Diverse prokaryotes produce gene transfer agents (GTAs), which are bacteriophage-like particles that exclusively package pieces of the producing cell's genome and transfer them to other cells. There are clear evolutionary connections between GTAs and phages, but GTAs have properties that lead us to suggest they are more than simply defective phages and instead provide a selective advantage for the producing organisms. The five types of currently known GTAs are genetically distinct, indicating multiple instances of convergent evolution. GTA production can be regulated by the producing organism and coordinated to coincide with development of the capability to receive DNA from GTAs. Recent discoveries of the genetic basis of GTA production in the bacterium and characterization of novel phages that possess homologs of this GTA's structural and regulatory genes have provided important new connections among these elements and highlight the tangled evolutionary relationships within the phageome.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Marrs B. 1.  2002. The early history of the genetics of photosynthetic bacteria: a personal account. Photosynth. Res. 73:55–58 [Google Scholar]
  2. Marrs BL. 2.  1974. Genetic recombination in Rhodopseudomonas capsulata. PNAS 71:971–73 [Google Scholar]
  3. Solioz M. 3.  1975. The gene transfer agent of Rhodopseudomonas capsulata. PhD Thesis, Dep. Biochem., St. Louis University
  4. Solioz M, Marrs B. 4.  1977. The gene transfer agent of Rhodopseudomonas capsulata: purification and characterization of its nucleic acid. Arch. Biochem. Biophys. 181:300–7 [Google Scholar]
  5. Solioz M, Yen HC, Marrs B. 5.  1975. Release and uptake of gene transfer agent by Rhodopseudomonas capsulata. J. Bacteriol. 123:651–57 [Google Scholar]
  6. Yen HC, Hu NT, Marrs BL. 6.  1979. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J. Mol. Biol. 131:157–68 [Google Scholar]
  7. Rapp BJ, Wall JD. 7.  1987. Genetic transfer in Desulfovibrio desulfuricans. PNAS 84:9128–30 [Google Scholar]
  8. Wall JD, Weaver PF, Gest H. 8.  1975. Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch. Microbiol. 105:217–24 [Google Scholar]
  9. Humphrey SB, Stanton TB, Jensen NS, Zuerner RL. 9.  1997. Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J. Bacteriol. 179:323–29 [Google Scholar]
  10. Bertani G. 10.  1999. Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181:2992–3002 [Google Scholar]
  11. Anderson B, Goldsmith C, Johnson A, Padmalayam I, Baumstark B. 11.  1994. Bacteriophage-like particle of Rochalimaea henselae. Mol. Microbiol. 13:67–73 [Google Scholar]
  12. Umemori E, Sasaki Y, Amano K, Amano Y. 12.  1992. A phage in Bartonella bacilliformis. Microbiol. Immunol. 36:731–36 [Google Scholar]
  13. Guy L, Nystedt B, Toft C, Zaremba-Niedzwiedzka K, Berglund EC. 13.  et al. 2013. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLOS Genet. 9:e1003393 [Google Scholar]
  14. Nagao N, Yamamoto J, Komatsu H, Suzuki H, Hirose Y. 14.  et al. 2015. The gene transfer agent-like particle of the marine phototrophic bacterium Rhodovulum sulfidophilum. Biochem. Biophys. Rep. 4:369–74 [Google Scholar]
  15. Biers EJ, Wang K, Pennington C, Belas R, Chen F, Moran MA. 15.  2008. Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Appl. Environ. Microbiol. 74:2933–39 [Google Scholar]
  16. Lang AS, Zhaxybayeva O, Beatty JT. 16.  2012. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10:472–82 [Google Scholar]
  17. Lang AS, Beatty JT. 17.  2000. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. PNAS 97:859–64 [Google Scholar]
  18. Hynes AP, Shakya M, Mercer RG, Grüll MP, Bown L. 18.  et al. 2016. Functional and evolutionary characterization of a gene transfer agent's multilocus “genome.”. Mol. Biol. Evol. 33:2530–43 [Google Scholar]
  19. Westbye AB, Kuchinski K, Yip CK, Beatty JT. 19.  2016. The gene transfer agent RcGTA contains head spikes needed for binding to the Rhodobacter capsulatus polysaccharide cell capsule. J. Mol. Biol. 428:477–91 [Google Scholar]
  20. Brimacombe CA, Ding H, Beatty JT. 20.  2014. Rhodobacter capsulatus DprA is essential for RecA-mediated gene transfer agent (RcGTA) recipient capability regulated by quorum-sensing and the CtrA response regulator. Mol. Microbiol. 92:1260–78 [Google Scholar]
