Astroviruses are nonenveloped, positive-sense single-stranded RNA viruses that cause gastrointestinal illness. Although a leading cause of pediatric diarrhea, human astroviruses are among the least characterized enteric RNA viruses. However, by using in vitro methods and animal models to characterize virus-host interactions, researchers have discovered several important properties of astroviruses, including the ability of the astrovirus capsid to act as an enterotoxin, disrupting the gut epithelial barrier. Improved animal models are needed to study this phenomenon, along with the pathogenesis of astroviruses, particularly in those strains that can cause extraintestinal disease. Much like for other enteric viruses, the current dogma states that astroviruses infect in a species-specific manner; however, this assumption is being challenged by growing evidence that these viruses have potential to cross species barriers. This review summarizes these remarkable facets of astrovirus biology, highlighting critical steps toward increasing our understanding of this unique enteric pathogen.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Yokoyama CC, Loh J, Zhao G, Stappenbeck TS, Wang D. 1.  et al. 2012. Adaptive immunity restricts replication of novel murine astroviruses. J. Virol. 86:12262–70 [Google Scholar]
  2. Marvin SA, Huerta CT, Sharp B, Freiden P, Cline TD, Schultz-Cherry S. 2.  2016. Type I interferon response limits astrovirus replication and protects against increased barrier permeability in vitro and in vivo. J. Virol. 90:1988–96 [Google Scholar]
  3. Willcocks MM, Carter MJ. 3.  1993. Identification and sequence determination of the capsid protein gene of human astrovirus serotype 1. FEMS Microbiol. Lett. 114:1–7 [Google Scholar]
  4. Monroe SS, Jiang B, Stine SE, Koopmans M, Glass RI. 4.  1993. Subgenomic RNA sequence of human astrovirus supports classification of Astroviridae as a new family of RNA viruses. J. Virol. 67:3611–14 [Google Scholar]
  5. Méndez E, Murillo A, Velázquez R, Burnham A, Arias CF. 5.  2012. Replication cycle of astroviruses. Astrovirus Research S Schultz-Cherry 19–45 New York: Springer [Google Scholar]
  6. Willcocks MM, Ashton N, Kurtz JB, Cubitt WD, Carter MJ. 6.  1994. Cell culture adaptation of astrovirus involves a deletion. J. Virol. 68:6057–58 [Google Scholar]
  7. De Benedictis P, Schultz-Cherry S, Burnham A, Cattoli G. 7.  2011. Astrovirus infections in humans and animals—molecular biology, genetic diversity, and interspecies transmissions. Infect. Genet. Evol. 11:1529–44 [Google Scholar]
  8. De Grazia S, Medici MC, Pinto P, Moschidou P, Tummolo F. 8.  et al. 2012. Genetic heterogeneity and recombination in human type 2 astroviruses. J. Clin. Microbiol. 50:3760–64 [Google Scholar]
  9. Jiang H, Holtz LR, Bauer I, Franz CJ, Zhao G. 9.  et al. 2013. Comparison of novel MLB-clade, VA-clade and classic human astroviruses highlights constrained evolution of the classic human astrovirus nonstructural genes. Virology 436:8–14 [Google Scholar]
  10. Martella V, Pinto P, Tummolo F, De Grazia S, Giammanco GM. 10.  et al. 2014. Analysis of the ORF2 of human astroviruses reveals lineage diversification, recombination and rearrangement and provides the basis for a novel sub-classification system. Arch. Virol. 159:3185–96 [Google Scholar]
  11. Pérot P, Lecuit M, Eloit M. 11.  2017. Astrovirus diagnostics. Viruses 9:10 [Google Scholar]
  12. Bosch A, Pintó RM, Guix S. 12.  2014. Human astroviruses. Clin. Microbiol. Rev. 27:1048–74 [Google Scholar]
