Many dsDNA bacterial viruses (bacteriophages/phages) have long tail structures that serve as organelles for DNA delivery to host targets. These structures, particularly those of and phages, have an evolutionary relationship with other cellular biological entities that share the common function of penetrating the bacterial envelope. Among these are type VI secretion systems, insecticidal protein complexes, and bacteriocins. Phage tail–like bacteriocins (PTLBs) are widespread in bacteria, comprising different types that likely evolved independently. They can be divided into two major classes: the R-type PTLBs, which are related to contractile phage tails, and the F-type PTLBs, which are related to noncontractile phage tails. This review provides an overview of the history, biology, and diversity of these entities and also covers recent efforts to utilize these potent bactericidal agents as human therapeutics against bacterial disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM. 1.  et al. 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. PNAS 106:4154–59 [Google Scholar]
  2. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. 2.  2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–86 [Google Scholar]
  3. Russell AB, Peterson SB, Mougous JD. 3.  2014. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12:137–48 [Google Scholar]
  4. Hurst MRH, Glare TR Jackson TA. 4.  2004. Cloning Serratia entomophila antifeeding genes: a putative defective prophage active against the grass grub Costelytra zealandica. J. Bacteriol. 186:5116–28 [Google Scholar]
  5. Yang G, Dowling AJ, Gerike U, ffrench-Constant RH, Waterfield NR. 5.  2006. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J. Bacteriol. 188:2254–61 [Google Scholar]
  6. Rybakova D, Radjainia M, Turner A, Sen A, Mitra AK, Hurst MR. 6.  2013. Role of antifeeding prophage (Afp) protein Afp16 in terminating the length of the Afp tailocin and stabilizing its sheath. Mol. Microbiol. 89:702–14 [Google Scholar]
  7. Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. 7.  2014. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail–like structures. Science 343:529–33 [Google Scholar]
  8. Lotz W, Mayer F. 8.  1972. Isolation and characterization of a bacteriophage tail-like bacteriocin from a strain of Rhizobium. J. Virol. 9:160–73 [Google Scholar]
  9. Thaler JO, Baghdiguian S, Boemare N. 9.  1995. Purification and characterization of xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Appl. Environ. Microbiol. 61:2049–52 [Google Scholar]
  10. Nguyen HA, Tomita T, Hirota M, Kaneko J, Hayashi T, Kamio Y. 10.  2001. DNA inversion in the tail fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovara Er. J. Bacteriol. 83:6274–81 [Google Scholar]
  11. Strauch E, Kaspar H, Schaudinn C, Dersch P, Madela K. 11.  et al. 2001. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl. Environ. Microbiol. 67:5634–42 [Google Scholar]
  12. Jabrane A, Sabri A, Compère P, Jacques P, Vandenberghe I. 12.  et al. 2002. Characterization of serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl. Environ. Microbiol. 68:5704–10 [Google Scholar]
  13. Smarda J, Benada O. 13.  2005. Phage tail-like (high-molecular-weight) bacteriocins of Budvicia aquatica and Pragia fontium (Enterobacteriaceae). Appl. Environ. Microbiol. 71:8970–73 [Google Scholar]
  14. Fischer S, Godino A, Quesada JM, Cordero P, Jofré E. 14.  et al. 2012. Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology 158:1493–503 [Google Scholar]
  15. Liu J, Chen P, Zheng C, Huang YP. 15.  2013. Characterization of maltocin P28, a novel phage tail-like bacteriocin from Stenotrophomonas maltophilia. Appl. Environ. Microbiol. 79:5593–600 [Google Scholar]
  16. Lee G, Chakraborty U, Gebhart D, Govoni GR, Zhou ZH, Scholl D. 16.  2016. F-type bacteriocins of Listeria monocytogenes: A new class of phage tail-like structures reveals broad parallel coevolution between tailed bacteriophages and high-molecular-weight bacteriocins. J. Bacteriol. 198:2784–93 [Google Scholar]
  17. Ghequire MG, De Mot R. 17.  2015. The tailocin tale: peeling off phage tails. Trends Microbiol 23:587–90 [Google Scholar]