  21. Brimacombe CA, Ding H, Johnson JA, Beatty JT. 21.  2015. Homologues of genetic transformation DNA import genes are required for Rhodobacter capsulatus gene transfer agent recipient capability regulated by the response regulator CtrA. J. Bacteriol. 197:2653–63 [Google Scholar]
  22. Lang AS, Beatty JT. 22.  2007. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol 15:54–62 [Google Scholar]
  23. Fu Y, MacLeod DM, Rivkin RB, Chen F, Buchan A, Lang AS. 23.  2010. High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains. Aquat. Microb. Ecol. 59:283–93 [Google Scholar]
  24. McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH. 24.  2010. High frequency of horizontal gene transfer in the oceans. Science 330:50 [Google Scholar]
  25. McDaniel LD, Young EC, Ritchie KB, Paul JH. 25.  2012. Environmental factors influencing gene transfer agent (GTA) mediated transduction in the subtropical ocean. PLOS ONE 7:e43506 [Google Scholar]
  26. Berglund EC, Frank AC, Calteau A, Pettersson OV, Granberg F. 26.  et al. 2009. Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii. PLOS Genet. 5:e1000546 [Google Scholar]
  27. Barbian KD, Minnick MF. 27.  2000. A bacteriophage-like particle from Bartonella bacilliformis. Microbiology 146:599–609 [Google Scholar]
  28. Stanton TB, Humphrey SB, Bayles DO, Zuerner RL. 28.  2009. Identification of a divided genome for VSH-1, the prophage-like gene transfer agent of Brachyspira hyodysenteriae. J. Bacteriol. 191:1719–21 [Google Scholar]
  29. Matson EG, Thompson MG, Humphrey SB, Zuerner RL, Stanton TB. 29.  2005. Identification of genes of VSH-1, a prophage-like gene transfer agent of Brachyspira hyodysenteriae. J. Bacteriol. 187:5885–92 [Google Scholar]
  30. Stanton TB, Thompson MG, Humphrey SB, Zuerner RL. 30.  2003. Detection of bacteriophage VSH-1 svp38 gene in Brachyspira spirochetes. FEMS Microbiol. Lett. 224:225–29 [Google Scholar]
  31. Motro Y, La T, Bellgard MI, Dunn DS, Phillips ND, Hampson DJ. 31.  2009. Identification of genes associated with prophage-like gene transfer agents in the pathogenic intestinal spirochaetes Brachyspirahyodysenteriae, Brachyspira pilosicoli and Brachyspira intermedia. Vet. Microbiol. 134:340–45 [Google Scholar]
  32. Humphrey SB, Stanton TB, Jensen NS. 32.  1995. Mitomycin C induction of bacteriophages from Serpulina hyodysenteriae and Serpulina innocens. FEMS Microbiol. Lett. 134:97–101 [Google Scholar]
  33. Calderaro A, Dettori G, Collini L, Ragni P, Grillo R. 33.  et al. 1998. Bacteriophages induced from weakly beta-haemolytic human intestinal spirochaetes by mitomycin C. J. Basic Microbiol. 38:323–35 [Google Scholar]
  34. Calderaro A, Dettori G, Grillo R, Plaisant P, Amalfitano G, Chezzi C. 34.  1998. Search for bacteriophages spontaneously occurring in cultures of haemolytic intestinal spirochaetes of human and animal origin. J. Basic Microbiol. 38:313–22 [Google Scholar]
  35. Krupovič M, Forterre P, Bamford DH. 35.  2010. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J. Mol. Biol. 397:144–60 [Google Scholar]
  36. Mercer RG, Quinlan M, Rose AR, Noll S, Beatty JT, Lang AS. 36.  2012. Regulatory systems controlling motility and gene transfer agent production and release in Rhodobacter capsulatus. FEMS Microbiol. Lett. 331:53–62 [Google Scholar]
  37. Schaefer AL, Taylor TA, Beatty JT, Greenberg EP. 37.  2002. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production. J. Bacteriol. 184:6515–21 [Google Scholar]
  38. Leung MM, Brimacombe CA, Spiegelman GB, Beatty JT. 38.  2012. The GtaR protein negatively regulates transcription of the gtaRI operon and modulates gene transfer agent (RcGTA) expression in Rhodobacter capsulatus. Mol. Microbiol. 83:759–74 [Google Scholar]
  39. Mercer RG, Lang AS. 39.  2014. Identification of a predicted partner-switching system that affects production of the gene transfer agent RcGTA and stationary phase viability in Rhodobacter capsulatus. BMC Microbiol. 14:71 [Google Scholar]
  40. Wang H, Ziesche L, Frank O, Michael V, Martin M. 40.  et al. 2014. The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae. BMC Genom. 15:130 [Google Scholar]
  41. Kuchinski KS, Brimacombe CA, Westbye AB, Ding H, Beatty JT. 41.  2016. The SOS response master regulator LexA regulates the gene transfer agent of Rhodobacter capsulatus and represses transcription of the signal transduction protein CckA. J. Bacteriol. 198:1137–48 [Google Scholar]