  13. 13. Int. Comm. Taxon. Viruses (ICTV). 2016. Virus Taxonomy: 2016 Release EC 48, Budapest, Hung., Aug. Email Ratif. 2017 (MSL #31). https://talk.ictvonline.org/taxonomy/ [Google Scholar]
  14. Guix S, Bosch A, Pintó RM. 14.  2012. Astrovirus taxonomy. Astrovirus Research S Schultz-Cherry 97–118 New York: Springer [Google Scholar]
  15. Guix S, Caballero S, Villena C, Bartolomé R, Latorre C. 15.  et al. 2002. Molecular epidemiology of astrovirus infection in Barcelona, Spain. J. Clin. Microbiol. 40:133–39 [Google Scholar]
  16. Méndez-Toss M, Griffin DD, Calva J, Contreras JF, Puerto FI. 16.  et al. 2004. Prevalence and genetic diversity of human astroviruses in Mexican children with symptomatic and asymptomatic infections. J. Clin. Microbiol. 42:151–57 [Google Scholar]
  17. Gabbay YB, Leite JPG, Oliveira DS, Nakamura LS, Nunes MRT. 17.  et al. 2007. Molecular epidemiology of astrovirus type 1 in Belém, Brazil, as an agent of infantile gastroenteritis, over a period of 18 years (1982–2000): identification of two possible new lineages. Virus Res 129:166–74 [Google Scholar]
  18. De Grazia S, Platia MA, Rotolo V, Colomba C, Martella V, Giammanco GM. 18.  2011. Surveillance of human astrovirus circulation in Italy 2002–2005: emergence of lineage 2c strains. Clin. Microbiol. Infect. 17:97–101 [Google Scholar]
  19. De Grazia S, Martella V, Chironna M, Bonura F, Tummolo F. 19.  et al. 2013. Nationwide surveillance study of human astrovirus infections in an Italian paediatric population. Epidemiol. Infect. 141:524–28 [Google Scholar]
  20. Finkbeiner SR, Kirkwood CD, Wang D. 20.  2008. Complete genome sequence of a highly divergent astrovirus isolated from a child with acute diarrhea. Virol. J. 5:117 [Google Scholar]
  21. Finkbeiner SR, Li Y, Ruone S, Conrardy C, Gregoricus N. 21.  et al. 2009. Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acute gastroenteritis. J. Virol. 83:10836–39 [Google Scholar]
  22. Finkbeiner SR, Holtz LR, Jiang Y, Rajendran P, Franz CJ. 22.  et al. 2009. Human stool contains a previously unrecognized diversity of novel astroviruses. Virol. J. 6:161 [Google Scholar]
  23. Finkbeiner SR, Le BM, Holtz LR, Storch GA, Wang D. 23.  2009. Detection of newly described astrovirus MLB1 in stool samples from children. Emerg. Infect. Dis. 15:441–44 [Google Scholar]
  24. Kapoor A, Li L, Victoria J, Oderinde B, Mason C. 24.  et al. 2009. Multiple novel astrovirus species in human stool. J. Gen. Virol. 90:Pt. 122965–72 [Google Scholar]
  25. Meyer CT, Bauer IK, Antonio M, Adeyemi M, Saha D. 25.  et al. 2015. Prevalence of classic, MLB-clade and VA-clade astroviruses in Kenya and the Gambia. Virol. J. 12:78 [Google Scholar]
  26. Chu DKW, Chin AWH, Smith GJ, Chan KH, Guan Y. 26.  et al. 2010. Detection of novel astroviruses in urban brown rats and previously known astroviruses in humans. J. Gen. Virol. 91:2457–62 [Google Scholar]
  27. Kemenesi G, Dallos B, Görföl T, Boldogh S, Estók P. 27.  et al. 2014. Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. Vector-Borne Zoonotic Dis 14:846–55 [Google Scholar]
  28. Dufkova L, Straková P, Širmarová J, Salát J, Moutelíková R. 28.  et al. 2015. Detection of diverse novel bat astrovirus sequences in the Czech Republic. Vector-Borne Zoonotic Dis 15:518–21 [Google Scholar]
  29. Wu Z, Ren X, Yang L, Hu Y, Yang J. 29.  et al. 2012. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J. Virol. 86:10999–1012 [Google Scholar]
