1932

Abstract

As obligate intracellular parasites, all viruses must co-opt cellular machinery to facilitate their own replication. Viruses often co-opt these cellular pathways and processes through physical interactions between viral and host proteins. In addition to facilitating fundamental aspects of virus replication cycles, these virus-host protein interactions can also disrupt physiological functions of host proteins, causing disease that can be advantageous to the virus or simply a coincidence. Consequently, unraveling virus-host protein interactions can serve as a window into molecular mechanisms of virus replication and pathogenesis. Identifying virus-host protein interactions using unbiased systems biology approaches provides an avenue for hypothesis generation. This review highlights common systems biology approaches for identification of virus-host protein interactions and the mechanistic insights revealed by these methods. We also review conceptual innovations using comparative and integrative systems biology that can leverage global virus-host protein interaction data sets to more rapidly move from hypothesis generation to mechanism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100520-011851
2022-09-29
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-100520-011851.html?itemId=/content/journals/10.1146/annurev-virology-100520-011851&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fields S, Song O. 1989. A novel genetic system to detect protein–protein interactions. Nature 340:6230245–46
    [Crossref] [Google Scholar]
  2. 2.
    Johnsson N, Varshavsky A. 1994. Split ubiquitin as a sensor of protein interactions in vivo. PNAS 91:2210340–44
    [Crossref] [Google Scholar]
  3. 3.
    Iyer K, Bürkle L, Auerbach D, Thaminy S, Dinkel M et al. 2005. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci. STKE 2005 275pl3
    [Google Scholar]
  4. 4.
    Yachie N, Petsalaki E, Mellor JC, Weile J, Jacob Y et al. 2016. Pooled-matrix protein interaction screens using Barcode Fusion Genetics. Mol. Syst. Biol. 12:4863
    [Crossref] [Google Scholar]
  5. 5.
    Trigg SA, Garza RM, MacWilliams A, Nery JR, Bartlett A et al. 2017. CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nat. Methods 14:8819–25
    [Crossref] [Google Scholar]
  6. 6.
    Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A et al. 2007. Epstein-Barr virus and virus human protein interaction maps. PNAS 104:187606–11
    [Crossref] [Google Scholar]
  7. 7.
    Lemasson M, Caignard G, Unterfinger Y, Attoui H, Bell-Sakyi L et al. 2021. Exploration of binary protein–protein interactions between tick-borne flaviviruses and Ixodes ricinus. Parasites Vectors 14:1144
    [Crossref] [Google Scholar]
  8. 8.
    Zhang X, Fei D, Sun L, Li M, Ma Y et al. 2019. Identification of the novel host protein interacting with the structural protein VP1 of Chinese sacbrood virus by yeast two-hybrid screening. Front. Microbiol. 10: 2192.
    [Google Scholar]
  9. 9.
    Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M et al. 1996. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. PNAS 93:2514440–45
    [Crossref] [Google Scholar]
  10. 10.
    De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B et al. 2016. The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLOS Pathog 12:8e1005841
    [Crossref] [Google Scholar]
  11. 11.
    Hafirassou ML, Meertens L, Umaña-Diaz C, Labeau A, Dejarnac O et al. 2017. A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep 21:133900–13
    [Crossref] [Google Scholar]
  12. 12.
    Luo Y, Jacobs EY, Greco TM, Mohammed KD, Tong T et al. 2016. HIV–host interactome revealed directly from infected cells. Nat. Microbiol. 1:716068
    [Crossref] [Google Scholar]
  13. 13.
    Cristea IM, Rozjabek H, Molloy KR, Karki S, White LL et al. 2010. Host factors associated with the Sindbis virus RNA-dependent RNA polymerase: role for G3BP1 and G3BP2 in virus replication. J. Virol. 84:136720–32
    [Crossref] [Google Scholar]
  14. 14.
    Cristea IM, Moorman NJ, Terhune SS, Cuevas CD, O'Keefe ES et al. 2010. Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J. Virol. 84:157803–14
    [Crossref] [Google Scholar]
  15. 15.
