1932

Abstract

Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041429
2019-09-29
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-101416-041429.html?itemId=/content/journals/10.1146/annurev-virology-101416-041429&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Raoult D, Forterre P. 2008. Redefining viruses: lessons from Mimivirus. Nat. Rev. Microbiol. 6:315–19
    [Google Scholar]
  2. 2. 
    Edwards RA, Rohwer F. 2005. Viral metagenomics. Nat. Rev. Microbiol. 3:504–10
    [Google Scholar]
  3. 3. 
    Iwasaki A, Pillai PS. 2014. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14:315–28
    [Google Scholar]
  4. 4. 
    Paules C, Subbarao K. 2017. Influenza. Lancet 390:697–708
    [Google Scholar]
  5. 5. 
    Sharp PM, Hahn BH. 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1:a006841
    [Google Scholar]
  6. 6. 
    de Wit E, van Doremalen N, Falzarano D, Munster VJ 2016. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14:523–34
    [Google Scholar]
  7. 7. 
    Stokstad E. 2017. Taming rabies. Science 355:238–42
    [Google Scholar]
  8. 8. 
    Lawrence P, Danet N, Reynard O, Volchkova V, Volchkov V 2017. Human transmission of Ebola virus. Curr. Opin. Virol. 22:51–58
    [Google Scholar]
  9. 9. 
    Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M et al. 2016. International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat. Med. 22:839–50
    [Google Scholar]
  10. 10. 
    Cary DC, Peterlin BM. 2016. Targeting the latent reservoir to achieve functional HIV cure. F1000Research 5:1009
    [Google Scholar]
  11. 11. 
    Srinivas M, Aarntzen EH, Bulte JW, Oyen WJ, Heerschap A et al. 2010. Imaging of cellular therapies. Adv. Drug Deliv. Rev. 62:1080–93
    [Google Scholar]
  12. 12. 
    Kieffer C, Ladinsky MS, Ninh A, Galimidi RP, Bjorkman PJ 2017. Longitudinal imaging of HIV-1 spread in humanized mice with parallel 3D immunofluorescence and electron tomography. eLife 6:e23282
    [Google Scholar]
  13. 13. 
    Lauber DT, Fulop A, Kovacs T, Szigeti K, Mathe D, Szijarto A 2017. State of the art in vivo imaging techniques for laboratory animals. Lab. Anim. 51:465–78
    [Google Scholar]
  14. 14. 
    Cherry SR, Gambhir SS. 2001. Use of positron emission tomography in animal research. ILAR J 42:219–32
    [Google Scholar]
  15. 15. 
    Kittel C, Sereinig S, Ferko B, Stasakova J, Romanova J et al. 2004. Rescue of influenza virus expressing GFP from the NS1 reading frame. Virology 324:67–73
    [Google Scholar]
  16. 16. 
    Beigel J, Bray M. 2008. Current and future antiviral therapy of severe seasonal and avian influenza. Antivir. Res. 78:91–102
    [Google Scholar]
  17. 17. 
    Purcell WM, Hanahoe TH. 1990. Differential release of histamine and 5-hydroxytryptamine from rat mast cells: the contribution of amine uptake to the apparent pattern of secretion. Agents Actions 30:38–40
    [Google Scholar]
  18. 18. 
    Wu AM. 2009. Antibodies and antimatter: the resurgence of immuno-PET. J. Nucl. Med. 50:2–5
    [Google Scholar]
  19. 19. 
    Cherry SR. 2004. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys. Med. Biol. 49:R13–48
    [Google Scholar]
  20. 20. 
    Gibbons AE, Luker KE, Luker GD 2018. Dual reporter bioluminescence imaging with NanoLuc and firefly luciferase. Methods Mol. Biol. 1790:41–50
    [Google Scholar]
  21. 21. 
    Zhao H, Doyle TC, Coquoz O, Kalish F, Rice BW, Contag CH 2005. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J. Biomed. Opt 10:041210
    [Google Scholar]
  22. 22. 
    Zelmer A, Ward TH. 2013. Noninvasive fluorescence imaging of small animals. J. Microsc. 252:8–15
    [Google Scholar]
  23. 23. 
    Sumen C, Mempel TR, Mazo IB, von Andrian UH 2004. Intravital microscopy: visualizing immunity in context. Immunity 21:315–29
    [Google Scholar]
  24. 24. 