  30. Lau SKP, Woo PCY, Yip CCY, Bai R, Wu Y. 30.  et al. 2013. Complete genome sequence of a novel feline astrovirus from a domestic cat in Hong Kong. Genome Announc 1:e00708–13 [Google Scholar]
  31. Martella V, Moschidou P, Catella C, Larocca V, Pinto P. 31.  et al. 2012. Enteric disease in dogs naturally infected by a novel canine astrovirus. J. Clin. Microbiol. 50:1066–69 [Google Scholar]
  32. Sajewicz-Krukowska J, Domanska-Blicharz K. 32.  2016. Nearly full-length genome sequence of a novel astrovirus isolated from chickens with “white chicks” condition. Arch. Virol. 161:2581–87 [Google Scholar]
  33. Liao Q, Liu N, Wang X, Wang F, Zhang D. 33.  2015. Genetic characterization of a novel astrovirus in Pekin ducks. Infect. Genet. Evol. 32:60–67 [Google Scholar]
  34. Chu DKW, Leung CYH, Perera HKK, Ng EM, Gilbert M. 34.  et al. 2012. A novel group of avian astroviruses in wild aquatic birds. J. Virol. 86:13772–78 [Google Scholar]
  35. Xiao CT, Giménez-Lirola LG, Gerber PF, Jiang YH, Halbur PG, Opriessnig T. 35.  2013. Identification and characterization of novel porcine astroviruses (PAstVs) with high prevalence and frequent co-infection of individual pigs with multiple PAstV types. J. Gen. Virol. 94:570–82 [Google Scholar]
  36. Shan T, Wang C, Tong W, Zheng H, Hua X. 36.  et al. 2012. Complete genome of a novel porcine astrovirus. J. Virol. 86:13820–21 [Google Scholar]
  37. Reuter G, Pankovics P, Delwart E. 37.  Boros Á; 2012. Identification of a novel astrovirus in domestic sheep in Hungary. Arch. Virol. 157:323–27 [Google Scholar]
  38. Farkas T, Fey B, Keller G, Martella V, Egyed L. 38.  2012. Molecular detection of novel astroviruses in wild and laboratory mice. Virus Genes 45:518–25 [Google Scholar]
  39. Schlottau K, Schulze C, Bilk S, Hanke D, Höper D. 39.  et al. 2016. Detection of a novel bovine astrovirus in a cow with encephalitis. Transbound. Emerg. Dis. 63:253–59 [Google Scholar]
  40. Mendenhall IH, Yaung KN, Joyner PH, Keatts L, Borthwick S. 40.  et al. 2015. Detection of a novel astrovirus from a black-naped monarch (Hypothymis azurea) in Cambodia. Virol. J. 12:182 [Google Scholar]
  41. Woo PCY, Lau SKP, Teng JLL, Tsang AKL, Joseph S. 41.  et al. 2015. A novel astrovirus from dromedaries in the Middle East. J. Gen. Virol. 96:2697–707 [Google Scholar]
  42. Chen X, Zhang B, Yue H, Wang Y, Zhou F. 42.  et al. 2015. A novel astrovirus species in the gut of yaks with diarrhoea in the Qinghai-Tibetan plateau, 2013. J. Gen. Virol 96:3672–80 [Google Scholar]
  43. Hu B, Chmura AA, Li J, Zhu G, Desmond JS. 43.  et al. 2014. Detection of diverse novel astroviruses from small mammals in China. J. Gen. Virol. 95:2442–49 [Google Scholar]
  44. Simon-Loriere E, Holmes EC. 44.  2011. Why do RNA viruses recombine?. Nat. Rev. Microbiol. 9:617–26 [Google Scholar]
  45. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. 45.  2010. Viral mutation rates. J. Virol. 84:9733–48 [Google Scholar]
  46. Lauring AS, Frydman J, Andino R. 46.  2013. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11:327–36 [Google Scholar]
  47. Babkin IV, Tikunov AY, Zhirakovskaia EV, Netesov SV, Tikunova NV. 47.  2012. High evolutionary rate of human astrovirus. Infect. Genet. Evol. 12:435–42 [Google Scholar]
  48. Babkin IV, Tikunov AY, Sedelnikova DA, Zhirakovskaia EV, Tikunova NV. 48.  2014. Recombination analysis based on the HAstV-2 and HAstV-4 complete genomes. Infect. Genet. Evol. 22:94–102 [Google Scholar]