    Li T, Chen J, Cristea IM 2013. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 14:5591–99
    [Crossref] [Google Scholar]
  16. 16.
    Cristea IM, Carroll J-WN, Rout MP, Rice CM, Chait BT, MacDonald MR. 2006. Tracking and elucidating Alphavirus-host protein interactions. J. Biol. Chem. 281:4030269–78
    [Crossref] [Google Scholar]
  17. 17.
    Zhang W, Du J, Evans SL, Yu Y, Yu X-F. 2012. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481:7381376–7
    [Crossref] [Google Scholar]
  18. 18.
    Heaton NS, Perera R, Berger KL, Khadka S, LaCount DJ et al. 2010. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. PNAS 107:4017345–50
    [Crossref] [Google Scholar]
  19. 19.
    Lin AE, Greco TM, Döhner K, Sodeik B, Cristea IM. 2013. A proteomic perspective of inbuilt viral protein regulation: pUL46 tegument protein is targeted for degradation by ICP0 during herpes simplex virus type 1 infection. Mol. Cell. Proteom. 12:113237–52
    [Crossref] [Google Scholar]
  20. 20.
    Betsinger CN, Jankowski CSR, Hofstadter WA, Federspiel JD, Otter CJ et al. 2021. The human cytomegalovirus protein pUL13 targets mitochondrial cristae architecture to increase cellular respiration during infection. PNAS 118:32e2101675118
    [Crossref] [Google Scholar]
  21. 21.
    Bartuli J, Lorenzi I, Backes S, Grimm C, Fischer U. 2022. A generic protocol for the affinity-purification of native macromolecular complexes from poxvirus-infected cells. STAR Protoc 3:1101116
    [Crossref] [Google Scholar]
  22. 22.
    Grimm C, Hillen HS, Bedenk K, Bartuli J, Neyer S et al. 2019. Structural basis of poxvirus transcription: vaccinia RNA polymerase complexes. Cell 179:71537–50.e19
    [Crossref] [Google Scholar]
  23. 23.
    Kumar A, Salemi M, Bhullar R, Guevara-Plunkett S, Lyu Y et al. 2021. Proximity biotin labeling reveals Kaposi's sarcoma-associated herpesvirus interferon regulatory factor networks. J. Virol. 95:9e02049–20
    [Crossref] [Google Scholar]
  24. 24.
    Rozenblatt-Rosen O, Deo RC, Padi M, Adelmant G, Calderwood MA et al. 2012. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487:7408491–95
    [Crossref] [Google Scholar]
  25. 25.
    Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE et al. 2012. Global landscape of HIV–human protein complexes. Nature 481:7381365–70
    [Crossref] [Google Scholar]
  26. 26.
    Pichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R et al. 2012. Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487:7408486–90
    [Crossref] [Google Scholar]
  27. 27.
    Jäger S, Kim DY, Hultquist JF, Shindo K, LaRue RS et al. 2011. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481:7381371–75
    [Crossref] [Google Scholar]
  28. 28.
    Choi-Rhee E, Schulman H, Cronan JE. 2004. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci 13:113043–50
    [Crossref] [Google Scholar]
  29. 29.
    Roux KJ, Kim DI, Raida M, Burke B. 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:6801–10
    [Crossref] [Google Scholar]
  30. 30.
    Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH et al. 2015. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12:151–54
    [Crossref] [Google Scholar]
  31. 31.
    Kim DI, Jensen SC, Noble KA, Kc B, Roux KH et al. 2016. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27:81188–96
    [Crossref] [Google Scholar]
  32. 32.
    Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T et al. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36:9880–87
    [Crossref] [Google Scholar]
  33. 33.
    Gaucherand L, Porter BK, Levene RE, Price EL, Schmaling SK et al. 2019. The influenza A virus endoribonuclease PA-X usurps host mRNA processing machinery to limit host gene expression. Cell Rep 27:3776–92.e7
    [Crossref] [Google Scholar]
  34. 34.
