Although potent combination antiretroviral therapy can effectively block viral replication in the host, human immunodeficiency virus (HIV) persists due to the existence of latent but replication-competent proviruses residing primarily in a very small population of resting memory CD4+ T cells. Viral latency is established when the expression of the autoregulatory viral -activating factor Tat is reduced to subthreshold levels. The absence of Tat reduces HIV transcription and protein production to levels that make the host cell invisible to the immune system and refractory to antiretroviral treatment. Key host cell mechanisms that drive HIV into latency are sequestration of transcription initiation factors, establishment of epigenetic barriers inactivating the proviral promoter, and blockage of the assembly of the host elongation factor P-TEFb. This comprehensive understanding of the molecular control of HIV transcription is leading to the development of optimized combinatorial reactivation and immune surveillance strategies designed to purge the latent viral reservoir.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Fauci AS, Pantaleo G, Stanley S, Weissman D. 1.  1996. Immunopathogenic mechanisms of HIV infection. Ann. Intern. Med. 124:654–63 [Google Scholar]
  2. Klatt NR, Chomont N, Douek DC, Deeks SG. 2.  2013. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol. Rev. 254:326–42 [Google Scholar]
  3. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K. 3.  et al. 1999. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5:512–17 [Google Scholar]
  4. Yukl SA, Gianella S, Sinclair E, Epling L, Li Q. 4.  et al. 2010. Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J. Infect. Dis. 202:1553–61 [Google Scholar]
  5. Chun TW, Davey RT Jr., Engel D, Lane HC, Fauci AS. 5.  1999. Re-emergence of HIV after stopping therapy. Nature 401:874–75 [Google Scholar]
  6. Stöhr W, Fidler S, McClure M, Weber J, Cooper D. 6.  et al. 2013. Duration of HIV-1 viral suppression on cessation of antiretroviral therapy in primary infection correlates with time on therapy. PLOS ONE 8:e78287 [Google Scholar]
  7. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB. 7.  et al. 2013. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:540–51 [Google Scholar]
  8. Boritz EA, Darko S, Swaszek L, Wolf G, Wells D. 8.  et al. 2016. Multiple origins of virus persistence during natural control of HIV infection. Cell 166:1004–15 [Google Scholar]
  9. Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS. 9.  1998. Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. PNAS 95:8869–73 [Google Scholar]
  10. Deng K, Pertea M, Rongvaux A, Wang L, Durand CM. 10.  et al. 2015. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517:381–85 [Google Scholar]
  11. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K. 11.  et al. 2003. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9:727–28 [Google Scholar]
  12. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ. 12.  et al. 2008. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. PNAS 105:3879–84 [Google Scholar]
  13. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA. 13.  et al. 2009. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15:893–900 [Google Scholar]
  14. Maldarelli F, Wu X, Su L, Simonetti FR, Shao W. 14.  et al. 2014. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345:179–83 [Google Scholar]
  15. Wagner TA, McLaughlin S, Garg K, Cheung CY, Larsen BB. 15.  et al. 2014. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345:570–73 [Google Scholar]
  16. Murray AJ, Kwon KJ, Farber DL, Siliciano RF. 16.  2016. The latent reservoir for HIV-1: how immunologic memory and clonal expansion contribute to HIV-1 persistence. J. Immunol. 197:407–17 [Google Scholar]
  17. Lassen K, Han Y, Zhou Y, Siliciano J, Siliciano RF. 17.  2004. The multifactorial nature of HIV-1 latency. Trends Mol. Med. 10:525–31 [Google Scholar]
  18. De Boer RJ, Perelson AS. 18.  2013. Quantifying T lymphocyte turnover. J. Theor. Biol. 327:45–87 [Google Scholar]