  49. Taylor MB, Walter J, Berke T, Cubitt WD, Mitchell DK, Matson DO. 49.  2001. Characterisation of a South African human astrovirus as type 8 by antigenic and genetic analyses. J. Med. Virol 64256–61 [Google Scholar]
  50. Wolfaardt M, Kiulia NM, Mwenda JM, Taylor MB. 50.  2011. Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis. J. Clin. Microbiol. 49:728–31 [Google Scholar]
  51. Karlsson EA, Small CT, Freiden P, Feeroz MM, Matsen FA. 51.  et al. 2015. Non-human primates harbor diverse mammalian and avian astroviruses including those associated with human infections. PLOS Pathog 11:e1005225 [Google Scholar]
  52. Nagai M, Omatsu T, Aoki H, Otomaru K, Uto T. 52.  et al. 2015. Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus. Arch. Virol. 160:2491–501 [Google Scholar]
  53. Mihalov-Kovács E, Martella V, Lanave G, Bodnar L, Fehér E. 53.  et al. 2017. Genome analysis of canine astroviruses reveals genetic heterogeneity and suggests possible inter-species transmission. Virus Res 232:162–70 [Google Scholar]
  54. Walter JE, Briggs J, Guerrero ML, Matson DO, Pickering LK. 54.  et al. 2001. Molecular characterization of a novel recombinant strain of human astrovirus associated with gastroenteritis in children. Arch. Virol. 146:2357–67 [Google Scholar]
  55. Martella V, Medici MC, Terio V, Catella C, Bozzo G. 55.  et al. 2013. Lineage diversification and recombination in type-4 human astroviruses. Infect. Genet. Evol. 20:330–35 [Google Scholar]
  56. Pativada M, Bhattacharya R, Krishnan T. 56.  2013. Novel human astrovirus strains showing multiple recombinations within highly conserved ORF1b detected from hospitalized acute watery diarrhea cases in Kolkata, India. Infect. Genet. Evol. 20:284–91 [Google Scholar]
  57. Medici MC, Tummolo F, Martella V, Banyai K, Bonerba E. 57.  et al. 2015. Genetic heterogeneity and recombination in type-3 human astroviruses. Infect. Genet. Evol. 32:156–60 [Google Scholar]
  58. Ha HJ, Lee SG, Cho HG, Jin JY, Lee JW, Paik SY. 58.  2016. Complete genome sequencing of a recombinant strain between human astrovirus antigen types 2 and 8 isolated from South Korea. Infect. Genet. Evol. 39:127–31 [Google Scholar]
  59. Belliot G, Laveran H, Monroe SS. 59.  1997. Detection and genetic differentiation of human astroviruses: Phylogenetic grouping varies by coding region. Arch. Virol. 142:1323–34 [Google Scholar]
  60. Wang QH, Kakizawa J, Wen LY, Shimizu M, Nishio O. 60.  et al. 2001. Genetic analysis of the capsid region of astroviruses. J. Med. Virol 64245–55 [Google Scholar]
  61. Chu DKW, Poon LLM, Guan Y, Peiris JSM. 61.  2008. Novel astroviruses in insectivorous bats. J. Virol. 82:9107–14 [Google Scholar]
  62. Bull RA, Tanaka MM, White PA. 62.  2007. Norovirus recombination. J. Gen. Virol. 88:3347–59 [Google Scholar]
  63. Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. 63.  2005. Norovirus recombination in ORF1/ORF2 overlap. Emerg. Infect. Dis. 11:1079–85 [Google Scholar]
  64. Strain E, Kelley LA, Schultz-Cherry S, Muse SV, Koci MD. 64.  2008. Genomic analysis of closely related astroviruses. J. Virol. 82:5099–103 [Google Scholar]
  65. Pantin-Jackwood MJ, Spackman E, Woolcock PR. 65.  2006. Phylogenetic analysis of turkey astroviruses reveals evidence of recombination. Virus Genes 32:187–92 [Google Scholar]
  66. Battisti CD, Salviato A, Jonassen CM, Toffan A, Capua I, Cattoli G. 66.  2012. Genetic characterization of astroviruses detected in guinea fowl (Numida meleagris) reveals a distinct genotype and suggests cross-species transmission between turkey and guinea fowl. Arch. Virol. 157:1329–37 [Google Scholar]