    Dong S, Wang R, Yu R, Chen B, Si F et al. 2021. Identification of cellular proteins interacting with PEDV M protein through APEX2 labeling. J. Proteom. 240:104191
    [Crossref] [Google Scholar]
  35. 35.
    V'kovski P, Gerber M, Kelly J, Pfaender S, Ebert N et al. 2019. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. eLife 8:e42037
    [Crossref] [Google Scholar]
  36. 36.
    Nkosi D, Sun L, Duke LC, Patel N, Surapaneni SK et al. 2020. Epstein-Barr virus LMP1 promotes syntenin-1- and Hrs-induced extracellular vesicle formation for its own secretion to increase cell proliferation and migration. mBio 11:3e00589–20
    [Crossref] [Google Scholar]
  37. 37.
    Boruchowicz H, Hawkins J, Cruz-Palomar K, Lippé R. 2020. The XPO6 exportin mediates herpes simplex virus 1 gM nuclear release late in infection. J. Virol. 94:21e00753–20
    [Crossref] [Google Scholar]
  38. 38.
    Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y et al. 2019. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat. Commun. 10:1 3252.
    [Google Scholar]
  39. 39.
    Liu X, Huuskonen S, Laitinen T, Redchuk T, Bogacheva M et al. 2021. SARS-CoV-2–host proteome interactions for antiviral drug discovery. Mol. Syst. Biol. 17:11e10396
    [Crossref] [Google Scholar]
  40. 40.
    Coyaud E, Ranadheera C, Cheng D, Gonçalves J, Dyakov BJA et al. 2018. Global interactomics uncovers extensive organellar targeting by Zika virus. Mol. Cell. Proteom. 17:112242–55
    [Crossref] [Google Scholar]
  41. 41.
    Mellacheruvu D, Wright Z, Couzens AL, Lambert J-P, St-Denis NA et al. 2013. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat. Methods 10:8730–36
    [Crossref] [Google Scholar]
  42. 42.
    Davis ZH, Verschueren E, Jang GM, Kleffman K, Johnson JR et al. 2015. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol. Cell 57:2349–60
    [Crossref] [Google Scholar]
  43. 43.
    Choi H, Larsen B, Lin Z-Y, Breitkreutz A, Mellacheruvu D et al. 2011. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat. Methods 8:170–73
    [Crossref] [Google Scholar]
  44. 44.
    Teo G, Koh H, Fermin D, Lambert J-P, Knight JDR et al. 2016. SAINTq: scoring protein-protein interactions in affinity purification–mass spectrometry experiments with fragment or peptide intensity data. Proteomics 16:15–162238–45
    [Crossref] [Google Scholar]
  45. 45.
    Kane JR, Stanley DJ, Hultquist JF, Johnson JR, Mietrach N et al. 2015. Lineage-specific viral hijacking of non-canonical E3 ubiquitin ligase cofactors in the evolution of Vif anti-APOBEC3 activity. Cell Rep 11:81236–50
    [Crossref] [Google Scholar]
  46. 46.
    Gestuveo RJ, Royle J, Donald CL, Lamont DJ, Hutchinson EC et al. 2021. Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat. Commun. 12:12766
    [Crossref] [Google Scholar]
  47. 47.
    Contu L, Balistreri G, Domanski M, Uldry A-C, Mühlemann O. 2021. Characterisation of the Semliki Forest virus-host cell interactome reveals the viral capsid protein as an inhibitor of nonsense-mediated mRNA decay. PLOS Pathog 17:5e1009603
    [Crossref] [Google Scholar]
  48. 48.
    DeBlasio SL, Johnson R, Mahoney J, Karasev A, Gray SM et al. 2015. Insights into the polerovirus–plant interactome revealed by coimmunoprecipitation and mass spectrometry. MPMI 28:4467–81
    [Crossref] [Google Scholar]
  49. 49.