  18. Ghequire MG, Dillen Y, Lambrichts I, Proost P, Wattiez R, De Mot R. 18.  2015. Different ancestries of R tailocins in rhizospheric Pseudomonas isolates. Genome Biol. Evol. 26:2810–28 [Google Scholar]
  19. Sarris PF, Ladoukakis ED, Panopoulos NJ, Scoulica EV. 19.  2014. A phage tail-derived element with wide distribution among both prokaryotic domains: a comparative genomic and phylogenetic study. Genome Biol. Evol. 6:1739–47 [Google Scholar]
  20. Michel-Briand Y, Baysse C. 20.  2002. The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510 [Google Scholar]
  21. Young R. 21.  2013. Phage lysis: Do we have the hole story yet?. Curr. Opin. Microbiol. 16:790–97 [Google Scholar]
  22. Coetzee HL, De Klerk HC, Coetzee JN, Smit JA. 22.  1968. Bacteriophage-tail-like particles associated with intra-species killing of Proteus vulgaris. J. Gen. Virol. 12:29–36 [Google Scholar]
  23. Morse SA, Vaughan P, Johnson D, Iglewski BH. 23.  1976. Inhibition of Neisseria gonorrhoeae by a bacteriocin from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 10:354–62 [Google Scholar]
  24. Morse SA, Jones BV, Lysko PG. 24.  1980. Pyocin inhibition of Neisseria gonorrhoeae: mechanism of action. Antimicrob. Agents Chemother. 18:416–23 [Google Scholar]
  25. Blackwell CC, Young H, Anderson I. 25.  1979. Sensitivity of Neisseria gonorrhoeae to partially purified R-type pyocines and a possible approach to epidemiological typing. J. Med. Microbiol 12321–35 [Google Scholar]
  26. Blackwell CC, Law JA. 26.  1981. Typing of non-serogroupable Neisseria meningitidis by means of sensitivity to R-type pyocines of Pseudomonas aeruginosa. J. Infect. 3:370–78 [Google Scholar]
  27. Blackwell CC, Winstanley FP, Telfer Brunton WA. 27.  1982. Sensitivity of thermophilic campylobacters to R-type pyocines of Pseudomonas aeruginosa. J. Med. Microbiol 15247–51 [Google Scholar]
  28. Jacob F. 28.  1954. Biosynthèse induite et mode d'action d'une pyocin, antibiotique de Pseudomonas pyocyanea. Ann. Inst. Pasteur 86:149–60 [Google Scholar]
  29. Kageyama M, Egami F. 29.  1962. On the purification and some properties of a pyocin, a bacteriocin produced by Pseudomonas aeruginosa. Life Sci. 1:471–76 [Google Scholar]
  30. Kageyama M. 30.  1964. Studies of a pyocin. I. Physical and chemical properties. J. Biochem. 55:49–53 [Google Scholar]
  31. Ikeda K, Kageyama M, Egami F. 31.  1964. Studies of a pyocin. II. Mode of production of the pyocin. J. Biochem. 55:54–58 [Google Scholar]
  32. Ikeda K, Kageyama M, Egami F. 32.  1964. Studies of a pyocin. III. Biological properties of the pyocin. J. Biochem. 55:59–64 [Google Scholar]
  33. Ito S, Kagayama M, Egami F. 33.  1970. Isolation and characterization of pyocins from several strains of Pseudomonas aeruginosa. J. Gen. Appl. Microbiol. 16:205–14 [Google Scholar]
  34. Kageyama M. 34.  1975. Bacteriocins and bacteriophages in. Pseudomonas aeruginosa. In Microbial Drug Resistance M Mitsuhashi, H Hashimoto 291–305 Tokyo: Univ. Tokyo Press [Google Scholar]
  35. Ikeda K, Egami F. 35.  1969. Receptor substance for pyocin R. I. Partial purification and chemical properties. J. Biochem. 65:603–9 [Google Scholar]
  36. Meadow PM, Wells PL. 36.  1978. Receptor sites for R-type pyocins and bacteriophage E79 in the core part of the lipopolysaccharide of Pseudomonas aeruginosa PAC1. J. Gen. Microbiol. 108:339–43 [Google Scholar]
  37. Köhler T, Donner V, van Delden C. 37.  2010. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J. Bacteriol. 192:1921–28 [Google Scholar]
  38. Kuroda K, Kageyama M. 38.  1979. Biochemical properties of a new flexuous bacteriocin, pyocin F1, produced by Pseudomonas aeruginosa. . J. Biochem. 85:7–19 [Google Scholar]
  39. Kuroda K, Kageyama M, Maeda T, Fujime S. 39.  1979. Physicochemical properties of pyocin F1. J. Biochem. 85:21–28 [Google Scholar]
  40. Kuroda K, Kageyama M. 40.  1980. Comparative study of F-type pyocins of Pseudomonas aeruginosa. J. Biochem. 89:1721–36 [Google Scholar]
  41. Kuroda K, Kageyama M. 41.  1983. Biochemical relationships with three F-type pyocins, pyocin F1, F2, and F3, and phage KF1. J. Biochem. 94:1429–41 [Google Scholar]
  42. Kuroda K, Kagiyama R, Kageyama M. 42.  1983. Isolation and characterization of a new bacteriophage, KF1, immunologically cross-reactive with F-type pyocins. J. Biochem. 93:61–71 [Google Scholar]