  19. Mbonye U, Karn J. 19.  2014. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 454–55:328–39 [Google Scholar]
  20. Nabel G, Baltimore DA. 20.  1987. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–13 [Google Scholar]
  21. Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP. 21.  1997. The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6:235–44 [Google Scholar]
  22. Bosque A, Planelles V. 22.  2008. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113:58–65 [Google Scholar]
  23. Liou LY, Herrmann CH, Rice AP. 23.  2002. Transient induction of cyclin T1 during human macrophage differentiation regulates human immunodeficiency virus type 1 Tat transactivation function. J. Virol. 76:10579–87 [Google Scholar]
  24. Ghose R, Liou LY, Herrmann CH, Rice AP. 24.  2001. Induction of TAK (cyclin T1/P-TEFb) in purified resting CD4+ T lymphocytes by combination of cytokines. J. Virol. 75:11336–43 [Google Scholar]
  25. Barboric M, Yik JH, Czudnochowski N, Yang Z, Chen R. 25.  et al. 2007. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 35:2003–12 [Google Scholar]
  26. Sedore SC, Byers SA, Biglione S, Price JP, Maury WJ, Price DH. 26.  2007. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res 35:4347–58 [Google Scholar]
  27. Sodroski JG, Rosen CA, Wong-Staal F, Salahuddin SZ, Popovic M. 27.  et al. 1985. trans-Acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227:171–73 [Google Scholar]
  28. Pearson R, Kim YK, Hokello J, Lassen K, Friedman J. 28.  et al. 2008. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J. Virol. 82:12291–303 [Google Scholar]
  29. Kim YK, Mbonye U, Hokello J, Karn J. 29.  2011. T-cell receptor signaling enhances transcriptional elongation from latent HIV proviruses by activating P-TEFb through an ERK-dependent pathway. J. Mol. Biol. 410:896–916 [Google Scholar]
  30. Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S. 30.  et al. 2004. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78:6122–33 [Google Scholar]
  31. Brady T, Agosto LM, Malani N, Berry CC, O'Doherty U, Bushman F. 31.  2009. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23:1461–71 [Google Scholar]
  32. Cullen BR, Lomedico PT, Ju G. 32.  1984. Transcriptional interference in avian retroviruses—implications for the promoter insertion model of leukaemogenesis. Nature 307:241–45 [Google Scholar]
  33. Rittner K, Churcher MJ, Gait MJ, Karn J. 33.  1995. The human immunodeficiency virus long terminal repeat includes a specialised initiator element which is required for Tat-responsive transcription. J. Mol. Biol. 248:562–80 [Google Scholar]
  34. Jadlowsky JK, Wong JY, Graham AC, Dobrowolski C, Devor RL. 34.  et al. 2014. The negative elongation factor (NELF) is required for the maintenance of proviral latency but does not induce promoter proximal pausing of RNAP II on the HIV LTR. Mol. Cell. Biol. 34:1911–28 [Google Scholar]
  35. Giffin MJ, Stroud JC, Bates DL, von Koenig KD, Hardin J, Chen L. 35.  2003. Structure of NFAT1 bound as a dimer to the HIV-1 LTR κB element. Nat. Struct. Biol. 10:800–6 [Google Scholar]
  36. Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ. 36.  1993. A cooperative interaction between NF-κB and Sp1 is required for HIV-1 enhancer activation. EMBO J 12:3551–58 [Google Scholar]
  37. Van Lint C, Emiliani S, Ott M, Verdin E. 37.  1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15:1112–20 [Google Scholar]
  38. Sheppard KA, Rose DW, Haque ZK, Kurokawa R, McInerney E. 38.  et al. 1999. Transcriptional activation by NF-κB requires multiple coactivators. Mol. Cell. Biol. 19:6367–78 [Google Scholar]
  39. Kim YK, Bourgeois CF, Pearson R, Tyagi M, West MJ. 39.  et al. 2006. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J 25:3596–604 [Google Scholar]
  40. Kinoshita S, Chen BK, Kaneshima H, Nolan GP. 40.  1998. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 95:595–604 [Google Scholar]
  41. Cron RQ, Bartz SR, Clausell A, Bort SJ, Klebanoff SJ, Lewis DB. 41.  2000. NFAT1 enhances HIV-1 gene expression in primary human CD4 T cells. Clin. Immunol. 94:179–91 [Google Scholar]