    Power RM, Huisken J. 2017. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14:360–73
    [Google Scholar]
  25. 25. 
    Wang F, Flanagan J, Su N, Wang LC, Bui S et al. 2012. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14:22–29
    [Google Scholar]
  26. 26. 
    Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP et al. 2016. Defining HIV and SIV reservoirs in lymphoid tissues. Pathog. Immun. 1:68–106
    [Google Scholar]
  27. 27. 
    Deleage C, Chan CN, Busman-Sahay K, Estes JD 2018. Next-generation in situ hybridization approaches to define and quantify HIV and SIV reservoirs in tissue microenvironments. Retrovirology 15:4
    [Google Scholar]
  28. 28. 
    Frangioni JV. 2008. New technologies for human cancer imaging. J. Clin. Oncol. 26:4012–21
    [Google Scholar]
  29. 29. 
    Estes JD, Wong SW, Brenchley JM 2018. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 18:390–404
    [Google Scholar]
  30. 30. 
    Wagar LE, DiFazio RM, Davis MM 2018. Advanced model systems and tools for basic and translational human immunology. Genome Med 10:73
    [Google Scholar]
  31. 31. 
    Veazey RS, Lackner AA. 2017. Nonhuman primate models and understanding the pathogenesis of HIV infection and AIDS. ILAR J 58:160–71
    [Google Scholar]
  32. 32. 
    Lai F, Chen Q. 2018. Humanized mouse models for the study of infection and pathogenesis of human viruses. Viruses 10:643
    [Google Scholar]
  33. 33. 
    Brehm MA, Wiles MV, Greiner DL, Shultz LD 2014. Generation of improved humanized mouse models for human infectious diseases. J. Immunol. Methods 410:3–17
    [Google Scholar]
  34. 34. 
    Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV et al. 2014. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32:364–72
    [Google Scholar]
  35. 35. 
    Li Y, Masse-Ranson G, Garcia Z, Bruel T, Kok A et al. 2018. A human immune system mouse model with robust lymph node development. Nat. Methods 15:623–30
    [Google Scholar]
  36. 36. 
    Baron S, Fons M, Albrecht T 1996. Viral pathogenesis. Medical Microbiology S Baron Galveston, TX: Univ. Texas, 4th ed..
    [Google Scholar]
  37. 37. 
    Esposito AM, Cheung P, Swartz TH, Li H, Tsibane T et al. 2016. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry. Virology 490:6–16
    [Google Scholar]
  38. 38. 
    Li Y, Li LF, Yu S, Wang X, Zhang L et al. 2016. Applications of replicating-competent reporter-expressing viruses in diagnostic and molecular virology. Viruses 8:127
    [Google Scholar]
  39. 39. 
    Sattentau Q. 2008. Avoiding the void: cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 6:815–26
    [Google Scholar]
  40. 40. 
    Bird SW, Kirkegaard K. 2015. Escape of non-enveloped virus from intact cells. Virology 479–480:444–49
    [Google Scholar]
  41. 41. 
    Law KM, Satija N, Esposito AM, Chen BK 2016. Cell-to-cell spread of HIV and viral pathogenesis. Adv. Virus Res. 95:43–85
    [Google Scholar]
  42. 42. 
    Bracq L, Xie M, Benichou S, Bouchet J 2018. Mechanisms for cell-to-cell transmission of HIV-1. Front. Immunol. 9:260
    [Google Scholar]
  43. 43. 
    Pais-Correia AM, Sachse M, Guadagnini S, Robbiati V, Lasserre R et al. 2010. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 16:83–89
    [Google Scholar]
  44. 44. 
    Santangelo PJ, Rogers KA, Zurla C, Blanchard EL, Gumber S et al. 2015. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat. Methods 12:427–32
    [Google Scholar]
  45. 45. 
    Farrell HE, Davis-Poynter N, Bruce K, Lawler C, Dolken L et al. 2015. Lymph node macrophages restrict murine cytomegalovirus dissemination. J. Virol. 89:7147–58
    [Google Scholar]
  46. 46. 
    Luker KE, Luker GD. 2010. Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antivir. Res. 86:93–100
    [Google Scholar]
  47. 47. 