  43. Shinomiya T, Shiga S, Kageyama M. 43.  1983. Genetic determinant of pyocin R2 in Pseudomonasaeruginosa PAO. I. Localization of the pyocin R2 gene cluster between the trpCD and trpE genes. Mol. Gen. Genet. 189:375–81 [Google Scholar]
  44. Shinomiya T, Shiga S, Kikuchi A, Kageyama M. 44.  1983. Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. II. Physical characterization of pyocin R2 genes using R-prime plasmids constructed from R68.45. Mol. Gen. Genet. 189:382–89 [Google Scholar]
  45. Matsui H, Sano Y, Ishihara H, Shinomiya T. 45.  1993. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (. prtN ) and negative (prtR) regulatory genes. J. Bacteriol. 175:1257–63 [Google Scholar]
  46. Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M. 46.  et al. 2000. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38:213–31 [Google Scholar]
  47. Jayawardene A, Farkas-Himsley H. 47.  1968. Particulate nature of vibriocin: a bacteriocin from Vibrio comma. Nature 219:79–80 [Google Scholar]
  48. Ellison JS, Kautter JA. 48.  1970. Purification and some properties of two boticins. J. Bacteriol. 104:19–26 [Google Scholar]
  49. Morales-Soto N, Gaudriault S, Ogier JC, Thappeta KR, Forst S. 49.  2012. Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production. FEMS Microbiol. Lett. 333:69–76 [Google Scholar]
  50. Hockett KL, Renner T, Baltrus DA. 50.  2015. Independent co-option of a tailed bacteriophage into a killing complex in Pseudomonas. mBio 6:e00452–15 [Google Scholar]
  51. Senior BW. 51.  1984. The effect of temperature on the synthesis and assembly of proticine 3 particles by Proteus mirabilis. J. Gen. Microbiol. 130:2699–708 [Google Scholar]
  52. Zink R, Loessner MJ, Glas I, Scherer S. 52.  1994. Supplementary Listeria-typing with defective Listeria phage particles (monocins). Lett. Appl. Microbiol. 19:99–101 [Google Scholar]
  53. Zink R, Loessner MJ, Scherer S. 53.  1995. Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of a holin/lysin gene. Microbiology 141:2577–84 [Google Scholar]
  54. Bannerman E, Boerlin P, Bille J. 54.  1996. Typing of Listeria monocytogenes by monocin and phage receptors. Int. J. Food Microbiol. 31:245–62 [Google Scholar]
  55. Veesler D, Spinelli S, Mahony J, Lichière J, Blangy S. 55.  et al. 2012. Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. PNAS 109:8954–58 [Google Scholar]
  56. Gebhart D, Williams SR, Bishop-Lilly KA, Govoni GR, Willner KM. 56.  et al. 2012. Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile. J. Bacteriol. 194:6240–47 [Google Scholar]
  57. Gebhart D, Lok S, Clare S, Tomas M, Stares M. 57.  et al. 2015. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. mBio 6:e02368–14 [Google Scholar]
  58. Browning C, Shneider MM, Bowman VD, Schwarzer D, Leiman PG. 58.  2012. Phage pierces the host cell membrane with the iron-loaded spike. Structure 20:326–39 [Google Scholar]
  59. Ge P, Scholl D, Leiman PG, Yu X, Miller JF, Zhou ZH. 59.  2015. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat. Struct. Mol. Biol. 22:377–82 [Google Scholar]
  60. Williams S, Gebhart D, Martin DW, Scholl D. 60.  2008. Re-targeting R-type pyocins to generate novel bactericidal protein complexes. Appl. Environ. Microbiol. 74:3868–76 [Google Scholar]
  61. Uratani Y. 61.  1982. Dansyl chloride labeling of Pseudomonas aeruginosa treated with pyocin R1: change in permeability of the cell envelope. J. Bacteriol. 149:523–28 [Google Scholar]
  62. Uratani Y, Kageyama M. 62.  1977. A fluorescent probe response to the interaction of pyocin R1 with sensitive cells. J. Biochem. 81:333–41 [Google Scholar]
  63. Uratani Y, Hoshino T. 63.  1984. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. J. Bacteriol. 157:632–36 [Google Scholar]
  64. Ohsumi M, Shinomiya T, Kageyama M. 64.  1980. Comparative study on R-type pyocins of Pseudomonas aeruginosa. J. Biochem. 87:1119–25 [Google Scholar]
  65. Duckworth DH, Winkler HH. 65.  1972. Metabolism of T4 bacteriophage ghost-infected cells. II. Do ghosts cause a generalized permeability change?. J. Virol. 9:917–22 [Google Scholar]
  66. Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL. 66.  2015. The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E.coli phage HK97. Mol. Microbiol. 96:437–47 [Google Scholar]