  67. Liu N, Wang F, Shi J, Zheng L, Wang X, Zhang D. 67.  2014. Molecular characterization of a duck hepatitis virus 3-like astrovirus. Vet. Microbiol. 170:39–47 [Google Scholar]
  68. Lan D, Ji W, Shan T, Cui L, Yang Z. 68.  et al. 2011. Molecular characterization of a porcine astrovirus strain in China. Arch. Virol. 156:1869–75 [Google Scholar]
  69. Tse H, Chan WM, Tsoi HW, Fan RYY, Lau CCY. 69.  et al. 2011. Rediscovery and genomic characterization of bovine astroviruses. J. Gen. Virol. 92:1888–98 [Google Scholar]
  70. Rivera R, Nollens HH, Venn-Watson S, Gulland FMD, Wellehan JFX. 70.  2010. Characterization of phylogenetically diverse astroviruses of marine mammals. J. Gen. Virol. 91:166–73 [Google Scholar]
  71. Sun N, Yang Y, Wang GS, Shao XQ, Zhang SQ. 71.  et al. 2014. Detection and characterization of avastrovirus associated with diarrhea isolated from minks in China. Food Environ. Virol. 6:169–74 [Google Scholar]
  72. Wang X, Wang J, Zhou C, Yang S, Shen Q. 72.  et al. 2016. Viral metagenomics of fecal samples from non-human primates revealed human astrovirus in a chimpanzee, China. Gut Pathog 8:53 [Google Scholar]
  73. Meliopoulos VA, Kayali G, Burnham A, Oshansky CM, Thomas PG. 73.  et al. 2014. Detection of antibodies against turkey astrovirus in humans. PLOS ONE 9:e96934 [Google Scholar]
  74. Karst SM, Wobus Christiane E. 74.  2015. Viruses in rodent colonies: lessons learned from murine noroviruses. Annu. Rev. Virol. 2:525–48 [Google Scholar]
  75. Brinker JP, Blacklow NR, Herrmann JE. 75.  2000. Human astrovirus isolation and propagation in multiple cell lines. Arch. Virol. 145:1847–56 [Google Scholar]
  76. Moser LA, Carter M, Schultz-Cherry S. 76.  2007. Astrovirus increases epithelial barrier permeability independently of viral replication. J. Virol. 81:11937–45 [Google Scholar]
  77. Donelli G, Superti F, Tinari A, Marziano ML. 77.  1992. Mechanism of astrovirus entry into Graham 293 cells. J. Med. Virol 38271–77 [Google Scholar]
  78. Méndez E, Muñoz-Yañez C, Sánchez-San Martín C, Aguirre-Crespo G, del Rocio Baños-Lara M. 78.  et al. 2014. Characterization of human astrovirus cell entry. J. Virol. 88:2452–60 [Google Scholar]
  79. Méndez E, Aguirre-Crespo G, Zavala G, Arias CF. 79.  2007. Association of the astrovirus structural protein VP90 with membranes plays a role in virus morphogenesis. J. Virol. 81:10649–58 [Google Scholar]
  80. Kiang D, Matsui SM. 80.  2002. Proteolytic processing of a human astrovirus nonstructural protein. J. Gen. Virol. 83:25–34 [Google Scholar]
  81. Geigenmüller U, Ginzton NH, Matsui SM. 81.  2002. Studies on intracellular processing of the capsid protein of human astrovirus serotype 1 in infected cells. J. Gen. Virol. 83:1691–95 [Google Scholar]
  82. Gibson CA, Chen J, Monroe SA, Denison MR. 82.  1998. Expression and processing of nonstructural proteins of the human astroviruses. Adv. Exp. Med. Biol 440387–91 [Google Scholar]
  83. Méndez E, Salas-Ocampo MPE, Munguía ME, Arias CF. 83.  2003. Protein products of the open reading frames encoding nonstructural proteins of human astrovirus serotype 8. J. Virol. 77:11378–84 [Google Scholar]
  84. Guix S, Caballero S, Bosch A, Pintó RM. 84.  2004. C-terminal nsP1a protein of human astrovirus colocalizes with the endoplasmic reticulum and viral RNA. J. Virol. 78:13627–36 [Google Scholar]
  85. Al-Mutairy B, Walter JE, Pothen A, Mitchell DK. 85.  2005. Genome prediction of putative genome-linked viral protein (VPg) of astroviruses. Virus Genes 31:21–30 [Google Scholar]