  42. Garcia-Rodriguez C, Rao A. 42.  1998. Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). J. Exp. Med. 187:2031–36 [Google Scholar]
  43. Chan JK, Bhattacharyya D, Lassen KG, Ruelas D, Greene WC. 43.  2013. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV. PLOS ONE 8:e77749 [Google Scholar]
  44. Marciniak RA, Sharp PA. 44.  1991. HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J 10:4189–96 [Google Scholar]
  45. Laspia MF, Rice AP, Mathews MB. 45.  1989. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–92 [Google Scholar]
  46. Wen Y, Shatkin AJ. 46.  1999. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev 13:1774–79 [Google Scholar]
  47. Missra A, Gilmour DS. 47.  2010. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. PNAS 107:11301–6 [Google Scholar]
  48. Yamaguchi Y, Inukai N, Narita T, Wada T, Handa H. 48.  2002. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol. Cell. Biol. 22:2918–27 [Google Scholar]
  49. Renner DB, Yamaguchi Y, Wada T, Handa H, Price DH. 49.  2001. A highly purified RNA polymerase II elongation control system. J. Biol. Chem. 276:42601–9 [Google Scholar]
  50. Pagano JM, Kwak H, Waters CT, Sprouse RO, White BS. 50.  et al. 2014. Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions. PLOS Genet 10:e1004090 [Google Scholar]
  51. Wagschal A, Rousset E, Basavarajaiah P, Contreras X, Harwig A. 51.  et al. 2012. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150:1147–57 [Google Scholar]
  52. Kao SY, Calman AF, Luciw PA, Peterlin BM. 52.  1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by Tat gene product. Nature 330:489–93 [Google Scholar]
  53. Churcher M, Lamont C, Hamy F, Dingwall C, Green SM. 53.  et al. 1993. High affinity binding of TAR RNA by the human immunodeficiency virus Tat protein requires amino acid residues flanking the basic domain and base pairs in the RNA stem. J. Mol. Biol. 230:90–110 [Google Scholar]
  54. Herrmann CH, Rice AP. 54.  1995. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J. Virol. 69:1612–20 [Google Scholar]
  55. Garber ME, Wei P, KewelRamani VN, Mayall TP, Herrmann CH. 55.  et al. 1998. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12:3512–27 [Google Scholar]
  56. Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM. 56.  2004. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24:787–95 [Google Scholar]
  57. Zhang Z, Klatt A, Gilmour DS, Henderson AJ. 57.  2007. Negative elongation factor NELF represses human immunodeficiency virus transcription by pausing the RNA polymerase II complex. J. Biol. Chem. 282:16981–88 [Google Scholar]
  58. Komarnitsky P, Cho EJ, Buratowski S. 58.  2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–60 [Google Scholar]
  59. Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H. 59.  2006. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 21:227–37 [Google Scholar]
  60. Chao SH, Price DH. 60.  2001. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276:31793–99 [Google Scholar]
  61. Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH. 61.  2010. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465:747–51 [Google Scholar]
  62. Schulze-Gahmen U, Upton H, Birnberg A, Bao K, Chou S. 62.  et al. 2013. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. eLife 2:e00327 [Google Scholar]
  63. Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y. 63.  et al. 2010. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol. Cell 38:439–51 [Google Scholar]
  64. He N, Liu M, Hsu J, Xue Y, Chou S. 64.  et al. 2010. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol. Cell 38:428–38 [Google Scholar]
  65. Shilatifard A, Duan DR, Haque D, Florence C, Schubach WH. 65.  et al. 1997. ELL2, a new member of an ELL family of RNA polymerase II elongation factors. PNAS 94:3639–43 [Google Scholar]
  66. He N, Chan CK, Sobhian B, Chou S, Xue Y. 66.  et al. 2011. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. PNAS 108:E636–45 [Google Scholar]
  67. Schulze-Gahmen U, Echeverria I, Stjepanovic G, Bai Y, Lu H. 67.  et al. 2016. Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex. eLife 5:e15910 [Google Scholar]