    Lum KK, Song B, Federspiel JD, Diner BA, Howard T, Cristea IM. 2018. Interactome and proteome dynamics uncover immune modulatory associations of the pathogen sensing factor cGAS. Cell Syst. 7:6627–42.e6
    [Crossref] [Google Scholar]
  50. 50.
    Hüttenhain R, Xu J, Burton LA, Gordon DE, Hultquist JF et al. 2019. ARIH2 is a Vif-dependent regulator of CUL5-mediated APOBEC3G degradation in HIV infection. Cell Host Microbe 26:186–99.e7
    [Crossref] [Google Scholar]
  51. 51.
    Nobre LV, Nightingale K, Ravenhill BJ, Antrobus R, Soday L et al. 2019. Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions. eLife 8:e49894
    [Crossref] [Google Scholar]
  52. 52.
    Tan CSH, Go KD, Bisteau X, Dai L, Yong CH et al. 2018. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 359:63801170–77
    [Crossref] [Google Scholar]
  53. 53.
    Justice JL, Kennedy MA, Hutton JE, Liu D, Song B et al. 2021. Systematic profiling of protein complex dynamics reveals DNA-PK phosphorylation of IFI16 en route to herpesvirus immunity. Sci. Adv. 7:25eabg6680
    [Crossref] [Google Scholar]
  54. 54.
    Johnson KL, Qi Z, Yan Z, Wen X, Nguyen TC et al. 2021. Revealing protein-protein interactions at the transcriptome scale by sequencing. Mol. Cell 81:194091–103.e9
    [Crossref] [Google Scholar]
  55. 55.
    Shah PS, Link N, Jang GM, Sharp PP, Zhu T et al. 2018. Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175:71931–45.e18
    [Crossref] [Google Scholar]
  56. 56.
    Scaturro P, Stukalov A, Haas DA, Cortese M, Draganova K et al. 2018. An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature 561:7722253–57
    [Crossref] [Google Scholar]
  57. 57.
    Zeng J, Dong S, Luo Z, Xie X, Fu B et al. 2020. The Zika virus capsid disrupts corticogenesis by suppressing Dicer activity and miRNA biogenesis. Cell Stem Cell 27:4618–32.e9
    [Crossref] [Google Scholar]
  58. 58.
    Hueffer K, Parker JSL, Weichert WS, Geisel RE, Sgro J-Y, Parrish CR. 2003. The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J. Virol. 77:31718–26
    [Crossref] [Google Scholar]
  59. 59.
    Sawyer SL, Wu LI, Emerman M, Malik HS. 2005. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. PNAS 102:82832–37
    [Crossref] [Google Scholar]
  60. 60.
    Stremlau M, Perron M, Lee M, Li Y, Song B et al. 2006. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. PNAS 103:145514–19
    [Crossref] [Google Scholar]
  61. 61.
    Park C, Peng C, Rahman MJ, Haller SL, Tazi L et al. 2021. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLOS Pathog. 17:1e1009183
    [Crossref] [Google Scholar]
  62. 62.
    Liang Y, Gao X-W. 2017. The cuticle protein gene MPCP4 of Myzus persicae (Homoptera: Aphididae) plays a critical role in Cucumber mosaic virus acquisition. J. Econ. Entomol. 110:3848–53
    [Crossref] [Google Scholar]
  63. 63.
    Perry KL, Zhang L, Palukaitis P. 1998. Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii. Virology 242:1204–10
    [Crossref] [Google Scholar]
  64. 64.
    Diep J, Ooi YS, Wilkinson AW, Peters CE, Foy E et al. 2019. Enterovirus pathogenesis requires the host methyltransferase SETD3. Nat. Microbiol. 4:122523–37
    [Crossref] [Google Scholar]
  65. 65.
    Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S et al. 2020. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 370:6521eabe9403
    [Crossref] [Google Scholar]
  66. 66.
    Ramage H, Cherry S. 2015. Virus-host interactions: from unbiased genetic screens to function. Annu. Rev. Virol. 2:497–524
    [Crossref] [Google Scholar]
  67. 67.
