bagdassarian E, Ali MAM, McFadden G. 2017.. Identification of host DEAD-box RNA helicases that regulate cellular tropism of oncolytic Myxoma virus in human cancer cells. . Sci. Rep. 7::15710
    [Crossref] [Google Scholar]
  145. 145.
    Rodriguez L, Blanco-Lobo P, Reilly EC, Maehigashi T, Nogales A, et al. 2019.. Comparative study of the temperature sensitive, cold adapted and attenuated mutations present in the master donor viruses of the two commercial human live attenuated influenza vaccines. . Viruses 11::928
    [Crossref] [Google Scholar]
  146. 146.
    Christodoulidou MM, Mabbott NA. 2023.. Efficacy of smallpox vaccines against Mpox infections in humans. . Immunother. Adv. 3::ltad020
    [Crossref] [Google Scholar]
  147. 147.
    Meseda CA, Stauft CB, Selvaraj P, Lien CZ, Pedro C, et al. 2021.. MVA vector expression of SARS-CoV-2 spike protein and protection of adult Syrian hamsters against SARS-CoV-2 challenge. . NPJ Vaccines 6::145
    [Crossref] [Google Scholar]
  148. 148.
    Cox A, Baker SF, Nogales A, Martinez-Sobrido L, Dewhurst S. 2015.. Development of a mouse-adapted live attenuated influenza virus that permits in vivo analysis of enhancements to the safety of live attenuated influenza virus vaccine. . J. Virol. 89::342126
    [Crossref] [Google Scholar]
  149. 149.
    Shan C, Xie X, Zou J, Zust R, Zhang B, et al. 2018.. Using a virion assembly-defective dengue virus as a vaccine approach. . J. Virol. 92::e01002-18
    [Crossref] [Google Scholar]
  150. 150.
    McFadden G, Pace WE, Purres J, Dales S. 1979.. Biogenesis of poxviruses: transitory expression of Molluscum contagiosum early functions. . Virology 94::297313
    [Crossref] [Google Scholar]
  151. 151.
    Jones EV, Whitaker-Dowling PA, Youngner JS. 1982.. Restriction of vesicular stomatitis virus in a nonpermissive rabbit cell line is at the level of protein synthesis. . Virology 121::2031
    [Crossref] [Google Scholar]
  152. 152.
    Morahan PS, Mama S, Anaraki F, Leary K. 1989.. Molecular localization of abortive infection of resident peritoneal macrophages by herpes simplex virus type 1. . J. Virol. 63::23007
    [Crossref] [Google Scholar]
  153. 153.
    Yu J, Li H, Jia J, Huang Z, Liu S, et al. 2022.. Pandemic influenza A (H1N1) virus causes abortive infection of primary human T cells. . Emerg. Microbes Infect. 11::1191204
    [Crossref] [Google Scholar]
  154. 154.
    Avery RJ. 1975.. Abortive infection of L cells by influenza virus: absence of virion RNA synthesis. . J. Virol. 16::31114
    [Crossref] [Google Scholar]
  155. 155.
    Zack JA, Haislip AM, Krogstad P, Chen IS. 1992.. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. . J. Virol. 66::171725
    [Crossref] [Google Scholar]
  156. 156.
    Kamiya S, Tanaka J, Ogura T, Sato H, Ogura H, et al. 1985.. Abortive infection with human cytomegalovirus induces an alteration of growth pattern: morphological changes with cytocidal effect in rabbit kidney epithelial cells. . Arch. Virol. 86::14350
    [Crossref] [Google Scholar]
  157. 157.
    Li Y, Hall RL, Moyer RW. 1997.. Transient, nonlethal expression of genes in vertebrate cells by recombinant entomopoxviruses. . J. Virol. 71::955762
    [Crossref] [Google Scholar]
  158. 158.
    Tang X, Sun P, Wang H, Cao J, Xing J, et al. 2022.. Zinc finger protein BCL11A contributes to the abortive infection of Hirame novirhabdovirus (HIRRV) in B lymphocytes of flounder (Paralichthys olivaceus). . J. Virol. 96::e0147022
    [Crossref] [Google Scholar]
  159. 159.
    Makris S, Bajorek M, Culley FJ, Goritzka M, Johansson C. 2016.. Alveolar macrophages can control respiratory syncytial virus infection in the absence of type I interferons. . J. Innate Immun. 8::45263
    [Crossref] [Google Scholar]
  160. 160.
    Liu R, Mendez-Rios JD, Peng C, Xiao W, Weisberg AS, et al. 2019.. SPI-1 is a missing host-range factor required for replication of the attenuated modified vaccinia Ankara (MVA) vaccine vector in human cells. . PLOS Pathog. 15::e1007710
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100422-023037
Loading
/content/journals/10.1146/annurev-virology-100422-023037
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error