    Tan CS, Lawler C, May JS, Belz GT, Stevenson PG 2016. Type I interferons direct gammaherpesvirus host colonization. PLOS Pathog 12:e1005654
    [Google Scholar]
  48. 48. 
    Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E et al. 2018. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight 3:e120360
    [Google Scholar]
  49. 49. 
    Byrareddy SN, Arthos J, Cicala C, Villinger F, Ortiz KT et al. 2016. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science 354:197–202
    [Google Scholar]
  50. 50. 
    Santangelo PJ, Cicala C, Byrareddy SN, Ortiz KT, Little D et al. 2018. Early treatment of SIV+ macaques with an α4β7 mAb alters virus distribution and preserves CD4+ T cells in later stages of infection. Mucosal Immunol 11:932–46
    [Google Scholar]
  51. 51. 
    Kircher MF, Hricak H, Larson SM 2012. Molecular imaging for personalized cancer care. Mol. Oncol. 6:182–95
    [Google Scholar]
  52. 52. 
    Stieh DJ, Maric D, Kelley ZL, Anderson MR, Hattaway HZ et al. 2014. Vaginal challenge with an SIV-based dual reporter system reveals that infection can occur throughout the upper and lower female reproductive tract. PLOS Pathog 10:e1004440
    [Google Scholar]
  53. 53. 
    Stieh DJ, Matias E, Xu H, Fought AJ, Blanchard JL et al. 2016. Th17 cells are preferentially infected very early after vaginal transmission of SIV in macaques. Cell Host Microbe 19:529–40
    [Google Scholar]
  54. 54. 
    Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B et al. 2008. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112:2826–35
    [Google Scholar]
  55. 55. 
    Favre D, Lederer S, Kanwar B, Ma ZM, Proll S et al. 2009. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLOS Pathog 5:e1000295
    [Google Scholar]
  56. 56. 
    Wacleche VS, Landay A, Routy JP, Ancuta P 2017. The Th17 lineage: from barrier surfaces homeostasis to autoimmunity, cancer, and HIV-1 pathogenesis. Viruses 9:303
    [Google Scholar]
  57. 57. 
    Shang L, Duan L, Perkey KE, Wietgrefe S, Zupancic M et al. 2017. Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol 10:508–19
    [Google Scholar]
  58. 58. 
    Li Q, Estes JD, Schlievert PM, Duan L, Brosnahan AJ et al. 2009. Glycerol monolaurate prevents mucosal SIV transmission. Nature 458:1034–38
    [Google Scholar]
  59. 59. 
    Zeng M, Smith AJ, Shang L, Wietgrefe SW, Voss JE et al. 2016. Mucosal humoral immune response to SIVmac239Δnef vaccination and vaginal challenge. J. Immunol. 196:2809–18
    [Google Scholar]
  60. 60. 
    Fackler OT, Murooka TT, Imle A, Mempel TR 2014. Adding new dimensions: towards an integrative understanding of HIV-1 spread. Nat. Rev. Microbiol. 12:563–74
    [Google Scholar]
  61. 61. 
    Mothes W, Sherer NM, Jin J, Zhong P 2010. Virus cell-to-cell transmission. J. Virol. 84:8360–68
    [Google Scholar]
  62. 62. 
    Law KM, Komarova NL, Yewdall AW, Lee RK, Herrera OL et al. 2016. In vivo HIV-1 cell-to-cell transmission promotes multicopy micro-compartmentalized infection. Cell Rep 15:2771–83
    [Google Scholar]
  63. 63. 
    Usmani SM, Murooka TT, Deruaz M, Koh WH, Sharaf RR et al. 2019. HIV-1 balances the fitness costs and benefits of disrupting the host cell actin cytoskeleton early after mucosal transmission. Cell Host Microbe 25:73–86.e5
    [Google Scholar]
  64. 64. 
    Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E et al. 2012. HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490:283–87
    [Google Scholar]
  65. 65. 
    Symeonides M, Murooka TT, Bellfy LN, Roy NH, Mempel TR, Thali M 2015. HIV-1-induced small T cell syncytia can transfer virus particles to target cells through transient contacts. Viruses 7:6590–603
    [Google Scholar]
  66. 66. 