  86. Fuentes C, Guix S, Bosch A, Pintó RM. 86.  2011. The C-terminal nsP1a protein of human astrovirus is a phosphoprotein that interacts with the viral polymerase. J. Virol. 85:4470–79 [Google Scholar]
  87. Geigenmüller U, Chew T, Ginzton N, Matsui SM. 87.  2002. Processing of nonstructural protein 1a of human astrovirus. J. Virol. 76:2003–8 [Google Scholar]
  88. Lewis TL, Greenberg HB, Herrmann JE, Smith LS, Matsui SM. 88.  1994. Analysis of astrovirus serotype 1 RNA, identification of the viral RNA-dependent RNA polymerase motif, and expression of a viral structural protein. J. Virol. 68:77–83 [Google Scholar]
  89. Herbert TP, Brierley I, Brown TD. 89.  1997. Identification of a protein linked to the genomic and subgenomic mRNAs of feline calicivirus and its role in translation. J. Gen. Virol. 78:1033–40 [Google Scholar]
  90. Velázquez-Moctezuma R, del Rocio Baños-Lara M, Acevedo Y, Méndez E. 90.  2012. Alternative cell lines to improve the rescue of infectious human astrovirus from a cDNA clone. J. Virol. Methods 179:295–302 [Google Scholar]
  91. Monroe SS, Stine SE, Gorelkin L, Herrmann JE, Blacklow NR, Glass RI. 91.  1991. Temporal synthesis of proteins and RNAs during human astrovirus infection of cultured cells. J. Virol. 65:641–48 [Google Scholar]
  92. Sztuba-Solińska J, Stollar V, Bujarski JJ. 92.  2011. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 412:245–55 [Google Scholar]
  93. del Rocio Baños-Lara M, Méndez E. 93.  2010. Role of individual caspases induced by astrovirus on the processing of its structural protein and its release from the cell through a non-lytic mechanism. Virology 401:322–32 [Google Scholar]
  94. Toh Y, Harper J, Dryden KA, Yeager M, Arias CF. 94.  et al. 2016. Crystal structure of the human astrovirus capsid protein. J. Virol. 90:9008–17 [Google Scholar]
  95. Méndez E, Salas-Ocampo E, Arias CF. 95.  2004. Caspases mediate processing of the capsid precursor and cell release of human astroviruses. J. Virol. 78:8601–8 [Google Scholar]
  96. Arias CF, DuBois RM. 96.  2017. The astrovirus capsid: a review. Viruses 9:15 [Google Scholar]
  97. Dryden KA, Tihova M, Nowotny N, Matsui SM, Mendez E, Yeager M. 97.  2012. Immature and mature human astrovirus: structure, conformational changes, and similarities to hepatitis E virus. J. Mol. Biol. 422:650–58 [Google Scholar]
  98. Espinosa-Hernández W, Velez-Uriza D, Valdés J, Vélez-Del Valle C, Salas-Benito J. 98.  et al. 2014. PTB binds to the 3′ untranslated region of the human astrovirus type 8: a possible role in viral replication. PLOS ONE 9:e113113 [Google Scholar]
  99. Murillo A, Vera-Estrella R, Barkla BJ, Méndez E, Arias CF. 99.  2015. Identification of host cell factors associated with astrovirus replication in Caco-2 cells. J. Virol. 89:10359–70 [Google Scholar]
  100. Tange S, Zhou Y, Nagakui-Noguchi Y, Imai T, Nakanishi A. 100.  2013. Initiation of human astrovirus type 1 infection was blocked by inhibitors of phosphoinositide 3-kinase. Virol. J. 10:153 [Google Scholar]
  101. Moser LA, Schultz-Cherry S. 101.  2008. Suppression of astrovirus replication by an ERK1/2 inhibitor. J. Virol. 82:7475–82 [Google Scholar]
  102. Méndez E, Fernández-Luna T, López S, Méndez-Toss M, Arias CF. 102.  2002. Proteolytic processing of a serotype 8 human astrovirus ORF2 polyprotein. J. Virol. 76:7996–8002 [Google Scholar]
  103. Gray EW, Angus KW, Snodgrass DR. 103.  1980. Ultrastructure of the small intestine in astrovirus-infected lambs. J. Gen. Virol. 49:71–82 [Google Scholar]