  68. Liu M, Hsu J, Chan C, Li Z, Zhou Q. 68.  2012. The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol. Cell 46:325–34 [Google Scholar]
  69. Core LJ, Waterfall JJ, Lis JT. 69.  2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–48 [Google Scholar]
  70. Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS. 70.  et al. 2007. RNA polymerase is poised for activation across the genome. Nat. Genet. 39:1507–11 [Google Scholar]
  71. Weinberger AD, Weinberger LS. 71.  2013. Stochastic fate selection in HIV-infected patients. Cell 155:497–99 [Google Scholar]
  72. Keen NJ, Churcher MJ, Karn J. 72.  1997. Transfer of Tat and release of TAR RNA during the activation of the human immunodeficiency virus type-1 transcription elongation complex. EMBO J 16:5260–72 [Google Scholar]
  73. Chiu YL, Ho CK, Saha N, Schwer B, Shuman S, Rana TM. 73.  2002. Tat stimulates cotranscriptional capping of HIV mRNA. Mol. Cell 10:585–97 [Google Scholar]
  74. Barboric M, Lenasi T, Chen H, Johansen EB, Guo S, Peterlin BM. 74.  2009. 7SK snRNP/P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. PNAS 106:7798–803 [Google Scholar]
  75. Lenasi T, Peterlin BM, Barboric M. 75.  2011. Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J. Biol. Chem. 286:22758–68 [Google Scholar]
  76. Bres V, Gomes N, Pickle L, Jones KA. 76.  2005. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 19:1211–26 [Google Scholar]
  77. Chen Y, Zhang L, Estaras C, Choi SH, Moreno L Jr.. 77.  et al. 2014. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation. Genes Dev 28:2261–75 [Google Scholar]
  78. Czudnochowski N, Bosken CA, Geyer M. 78.  2012. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat. Commun. 3:842 [Google Scholar]
  79. Pak V, Eifler TT, Jager S, Krogan NJ, Fujinaga K, Peterlin BM. 79.  2015. CDK11 in TREX/THOC regulates HIV mRNA 3′ end processing. Cell Host Microbe 18:560–70 [Google Scholar]
  80. Zhou Q, Li T, Price DH. 80.  2012. RNA polymerase II elongation control. Annu. Rev. Biochem. 81:119–43 [Google Scholar]
  81. Zieve G, Benecke BJ, Penman S. 81.  1977. Synthesis of two classes of small RNA species in vivo and in vitro. Biochemistry 16:4520–25 [Google Scholar]
  82. Nguyen VT, Kiss T, Michels AA, Bensaude O. 82.  2001. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–25 [Google Scholar]
  83. Yang Z, Zhu Q, Luo K, Zhou Q. 83.  2001. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317–22 [Google Scholar]
  84. Kobbi L, Demey-Thomas E, Braye F, Proux F, Kolesnikova O. 84.  et al. 2016. An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb. PNAS 113:12721–26 [Google Scholar]
  85. Chen R, Yang Z, Zhou Q. 85.  2004. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J. Biol. Chem. 279:4153–60 [Google Scholar]
  86. Zhao Y, Karijolich J, Glaunsinger B, Zhou Q. 86.  2016. Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV-1 transcription and escape from latency. EMBO Rep 17:1441–51 [Google Scholar]
  87. Michels AA, Fraldi A, Li Q, Adamson TE, Bonnet F. 87.  et al. 2004. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 23:2608–19 [Google Scholar]
  88. Belanger F, Baigude H, Rana TM. 88.  2009. U30 of 7SK RNA forms a specific photo-cross-link with Hexim1 in the context of both a minimal RNA-binding site and a fully reconstituted 7SK/Hexim1/P-TEFb ribonucleoprotein complex. J. Mol. Biol. 386:1094–107 [Google Scholar]
  89. Lebars I, Martinez-Zapien D, Durand A, Coutant J, Kieffer B, Dock-Bregeon AC. 89.  2010. HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements. Nucleic Acids Res 38:7749–63 [Google Scholar]
  90. Egloff S, Van Herreweghe E, Kiss T. 90.  2006. Regulation of polymerase II transcription by 7SK snRNA: Two distinct RNA elements direct P-TEFb and HEXIM1 binding. Mol. Cell. Biol. 26:630–42 [Google Scholar]
  91. Durney MA, D'Souza VM. 91.  2010. Preformed protein-binding motifs in 7SK snRNA: structural and thermodynamic comparisons with retroviral TAR. J. Mol. Biol. 404:555–67 [Google Scholar]
  92. Krueger BJ, Varzavand K, Cooper JJ, Price DH. 92.  2010. The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PLOS ONE 5:e12335 [Google Scholar]