    Watanabe T, Kawakami E, Shoemaker JE, Lopes TJS, Matsuoka Y et al. 2014. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16:6795–805
    [Crossref] [Google Scholar]
  68. 68.
    Li M, Johnson JR, Truong B, Kim G, Weinbren N et al. 2019. Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection. Nat. Microbiol. 4:6985–95
    [Crossref] [Google Scholar]
  69. 69.
    Ramage HR, Kumar GR, Verschueren E, Johnson JR, Von Dollen J et al. 2015. A combined proteomics/genomics approach links hepatitis C virus infection with nonsense-mediated mRNA decay. Mol. Cell 57:2329–40
    [Crossref] [Google Scholar]
  70. 70.
    Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J et al. 2010. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 29:5943–55
    [Crossref] [Google Scholar]
  71. 71.
    Giraldo MI, Xia H, Aguilera-Aguirre L, Hage A, van Tol S et al. 2020. Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature 585:7825414–19
    [Crossref] [Google Scholar]
  72. 72.
    Huffmaster NJ, Sollars PJ, Richards AL, Pickard GE, Smith GA. 2015. Dynamic ubiquitination drives herpesvirus neuroinvasion. PNAS 112:4112818–23
    [Crossref] [Google Scholar]
  73. 73.
    Howard TR, Crow MS, Greco TM, Lum KK, Li T, Cristea IM. 2021. The DNA sensor IFIX drives proteome alterations to mobilize nuclear and cytoplasmic antiviral responses, with its acetylation acting as a localization toggle. mSystems 6:3e0039721
    [Crossref] [Google Scholar]
  74. 74.
    Kim W, Bennett EJ, Huttlin EL, Guo A, Li J et al. 2011. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44:2325–40
    [Crossref] [Google Scholar]
  75. 75.
    Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM et al. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20:3301–5
    [Crossref] [Google Scholar]
  76. 76.
    Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:5942834–40
    [Crossref] [Google Scholar]
  77. 77.
    Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR et al. 2013. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods 10:7634–37
    [Crossref] [Google Scholar]
  78. 78.
    Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV et al. 2020. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182:3685–712.e19
    [Crossref] [Google Scholar]
  79. 79.
    Ivanov A, Ramanathan P, Parry C, Ilinykh PA, Lin X et al. 2020. Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cell. Mol. Life Sci. 77:132579–603
    [Crossref] [Google Scholar]
  80. 80.
    Wojcechowskyj JA, Didigu CA, Lee JY, Parrish NF, Sinha R et al. 2013. Quantitative phosphoproteomics reveals extensive cellular reprogramming during HIV-1 entry. Cell Host Microbe 13:5613–23
    [Crossref] [Google Scholar]
  81. 81.
    Stukalov A, Girault V, Grass V, Karayel O, Bergant V et al. 2021. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature 594:7862246–52
    [Crossref] [Google Scholar]
  82. 82.
    Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D et al. 2014. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 157:61460–72
    [Crossref] [Google Scholar]
  83. 83.
    Ersing I, Nobre L, Wang LW, Soday L, Ma Y et al. 2017. A temporal proteomic map of Epstein-Barr virus lytic replication in B cells. Cell Rep 19:71479–93
    [Crossref] [Google Scholar]
  84. 84.
    Ponia SS, Robertson SJ, McNally KL, Subramanian G, Sturdevant GL et al. 2021. Mitophagy antagonism by ZIKV reveals Ajuba as a regulator of PINK1 signaling, PKR-dependent inflammation, and viral invasion of tissues. Cell Rep 37:4109888
    [Crossref] [Google Scholar]
  85. 85.
    Kim S-J, Syed GH, Khan M, Chiu W-W, Sohail MA et al. 2014. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. PNAS 111:176413–18
    [Crossref] [Google Scholar]
  86. 86.