  42. Lang AS, Beatty JT. 42.  2002. A bacterial signal transduction system controls genetic exchange and motility. J. Bacteriol. 184:913–18 [Google Scholar]
  43. Brimacombe CA, Stevens A, Jun D, Mercer R, Lang AS, Beatty JT. 43.  2013. Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA). Mol. Microbiol. 87:802–17 [Google Scholar]
  44. Mercer RG, Callister SJ, Lipton MS, Pasa-Tolic L, Strnad H. 44.  et al. 2010. Loss of the response regulator CtrA causes pleiotropic effects on gene expression but does not affect growth phase regulation in Rhodobacter capsulatus. J. Bacteriol. 192:2701–10 [Google Scholar]
  45. Hynes AP, Mercer RG, Watton DE, Buckley CB, Lang AS. 45.  2012. DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA. Mol. Microbiol. 85:314–25 [Google Scholar]
  46. Fogg PCM, Westbye AB, Beatty JT. 46.  2012. One for all or all for one: Heterogeneous expression and host cell lysis are key to gene transfer agent activity in Rhodobacter capsulatus. PLOS ONE 7:e43772 [Google Scholar]
  47. Chen F, Spano A, Goodman BE, Blasier KR, Sabat A. 47.  et al. 2008. Proteomic analysis and identification of the structural and regulatory proteins of the Rhodobacter capsulatus gene transfer agent. J. Proteome Res. 8:967–73 [Google Scholar]
  48. Stanton TB, Humphrey SB, Sharma VK, Zuerner RL. 48.  2008. Collateral effects of antibiotics: Carbadox and metronidazole induce VSH-1 and facilitate gene transfer among Brachyspira hyodysenteriae strains. Appl. Environ. Microbiol. 74:2950–56 [Google Scholar]
  49. Westbye AB, Leung MM, Florizone SM, Taylor TA, Johnson JA. 49.  et al. 2013. Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the Rhodobacter capsulatus gene transfer agent. J. Bacteriol. 195:5025–40 [Google Scholar]
  50. Huang SK, Zhang YU, Chen F, Jiao NZ. 50.  2011. Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agents in alphaproteobacteria. Virol. J. 8:124 [Google Scholar]
  51. Zhang Y, Jiao N. 51.  2009. Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl. Environ. Microbiol. 75:1745–49 [Google Scholar]
  52. Zhan Y, Huang S, Voget S, Simon M, Chen F. 52.  2016. A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. Sci. Rep. 6:30372 [Google Scholar]
  53. Liang Y, Zhang Y, Zhou C, Chen Z, Yang S. 53.  et al. 2016. Complete genome sequence of the siphovirus roseophage RDJLΦ2 infecting Roseobacter denitrificans OCh114. Mar. Genom. 25:17–19 [Google Scholar]
  54. Bollivar DW, Bernardoni B, Bockman MR, Miller BM, Russell DA. 54.  et al. 2016. Complete genome sequences of five bacteriophages that infect Rhodobacter capsulatus. Genome Announc 4:e00051–16 [Google Scholar]
  55. Brilli M, Fondi M, Fani R, Mengoni A, Ferri L. 55.  et al. 2010. The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis. BMC Syst. Biol. 4:52 [Google Scholar]
  56. Martinez-Hackert E, Stock AM. 56.  1997. Structural relationships in the OmpR family of winged-helix transcription factors. J. Mol. Biol. 269:301–12 [Google Scholar]
  57. Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT. 57.  1998. Negative control of bacterial DNA replication by a cell cycle protein that binds at the chromosome origin. PNAS 95:120–25 [Google Scholar]
  58. Brassinga AKC, Siam R, McSween W, Winkler H, Wood D, Marczynski GT. 58.  2002. Conserved response regulator CtrA and IHF binding sites in the α-proteobacteria Caulobacter crescentus and Rickettsia prowazekii chromosomal replication origins. J. Bacteriol. 184:5789–99 [Google Scholar]
  59. Lohr JE, Chen F, Hill RT. 59.  2005. Genomic analysis of bacteriophage ΦJL001: insights into its interaction with a sponge-associated alpha-proteobacterium. Appl. Environ. Microbiol. 71:1598–1609 [Google Scholar]
  60. Williams KP. 60.  2002. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 30:866–75 [Google Scholar]
  61. Redfield R. 61.  2001. Do bacteria have sex?. Nat. Rev. Genet. 2:634–39 [Google Scholar]
  62. Stanton TB. 62.  2007. Prophage-like gene transfer agents—novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13:43–49 [Google Scholar]
  63. Marrs B, Wall JD, Gest H. 63.  1977. Emergence of the biochemical genetics and molecular biology of photosynthetic bacteria. Trends Biochem. Sci. 2:105–8 [Google Scholar]