  93. Van Herreweghe E, Egloff S, Goiffon I, Jady BE, Froment C. 93.  et al. 2007. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb. EMBO J 26:3570–80 [Google Scholar]
  94. Zhou Q, Yik JH. 94.  2006. The yin and yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol. Mol. Biol. Rev. 70:646–59 [Google Scholar]
  95. Lu H, Li Z, Xue Y, Schulze-Gahmen U, Johnson JR. 95.  et al. 2014. AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. PNAS 111:E15–24 [Google Scholar]
  96. Bisgrove DA, Mahmoudi T, Henklein P, Verdin E. 96.  2007. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. PNAS 104:13690–95 [Google Scholar]
  97. Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q. 97.  2005. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19:535–45 [Google Scholar]
  98. Li Z, Guo J, Wu Y, Zhou Q. 98.  2013. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 41:277–87 [Google Scholar]
  99. Mbonye UR, Gokulrangan G, Datt M, Dobrowolski C, Cooper M. 99.  et al. 2013. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4+ T lymphocytes. PLOS Pathog 9:e1003338 [Google Scholar]
  100. Chiang K, Sung TL, Rice AP. 100.  2012. Regulation of cyclin T1 and HIV-1 replication by microRNAs in resting CD4+ T lymphocytes. J. Virol. 86:3244–52 [Google Scholar]
  101. Sung TL, Rice AP. 101.  2009. miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLOS Pathog 5:e1000263 [Google Scholar]
  102. Hoque M, Shamanna RA, Guan D, Pe'ery T, Mathews MB. 102.  2011. HIV-1 replication and latency are regulated by translational control of cyclin T1. J. Mol. Biol. 410:917–32 [Google Scholar]
  103. Ramakrishnan R, Dow EC, Rice AP. 103.  2009. Characterization of Cdk9 T-loop phosphorylation in resting and activated CD4+ T lymphocytes. J. Leukoc. Biol. 86:1345–50 [Google Scholar]
  104. Budhiraja S, Famiglietti M, Bosque A, Planelles V, Rice AP. 104.  2012. Cyclin T1 and CDK9 T-loop phosphorylation are downregulated during establishment of HIV-1 latency in primary resting memory CD4+ T cells. J. Virol. 87:1211–20 [Google Scholar]
  105. Budhiraja S, Ramakrishnan R, Rice AP. 105.  2012. Phosphatase PPM1A negatively regulates P-TEFb function in resting CD4+ T cells and inhibits HIV-1 gene expression. Retrovirology 9:52 [Google Scholar]
  106. Gudipaty SA, McNamara RP, Morton EL, D'Orso I. 106.  2015. PPM1G binds 7SK RNA and Hexim1 to block P-TEFb assembly into the 7SK snRNP and sustain transcription elongation. Mol. Cell. Biol. 35:3810–28 [Google Scholar]
  107. O'Keeffe B, Fong Y, Chen D, Zhou S, Zhou Q. 107.  2000. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. J. Biol. Chem. 275:279–87 [Google Scholar]
  108. Larochelle S, Amat R, Glover-Cutter K, Sanso M, Zhang C. 108.  et al. 2012. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19:1108–15 [Google Scholar]
  109. Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L. 109.  et al. 2008. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 27:1907–18 [Google Scholar]
  110. Bourbigot S, Dock-Bregeon AC, Eberling P, Coutant J, Kieffer B, Lebars I. 110.  2016. Solution structure of the 5′-terminal hairpin of the 7SK small nuclear RNA. RNA 22:1844–58 [Google Scholar]
  111. Fujinaga K, Barboric M, Li Q, Luo Z, Price DH, Peterlin BM. 111.  2012. PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res 40:9160–70 [Google Scholar]
  112. Mbonye UR, Wang B, Gokulrangan G, Chance MR, Karn J. 112.  2015. Phosphorylation of HEXIM1 at Tyr271 and Tyr274 promotes release of P-TEFb from the 7SK snRNP complex and enhances proviral HIV gene expression. Proteomics 15:2078–86 [Google Scholar]
  113. Cho S, Schroeder S, Kaehlcke K, Kwon HS, Pedal A. 113.  et al. 2009. Acetylation of cyclin T1 regulates the equilibrium between active and inactive P-TEFb in cells. EMBO J 28:1407–17 [Google Scholar]
  114. D'Orso I, Jang GM, Pastuszak AW, Faust TB, Quezada E. 114.  et al. 2012. A transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. Mol. Cell. Biol. 32:4780–93 [Google Scholar]