    Nightingale K, Lin K-M, Ravenhill BJ, Davies C, Nobre L et al. 2018. High-definition analysis of host protein stability during human cytomegalovirus infection reveals antiviral factors and viral evasion mechanisms. Cell Host Microbe 24:3447–60.e11
    [Crossref] [Google Scholar]
  87. 87.
    Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y et al. 2021. Subcellular proteomics. Nat. Rev. Methods Primers 1:32
    [Crossref] [Google Scholar]
  88. 88.
    Lundberg E, Borner GHH. 2019. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20:5285–302
    [Crossref] [Google Scholar]
  89. 89.
    Borner GHH. 2020. Organellar maps through proteomic profiling—a conceptual guide. Mol. Cell Proteom. 19:71076–87
    [Crossref] [Google Scholar]
  90. 90.
    Jean Beltran PM, Mathias RA, Cristea IM 2016. A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst 3:4361–73.e6
    [Crossref] [Google Scholar]
  91. 91.
    Petit MJ, Kenaston MW, Pham OH, Nagainis AA, Fishburn AT, Shah PS. 2021. Nuclear dengue virus NS5 antagonizes expression of PAF1-dependent immune response genes. PLOS Pathog 17:11e1010100
    [Crossref] [Google Scholar]
  92. 92.
    Greninger AL, Knudsen GM, Betegon M, Burlingame AL, Derisi JL. 2012. The 3A protein from multiple picornaviruses utilizes the Golgi adaptor protein ACBD3 to recruit PI4KIIIβ. J. Virol. 86:73605–16
    [Crossref] [Google Scholar]
  93. 93.
    Chan YK, Gack MU. 2016. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat. Immunol. 17:5523–30
    [Crossref] [Google Scholar]
  94. 94.
    Wang B, Thurmond S, Zhou K, Sánchez-Aparicio MT, Fang J et al. 2020. Structural basis for STAT2 suppression by flavivirus NS5. Nat. Struct. Mol. Biol. 27:10875–85
    [Crossref] [Google Scholar]
  95. 95.
    Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583:7816459–68
    [Crossref] [Google Scholar]
  96. 96.
    Källberg M, Wang H, Wang S, Peng J, Wang Z et al. 2012. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7:81511–22
    [Crossref] [Google Scholar]
  97. 97.
    Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C et al. 2001. Rosetta in CASP4: progress in ab initio protein structure prediction. Proteins 5:Suppl.119–26
    [Crossref] [Google Scholar]
  98. 98.
    Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5:4725–38
    [Crossref] [Google Scholar]
  99. 99.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:6845–58
    [Crossref] [Google Scholar]
  100. 100.
    Kim DE, Chivian D, Baker D. 2004. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:Suppl.W526–31
    [Crossref] [Google Scholar]
  101. 101.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:7873583–89
    [Crossref] [Google Scholar]
  102. 102.
    Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. 2021. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins 89:121607–17
    [Crossref] [Google Scholar]
  103. 103.
    Evans R, O'Neill M, Pritzel A, Antropova N, Senior A et al. 2021. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021.10.04.463034. https://doi.org/10.1101/2021.10.04.463034
    [Crossref]
  104. 104.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:6557871–76
    [Crossref] [Google Scholar]
  105. 105.
    Zhang QC, Petrey D, Garzón JI, Deng L, Honig B. 2013. PrePPI: a structure-informed database of protein–protein interactions. Nucleic Acids Res 41:D1D828–33
    [Crossref] [Google Scholar]
  106. 106.
    Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O et al. 2019. A structure-informed atlas of human-virus interactions. Cell 178:61526–41.e16
    [Crossref] [Google Scholar]
  107. 107.
    Zhang R, Earnest JT, Kim AS, Winkler ES, Desai P et al. 2019. Expression of the Mxra8 receptor promotes alphavirus infection and pathogenesis in mice and Drosophila. Cell Rep 28:102647–58.e5
    [Crossref] [Google Scholar]
  108. 108.
    Liu W-H, Lin Y-L, Wang J-P, Liou W, Hou RF et al. 2006. Restriction of vaccinia virus replication by a ced-3 and ced-4-dependent pathway in Caenorhabditis elegans. PNAS 103:114174–79
    [Crossref] [Google Scholar]
  109. 109.