    Del Portillo A, Tripodi J, Najfeld V, Wodarz D, Levy DN, Chen BK 2011. Multiploid inheritance of HIV-1 during cell-to-cell infection. J. Virol. 85:7169–76
    [Google Scholar]
  67. 67. 
    Ladinsky MS, Kieffer C, Olson G, Deruaz M, Vrbanac V et al. 2014. Electron tomography of HIV-1 infection in gut-associated lymphoid tissue. PLOS Pathog 10:e1003899
    [Google Scholar]
  68. 68. 
    Deruaz M, Murooka TT, Ji S, Gavin MA, Vrbanac VD et al. 2017. Chemoattractant-mediated leukocyte trafficking enables HIV dissemination from the genital mucosa. JCI Insight 2:e88533
    [Google Scholar]
  69. 69. 
    Stolp B, Reichman-Fried M, Abraham L, Pan X, Giese SI et al. 2009. HIV-1 Nef interferes with host cell motility by deregulation of cofilin. Cell Host Microbe 6:174–86
    [Google Scholar]
  70. 70. 
    Lamas-Murua M, Stolp B, Kaw S, Thoma J, Tsopoulidis N et al. 2018. HIV-1 Nef disrupts CD4+ T lymphocyte polarity, extravasation, and homing to lymph nodes via its Nef-associated kinase complex interface. J. Immunol. 201:2731–43
    [Google Scholar]
  71. 71. 
    Stolp B, Imle A, Coelho FM, Hons M, Gorina R et al. 2012. HIV-1 Nef interferes with T-lymphocyte circulation through confined environments in vivo. PNAS 109:18541–46
    [Google Scholar]
  72. 72. 
    Sewald X, Ladinsky MS, Uchil PD, Beloor J, Pi R et al. 2015. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science 350:563–67
    [Google Scholar]
  73. 73. 
    Sewald X, Gonzalez DG, Haberman AM, Mothes W 2012. In vivo imaging of virological synapses. Nat. Commun. 3:1320
    [Google Scholar]
  74. 74. 
    Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N et al. 2012. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLOS Biol 10:e1001448
    [Google Scholar]
  75. 75. 
    Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu X et al. 2013. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLOS Pathog 9:e1003291
    [Google Scholar]
  76. 76. 
    Kijewski SDG, Akiyama H, Feizpour A, Miller CM, Ramirez NP et al. 2016. Access of HIV-2 to CD169-dependent dendritic cell-mediated trans infection pathway is attenuated. Virology 497:328–36
    [Google Scholar]
  77. 77. 
    McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ 2003. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–97
    [Google Scholar]
  78. 78. 
    Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J et al. 2004. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103:2170–79
    [Google Scholar]
  79. 79. 
    Llewellyn GN, Hogue IB, Grover JR, Ono A 2010. Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells. PLOS Pathog 6:e1001167
    [Google Scholar]
  80. 80. 
    Li F, Sewald X, Jin J, Sherer NM, Mothes W 2014. Murine leukemia virus Gag localizes to the uropod of migrating primary lymphocytes. J. Virol. 88:10541–55
    [Google Scholar]
  81. 81. 
    Uchil PD, Pi R, Haugh KA, Ladinsky MS, Ventura JD et al. 2019. A protective role for the lectin CD169/Siglec-1 against a pathogenic murine retrovirus. Cell Host Microbe 25:87–100.e10
    [Google Scholar]
  82. 82. 
    Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA et al. 2007. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–14
    [Google Scholar]
  83. 83. 
    Winkelmann ER, Widman DG, Xia J, Johnson AJ, van Rooijen N et al. 2014. Subcapsular sinus macrophages limit dissemination of West Nile virus particles after inoculation but are not essential for the development of West Nile virus-specific T cell responses. Virology 450–451:278–89
    [Google Scholar]
  84. 84. 
    Moseman EA, Iannacone M, Bosurgi L, Tonti E, Chevrier N et al. 2012. B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity. Immunity 36:415–26
    [Google Scholar]
  85. 85. 
    Kastenmuller W, Torabi-Parizi P, Subramanian N, Lammermann T, Germain RN 2012. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150:1235–48
    [Google Scholar]
  86. 86. 
    Iannacone M, Moseman EA, Tonti E, Bosurgi L, Junt T et al. 2010. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465:1079–83
    [Google Scholar]
  87. 87. 
    Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M et al. 2008. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29:487–96
    [Google Scholar]
  88. 88. 
    Honke N, Shaabani N, Cadeddu G, Sorg UR, Zhang DE et al. 2012. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat. Immunol. 13:51–57
    [Google Scholar]
  89. 89. 
    World Health Organ. IARC Work. Group Eval. Carcinog. Risks Humans 1997. Epstein-Barr Virus and Kaposi's Sarcoma Herpesvirus/Human Herpesvirus 8 Lyon, Fr: WHO
    [Google Scholar]
  90. 90. 
    Tan CS, Frederico B, Stevenson PG 2014. Herpesvirus delivery to the murine respiratory tract. J. Virol. Methods 206:105–14
    [Google Scholar]
  91. 91. 
    Shivkumar M, Milho R, May JS, Nicoll MP, Efstathiou S, Stevenson PG 2013. Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J. Virol. 87:10477–88
    [Google Scholar]
  92. 92. 
    Milho R, Frederico B, Efstathiou S, Stevenson PG 2012. A heparan-dependent herpesvirus targets the olfactory neuroepithelium for host entry. PLOS Pathog 8:e1002986
    [Google Scholar]
  93. 93. 
    Frederico B, Chao B, May JS, Belz GT, Stevenson PG 2014. A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe 15:457–70
    [Google Scholar]
  94. 94. 
    Francois S, Vidick S, Sarlet M, Desmecht D, Drion P et al. 2013. Illumination of murine gammaherpesvirus-68 cycle reveals a sexual transmission route from females to males in laboratory mice. PLOS Pathog 9:e1003292
    [Google Scholar]
  95. 95. 
    Frederico B, Chao B, Lawler C, May JS, Stevenson PG 2015. Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J. Gen. Virol. 96:2314–27
    [Google Scholar]
  96. 96. 
    Farrell HE, Bruce K, Lawler C, Oliveira M, Cardin R et al. 2017. Murine cytomegalovirus spreads by dendritic cell recirculation. mBio 8:e01264–17
    [Google Scholar]
  97. 97. 
    Farrell HE, Bruce K, Lawler C, Cardin RD, Davis-Poynter NJ, Stevenson PG 2016. Type 1 interferons and NK cells limit murine cytomegalovirus escape from the lymph node subcapsular sinus. PLOS Pathog 12:e1006069
    [Google Scholar]
  98. 98. 
    Shivkumar M, Lawler C, Milho R, Stevenson PG 2016. Herpes simplex virus 1 interaction with myeloid cells in vivo. J. Virol 90:8661–72
    [Google Scholar]
  99. 99. 
    Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W et al. 2016. Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe 19:788–99
    [Google Scholar]
  100. 100. 
    Tran V, Moser LA, Poole DS, Mehle A 2013. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J. Virol. 87:13321–29
    [Google Scholar]
  101. 101. 
    Heaton NS, Leyva-Grado VH, Tan GS, Eggink D, Hai R, Palese P 2013. In vivo bioluminescent imaging of influenza a virus infection and characterization of novel cross-protective monoclonal antibodies. J. Virol. 87:8272–81
    [Google Scholar]
  102. 102. 
    Pan W, Dong Z, Li F, Meng W, Feng L et al. 2013. Visualizing influenza virus infection in living mice. Nat. Commun. 4:2369
    [Google Scholar]
  103. 103. 
    Czako R, Vogel L, Lamirande EW, Bock KW, Moore IN et al. 2017. In vivo imaging of influenza virus infection in immunized mice. mBio 8:e00714–17
    [Google Scholar]
  104. 104. 
    Karlsson EA, Meliopoulos VA, Savage C, Livingston B, Mehle A, Schultz-Cherry S 2015. Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nat. Commun. 6:6378
    [Google Scholar]
  105. 105. 
    Belser JA, Barclay W, Barr I, Fouchier RAM, Matsuyama R et al. 2018. Ferrets as models for influenza virus transmission studies and pandemic risk assessments. Emerg Infect. Dis. 24:965–71
    [Google Scholar]
  106. 106. 
    Pulverer JE, Rand U, Lienenklaus S, Kugel D, Zietara N et al. 2010. Temporal and spatial resolution of type I and III interferon responses in vivo. J. Virol 84:8626–38
    [Google Scholar]
  107. 107. 
    Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE et al. 2010. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11:427–34
    [Google Scholar]
  108. 108. 
    Chatziandreou N, Farsakoglu Y, Palomino-Segura M, D'Antuono R, Pizzagalli DU et al. 2017. Macrophage death following influenza vaccination initiates the inflammatory response that promotes dendritic cell function in the draining lymph node. Cell Rep 18:2427–40
    [Google Scholar]
  109. 109. 
    Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP et al. 2013. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38:1164–75
    [Google Scholar]
  110. 110. 
    Sim N, Parker D. 2015. Critical design issues in the targeted molecular imaging of cell surface receptors. Chem. Soc. Rev. 44:2122–34
    [Google Scholar]
  111. 111. 
    Lu FM, Yuan Z. 2015. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5:433–47
    [Google Scholar]
  112. 112. 
    Fischer BM, Olsen MW, Ley CD, Klausen TL, Mortensen J et al. 2006. How few cancer cells can be detected by positron emission tomography? A frequent question addressed by an in vitro study. Eur. J. Nucl. Med. Mol. Imaging 33:697–702
    [Google Scholar]
  113. 113. 
    Allan AL. 2011. Cancer Stem Cells in Solid Tumors New York: Humana Press
    [Google Scholar]
  114. 114. 
    Love C, Tomas MB, Tronco GG, Palestro CJ 2005. FDG PET of infection and inflammation. Radiographics 25:1357–68
    [Google Scholar]
  115. 115. 
    Bray M, Lawler J, Paragas J, Jahrling PB, Mollura DJ 2011. Molecular imaging of influenza and other emerging respiratory viral infections. J. Infect. Dis. 203:1348–59
    [Google Scholar]
  116. 116. 
    Masdeu JC, Van Heertum RL, Abdel-Dayem H 1995. Viral infections of the brain. J. Neuroimaging 5:Suppl. 1S40–44
    [Google Scholar]
  117. 117. 
    Kim MC, Kim MY, Lee HJ, Lee SO, Choi SH et al. 2016. CT findings in viral lower respiratory tract infections caused by parainfluenza virus, influenza virus and respiratory syncytial virus. Medicine 95:e4003
    [Google Scholar]
  118. 118. 
    Ahrens ET, Bulte JW. 2013. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13:755–63
    [Google Scholar]
  119. 119. 
    Bailao LA, Osborne NG, Rizzi MC, Bonilla-Musoles F, Duarte G, Bailao TC 2005. Ultrasound markers of fetal infection part 1: viral infections. Ultrasound Q 21:295–308
    [Google Scholar]
  120. 120. 
    Schaub B, Gueneret M, Jolivet E, Decatrelle V, Yazza S et al. 2017. Ultrasound imaging for identification of cerebral damage in congenital Zika virus syndrome: a case series. Lancet Child Adolesc. Health 1:45–55
    [Google Scholar]
  121. 121. 
    Kim JB, Urban K, Cochran E, Lee S, Ang A et al. 2010. Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLOS ONE 5:e9364
    [Google Scholar]
  122. 122. 
    Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR 2018. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 9:28–63
    [Google Scholar]
  123. 123. 
    Kochs G, Martinez-Sobrido L, Lienenklaus S, Weiss S, Garcia-Sastre A, Staeheli P 2009. Strong interferon-inducing capacity of a highly virulent variant of influenza A virus strain PR8 with deletions in the NS1 gene. J. Gen. Virol. 90:2990–94
    [Google Scholar]
  124. 124. 
    Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C 2006. Multi-photon excitation microscopy. Biomed. Eng. Online 5:36
    [Google Scholar]
  125. 125. 
    Sewald X. 2018. Visualizing viral infection in vivo by multi-photon intravital microscopy. Viruses 10:337
    [Google Scholar]
  126. 126. 
    Greger K, Swoger J, Stelzer EH 2007. Basic building units and properties of a fluorescence single plane illumination microscope. Rev. Sci. Instrum. 78:023705
    [Google Scholar]
  127. 127. 
    Fouquet C, Gilles JF, Heck N, Dos Santos M, Schwartzmann R et al. 2015. Improving axial resolution in confocal microscopy with new high refractive index mounting media. PLOS ONE 10:e0121096
    [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041429
Loading
/content/journals/10.1146/annurev-virology-101416-041429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error