  115. McNamara RP, Reeder JE, McMillan EA, Bacon CW, McCann JL, D'Orso I. 115.  2016. KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol Cell 61:39–53 [Google Scholar]
  116. D'Orso I. 116.  2016. 7SKiing on chromatin: Move globally, act locally. RNA Biol 13:545–53 [Google Scholar]
  117. Ji X, Zhou Y, Pandit S, Huang J, Li H. 117.  et al. 2013. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153:855–68 [Google Scholar]
  118. Stultz RD, Cenker JJ, McDonald D. 118.  2017. Imaging HIV-1 genomic DNA from entry through productive infection. J. Virol. 91:e00034–17 [Google Scholar]
  119. Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S. 119.  et al. 2013. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12:452–62 [Google Scholar]
  120. Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV. 120.  et al. 2012. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J. Leukoc. Biol. 92:1147–54 [Google Scholar]
  121. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H. 121.  et al. 2006. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLOS Pathog 2:e60 [Google Scholar]
  122. Verdin E, Paras PJ, Van Lint C. 122.  1993. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12:3249–59 [Google Scholar]
  123. Rafati H, Parra M, Hakre S, Moshkin Y, Verdin E, Mahmoudi T. 123.  2011. Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLOS Biol 9:e1001206 [Google Scholar]
  124. Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM. 124.  2004. Coaxing HIV-1 from resting CD4 T cells: Histone deacetylase inhibition allows latent viral expression. AIDS 18:1101–8 [Google Scholar]
  125. Tyagi M, Pearson RJ, Karn J. 125.  2010. Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J. Virol. 84:6425–37 [Google Scholar]
  126. du Chene I, Basyuk E, Lin YL, Triboulet R, Knezevich A. 126.  et al. 2007. Suv39H1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 26:424–35 [Google Scholar]
  127. Jamaluddin MS, Hu PW, Jan Y, Siwak EB, Rice AP. 127.  2016. The broad-spectrum histone deacetylase inhibitors vorinostat and panobinostat activate latent HIV in CD4+ T cells in part through phosphorylation of the T-loop of the CDK9 subunit of P-TEFb. AIDS Res. Hum. Retrovir. 32:169–73 [Google Scholar]
  128. Tyagi M, Karn J. 128.  2007. CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26:4985–95 [Google Scholar]
  129. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC. 129.  2006. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–49 [Google Scholar]
  130. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L. 130.  et al. 2007. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26:412–23 [Google Scholar]
  131. Imai K, Togami H, Okamoto T. 131.  2010. Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J. Biol. Chem. 285:16538–45 [Google Scholar]
  132. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM. 132.  et al. 2011. Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of zeste 2 (EZH2). J. Virol. 85:9078–89 [Google Scholar]
  133. Nguyen K, Das B, Dobrowolski C, Karn J. 133.  2017. Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. mBio 8:e00133–17 [Google Scholar]
  134. Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K. 134.  2014. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55:347–60 [Google Scholar]
  135. Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P. 135.  et al. 2009. CpG methylation controls reactivation of HIV from latency. PLOS Pathog 5:e1000554 [Google Scholar]
  136. Palacios JA, Perez-Pinar T, Toro C, Sanz-Minguela B, Moreno V. 136.  et al. 2012. Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J. Virol. 86:13081–84 [Google Scholar]
  137. Kaneko S, Bonasio R, Saldana-Meyer R, Yoshida T, Son J. 137.  et al. 2014. Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol. Cell 53:290–300 [Google Scholar]
  138. Saayman S, Ackley A, Turner AM, Famiglietti M, Bosque A. 138.  et al. 2014. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol. Ther. 22:1164–75 [Google Scholar]
  139. Zapata JC, Campilongo F, Barclay RA, DeMarino C, Iglesias-Ussel MD. 139.  et al. 2017. The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the polycomb repressor complex 2 and promoting nucleosome assembly. Virology 506:34–44 [Google Scholar]