    Palha N, Guivel-Benhassine F, Briolat V, Lutfalla G, Sourisseau M et al. 2013. Real-time whole-body visualization of chikungunya virus infection and host interferon response in zebrafish. PLOS Pathog 9:9e1003619
    [Crossref] [Google Scholar]
  110. 110.
    Lu J-W, Yang W-Y, Lin Y-M, Jin S-LC, Yuh C-H 2013. Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta Histochem 115:7728–39
    [Crossref] [Google Scholar]
  111. 111.
    Shieh Y-S, Chang Y-S, Hong J-R, Chen L-J, Jou L-K et al. 2010. Increase of hepatic fat accumulation by liver specific expression of hepatitis B virus X protein in zebrafish. Biochim. Biophys. Acta 1801:7721–30
    [Crossref] [Google Scholar]
  112. 112.
    Liu W, Chen J-R, Hsu C-H, Li Y-H, Chen Y-M et al. 2012. A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56:62268–76
    [Crossref] [Google Scholar]
  113. 113.
    Cazorla-Vázquez S, Steingruber M, Marschall M, Engel FB. 2019. Human cytomegaloviral multifunctional protein kinase pUL97 impairs zebrafish embryonic development and increases mortality. Sci. Rep. 9:1 7219.
    [Crossref] [Google Scholar]
  114. 114.
    Steinberg R, Shemer-Avni Y, Adler N, Neuman-Silberberg S. 2008. Human cytomegalovirus immediate-early-gene expression disrupts embryogenesis in transgenic Drosophila. Transgenic Res 17:1105–19
    [Crossref] [Google Scholar]
  115. 115.
    Crook H, Raza S, Nowell J, Young M, Edison P 2021. Long covid—mechanisms, risk factors, and management. BMJ 374:n1648
    [Crossref] [Google Scholar]
  116. 116.
    Yang S, Tian M, Johnson AN. 2020. SARS-CoV-2 protein ORF3a is pathogenic in Drosophila and causes phenotypes associated with COVID-19 post-viral syndrome. bioRxiv 2020.12.20.423533. https://doi.org/10.1101/2020.12.20.423533
    [Crossref]
  117. 117.
    Link N, Chung H, Jolly A, Withers M, Tepe B et al. 2019. Mutations in ANKLE2, a ZIKA virus target, disrupt an asymmetric cell division pathway in Drosophila neuroblasts to cause microcephaly. Dev. Cell 51:6713–29.e6
    [Crossref] [Google Scholar]
  118. 118.
    Yoon K-J, Song G, Qian X, Pan J, Xu D et al. 2017. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21:3349–58.e6
    [Crossref] [Google Scholar]
  119. 119.
    Eckhardt M, Zhang W, Gross AM, Von Dollen J, Johnson JR et al. 2018. Multiple routes to oncogenesis are promoted by the human papillomavirus–host protein network. Cancer Discov 8:111474–89
    [Crossref] [Google Scholar]
  120. 120.
    Burk RD, Chen Z, Saller C, Tarvin K, Carvalho AL et al. 2017. Integrated genomic and molecular characterization of cervical cancer. Nature 543:7645378–84
    [Crossref] [Google Scholar]
  121. 121.
    Cancer Genome Atlas Netw 2015. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:7536576–82
    [Crossref] [Google Scholar]
  122. 122.
    Yamamoto S, Jaiswal M, Charng W-L, Gambin T, Karaca E et al. 2014. A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159:1200–14
    [Crossref] [Google Scholar]
  123. 123.
    Shaheen R, Maddirevula S, Ewida N, Alsahli S, Abdel-Salam GMH et al. 2019. Genomic and phenotypic delineation of congenital microcephaly. Genet. Med. 21:3545–52
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-100520-011851
Loading
/content/journals/10.1146/annurev-virology-100520-011851
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error