  67. Lee FK, Dudas KC, Hanson JA, Nelson MB, LoVerde PT, Apicella MA. 67.  1999. The R-type pyocin of Pseudomonas aeruginosa C is a bacteriophage tail-like particle that contains single-stranded DNA. Infect. Immun. 67:717–25 [Google Scholar]
  68. Kageyama M, Shinomiya T, Aihara Y, Kobayashi M. 68.  1979. Characterization of a bacteriophage related to R-type pyocins. J. Virol. 32:951–57 [Google Scholar]
  69. Shinomiya T, Ina S. 69.  1989. Genetic comparison of bacteriophage PS17 and Pseudomonas aeruginosa R-type pyocin. J. Bacteriol. 171:2287–92 [Google Scholar]
  70. Shinomiya T. 70.  1984. Phenotypic mixing of pyocin R2 and bacteriophage PS17 in Pseudomonas aeruginosa PAO. J. Virol. 49:310–14 [Google Scholar]
  71. Shinomiya T, Shiga S. 71.  1979. Bactericidal activity of the tail of Pseudomonas aeruginosa bacteriophage PS17. J. Virol. 32:958–67 [Google Scholar]
  72. Hayashi T, Matsumoto H, Ohnishi M, Yokota S, Shinomiya T. 72.  et al. 1994. Cytotoxin-converting phages, φCTX and PS21, are R pyocin-related phages. FEMS Microbiol. Lett. 122:239–44 [Google Scholar]
  73. Leiman PG, Shneider MM. 73.  2012. Contractile tail machines of bacteriophages. Adv. Exp. Med. Biol 72693–114 [Google Scholar]
  74. Veesler D, Cambillau C. 74.  2011. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol. Mol. Biol. 75:423–33 [Google Scholar]
  75. Heo YJ, Chung IY, Choi KB, Cho YH. 75.  2007. R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 17:180–85 [Google Scholar]
  76. Waite RD, Curtis MA. 76.  2009. Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J. Bacteriol. 191:1349–54 [Google Scholar]
  77. Morales-Soto N, Forst SA. 77.  2011. The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. J. Bacteriol. 193:3624–32 [Google Scholar]
  78. Ciezki K, Murfin K, Goodrich-Blair H, Stock SP, Forst S. 78.  2017. R-type bacteriocins in related strains of Xenorhabdus bovienii: xenorhabdicin tail fiber modularity and contribution to competitiveness. FEMS Microbiol. Lett. 364:fnw235 [Google Scholar]
  79. Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G. 79.  et al. 2016. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 14:11220 [Google Scholar]
  80. Bird TJ, Grieble HG. 80.  1969. Pyocin antibiosis in chick embryos. Antimicrob. Agents Chemother. 9:495–98 [Google Scholar]
  81. Merrikin DJ, Terry CS. 81.  1972. Use of pyocin 78-C2 in the treatment of Pseudomonasaeruginosa infection in mice. Appl. Microbiol. 23:164–65 [Google Scholar]
  82. Haas H, Sacks T, Saltz N. 82.  1974. Protective effect of pyocin against lethal Pseudomonas aeruginosa infections in mice. J. Infect. Dis. 129:470–72 [Google Scholar]
  83. Scholl D, Martin DW Jr. 83.  2008. Antibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model. Antimicrob. Agents Chemother. 52:1647–52 [Google Scholar]
  84. Scholl D, Cooley M, Williams S, Gebhart D, Martin D. 84.  et al. 2009. An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the foodborne pathogen, Escherichiacoli O157:H7. Antimicrob. Agents Chemother. 53:3074–80 [Google Scholar]
  85. Scholl D, Gebhart D, Williams S, Bates A, Mandrell R. 85.  2012. Genome sequence of E. coli O104:H4 leads to rapid development of a targeted antimicrobial agent against this emerging pathogen. PLOS ONE 7:e33637 [Google Scholar]
  86. Ritchie JM, Greenwich JL, Davis BM, Bronson RT, Gebhart D. 86.  et al. 2011. An Escherichia coli O157-specific engineered pyocin prevents and ameliorates infection by E. coli O157:H7 in an animal model of diarrheal disease. Antimicrob. Agents Chemother 55:5469–74 [Google Scholar]
  87. Fyfe JA, Harris G, Govan JR. 87.  1984. Revised pyocin typing method for Pseudomonas aeruginosa. J. Clin. Microbiol. 20:47–50 [Google Scholar]
  88. Jurado Chacon D, Chueca Sancho A, Guillen Solvas JF, Garcia-Villanova Ruiz B, Galvez Vargas R. 88.  1986. Possibility of using purified pyocins for typing Pseudomonas aeruginosa: purification of pyocins and sensitivity of P. aeruginosa in different tests. Ann. Inst. Pasteur Microbiol 137A:253–66 [Google Scholar]
  89. Sidberry HD, Sadoff JC. 89.  1977. Pyocin sensitivity of Neisseria gonorrhoeae and its feasibility as an epidemiological tool. Infect. Immun. 15:628–37 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error