  140. Suzuki K, Ishida T, Yamagishi M, Ahlenstiel C, Swaminathan S. 140.  et al. 2011. Transcriptional gene silencing of HIV-1 through promoter targeted RNA is highly specific. RNA Biol 8:1035–46 [Google Scholar]
  141. Routy JP, Angel JB, Spaans JN, Trottier B, Rouleau D. 141.  et al. 2012. Design and implementation of a randomized crossover study of valproic acid and antiretroviral therapy to reduce the HIV reservoir. HIV Clin. Trials 13:301–7 [Google Scholar]
  142. Siliciano JD, Lai J, Callender M, Pitt E, Zhang H. 142.  et al. 2007. Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J. Infect. Dis. 195:833–36 [Google Scholar]
  143. Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S. 143.  et al. 2012. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12:607–14 [Google Scholar]
  144. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA. 144.  et al. 2012. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36:491–501 [Google Scholar]
  145. Jones RB, Mueller S, O'Connor R, Rimpel K, Sloan DD. 145.  et al. 2016. A subset of latency-reversing agents expose HIV-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLOS Pathog 12:e1005545 [Google Scholar]
  146. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD. 146.  et al. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–85 [Google Scholar]
  147. Rasmussen TA, Lewin SR. 147.  2016. Shocking HIV out of hiding: Where are we with clinical trials of latency reversing agents?. Curr. Opin. HIV AIDS 11:394–401 [Google Scholar]
  148. Marz M, Donath A, Verstraete N, Nguyen VT, Stadler PF, Bensaude O. 148.  2009. Evolution of 7SK RNA and its protein partners in metazoa. Mol. Biol. Evol. 26:2821–30 [Google Scholar]
  149. Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R. 149.  et al. 2013. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210:143–56 [Google Scholar]
  150. Fukazawa Y, Lum R, Okoye AA, Park H, Matsuda K. 150.  et al. 2015. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat. Med. 21:132–39 [Google Scholar]
  151. Rothenberger MK, Keele BF, Wietgrefe SW, Fletcher CV, Beilman GJ. 151.  et al. 2015. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. PNAS 112:E1126–34 [Google Scholar]
  152. Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. 152.  2005. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434:1093–97 [Google Scholar]
  153. Guadalupe M, Sankaran S, George MD, Reay E, Verhoeven D. 153.  et al. 2006. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J. Virol. 80:8236–47 [Google Scholar]
  154. von Stockenstrom S, Odevall L, Lee E, Sinclair E, Bacchetti P. 154.  et al. 2015. Longitudinal genetic characterization reveals that cell proliferation maintains a persistent HIV type 1 DNA pool during effective HIV therapy. J. Infect. Dis. 212:596–607 [Google Scholar]
  155. Laird GM, Eisele EE, Rabi SA, Lai J, Chioma S. 155.  et al. 2013. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLOS Pathog 9:e1003398 [Google Scholar]
  156. Strain MC, Lada SM, Luong T, Rought SE, Gianella S. 156.  et al. 2013. Highly precise measurement of HIV DNA by droplet digital PCR. PLOS ONE 8:e55943 [Google Scholar]
  157. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA. 157.  et al. 2013. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLOS Pathog 9:e1003174 [Google Scholar]
  158. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. 158.  2014. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20:425–29 [Google Scholar]
  159. Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG. 159.  et al. 2015. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine 2:872–81 [Google Scholar]
  160. Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr. 160.  et al. 2014. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. PNAS 111:7078–83 [Google Scholar]
  161. Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F. 161.  et al. 2016. Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe 20:368–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error