  64. Paul JH. 64.  2008. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?. ISME J 2:579–89 [Google Scholar]
  65. Suttle CA. 65.  2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12 [Google Scholar]
  66. Rohwer F, Vega Thurber R. 66.  2009. Viruses manipulate the marine environment. Nature 459:207–12 [Google Scholar]
  67. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV. 67.  2010. New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19 [Google Scholar]
  68. Hurwitz BL, Deng L, Poulos BT, Sullivan MB. 68.  2013. Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ. Microbiol. 15:1428–40 [Google Scholar]
  69. Brown-Jaque M, Calero-Cáceres W, Muniesa M. 69.  2015. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 79:1–7 [Google Scholar]
  70. Koonin EV. 70.  2016. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Research 5:1805 [Google Scholar]
  71. Touchon M, Bobay LM, Rocha EP. 71.  2014. The chromosomal accommodation and domestication of mobile genetic elements. Curr. Opin. Microbiol. 22:22–29 [Google Scholar]
  72. von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S. 72.  et al. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7:173 [Google Scholar]
  73. West SA, Cooper GA. 73.  2016. Division of labour in microorganisms: an evolutionary perspective. Nat. Rev. Microbiol. 14:716–23 [Google Scholar]
  74. West SA, Griffin AS, Gardner A, Diggle SP. 74.  2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:597–607 [Google Scholar]
  75. Darch SE, West SA, Winzer K, Diggle SP. 75.  2012. Density-dependent fitness benefits in quorum-sensing bacterial populations. PNAS 109:8259–63 [Google Scholar]
  76. Allen RC, McNally L, Popat R, Brown SP. 76.  2016. Quorum sensing protects bacterial co-operation from exploitation by cheats. ISME J 10:1706–16 [Google Scholar]
  77. Lang AS, Beatty JT. 77.  2001. The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch. Microbiol. 175:241–49 [Google Scholar]
  78. Lang AS, Taylor TA, Beatty JT. 78.  2002. Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus. J. Mol. Evol. 55:534–43 [Google Scholar]
  79. Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB. 79.  et al. 2004. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–13 [Google Scholar]
  80. Buchan A, Gonzalez JM, Moran MA. 80.  2005. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71:5665–77 [Google Scholar]
  81. Moran MA, Belas R, Schell MA, Gonzalez JM, Sun F. 81.  et al. 2007. Ecological genomics of marine roseobacters. Appl. Environ. Microbiol. 73:4559–69 [Google Scholar]
  82. Vos M. 82.  2009. Why do bacteria engage in homologous recombination?. Trends Microbiol 17:226–32 [Google Scholar]
  83. Takeuchi N, Kaneko K, Koonin EV. 83.  2014. Horizontal gene transfer can rescue prokaryotes from Muller's Ratchet: benefit of DNA from dead cells and population subdivision. G3 Genes Genom. Genet. 4:325–39 [Google Scholar]
  84. Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. 84.  2016. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLOS Biol 14:e1002394 [Google Scholar]
  85. Westbye AB, Beatty JT, Lang AS. 85.  2017. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr. Opin. Microbiol. 38:122–29 [Google Scholar]
  86. Stanton TB, Matson EG, Humphrey SB. 86.  2001. Brachyspira (Serpulina) hyodysenteriae gyrB mutants and interstrain transfer of coumermycin A1 resistance. Appl. Environ. Microbiol. 67:2037–43 [Google Scholar]
  87. Zuerner RL, Stanton TB, Minion FC, Li C, Charon NW. 87.  et al. 2004. Genetic variation in Brachyspira: chromosomal rearrangements and sequence drift distinguish B. pilosicoli from B. hyodysenteriae. Anaerobe 10:229–37 [Google Scholar]
  88. Trott DJ, Oxberry SL, Hampson DJ. 88.  1997. Evidence for Serpulina hyodysenteriae being recombinant, with an epidemic population structure. Microbiology 143:3357–65 [Google Scholar]
  89. Novick RP, Ram G. 89.  2017. The floating (pathogenicity) island: a genomic dessert. Trends Genet 32:114–26 [Google Scholar]
  90. Novick RP, Christie GE, Penadés JR. 90.  2010. The phage-related chromosomal islands of gram-positive bacteria. Nat. Rev. Microbiol. 8:541–51 [Google Scholar]
  91. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA. 91.  et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–48 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error