  104. Dalton RM, Pastrana EP, Sánchez-Fauquier A. 104.  2003. Vaccinia virus recombinant expressing an 87-kilodalton polyprotein that is sufficient to form astrovirus-like particles. J. Virol. 77:9094–98 [Google Scholar]
  105. Caballero S, Guix S, Ribes E, Bosch A, Pintó RM. 105.  2004. Structural requirements of astrovirus virus-like particles assembled in insect cells. J. Virol. 78:13285–92 [Google Scholar]
  106. Jackson WT, Giddings TH Jr., Taylor MP, Mulinyawe S, Rabinovitch M. 106.  et al. 2005. Subversion of cellular autophagosomal machinery by RNA viruses. PLOS Biol 3:e156 [Google Scholar]
  107. Dong J, Dong L, Méndez E, Tao Y. 107.  2011. Crystal structure of the human astrovirus capsid spike. PNAS 108:12681–86 [Google Scholar]
  108. York RL, Yousefi PA, Bogdanoff W, Haile S, Tripathi S, DuBois RM. 108.  2015. Structural, mechanistic, and antigenic characterization of the human astrovirus capsid. J. Virol. 90:2254–63 [Google Scholar]
  109. Bogdanoff WA, Campos J, Perez EI, Yin L, Alexander DL, DuBois RM. 109.  2017. Structure of a human astrovirus capsid-antibody complex and mechanistic insights into virus neutralization. J. Virol. 91:e01859–16 [Google Scholar]
  110. DuBois RM, Freiden P, Marvin S, Reddivari M, Heath RJ. 110.  et al. 2013. Crystal structure of the avian astrovirus capsid spike. J. Virol. 87:7853–63 [Google Scholar]
  111. Sanchez-Fauquier A, Carrascosa AL, Carrascosa JL, Otero A, Glass RI. 111.  et al. 1994. Characterization of a human astrovirus serotype 2 structural protein (VP26) that contains an epitope involved in virus neutralization. Virology 201:312–20 [Google Scholar]
  112. Bass DM, Upadhyayula U. 112.  1997. Characterization of human serotype 1 astrovirus-neutralizing epitopes. J. Virol. 71:8666–71 [Google Scholar]
  113. Bonaparte RS, Hair PS, Banthia D, Marshall DM, Cunnion KM, Krishna NK. 113.  2008. Human astrovirus coat protein inhibits serum complement activation via C1, the first component of the classical pathway. J. Virol. 82:817–27 [Google Scholar]
  114. Hair PS, Gronemus JQ, Crawford KB, Salvi VP, Cunnion KM. 114.  et al. 2010. Human astrovirus coat protein binds C1q and MBL and inhibits the classical and lectin pathways of complement activation. Mol. Immunol. 47:792–98 [Google Scholar]
  115. Koci MD, Moser LA, Kelley LA, Larsen D, Brown CC, Schultz-Cherry S. 115.  2003. Astrovirus induces diarrhea in the absence of inflammation and cell death. J. Virol. 77:11798–808 [Google Scholar]
  116. Meliopoulos VA, Marvin SA, Freiden P, Moser LA, Nighot P. 116.  et al. 2016. Oral administration of astrovirus capsid protein is sufficient to induce acute diarrhea in vivo. mBio 7:e01494–16 [Google Scholar]
  117. Bosch A, Guix S, Pintó RM. 117.  2012. Epidemiology of human astroviruses. Astrovirus Research S Schultz-Cherry 1–18 New York: Springer [Google Scholar]
  118. Vu DL, Cordey S, Brito F, Kaiser L. 118.  2016. Novel human astroviruses: novel human diseases?. J. Clin. Virol. 82:56–63 [Google Scholar]
  119. Koopmans MP, Bijen MH, Monroe SS, Vinjé J. 119.  1998. Age-stratified seroprevalence of neutralizing antibodies to astrovirus types 1 to 7 in humans in the Netherlands. Clin. Diagn. Lab. Immunol. 5:33–37 [Google Scholar]
  120. Kriston S, Willcocks MM, Carter MJ, Cubitt WD. 120.  1996. Seroprevalence of astrovirus types 1 and 6 in London, determined using recombinant virus antigen. Epidemiol. Infect. 117:159–64 [Google Scholar]
  121. Mitchell DK, Matson DO, Cubitt WD, Jackson LJ, Willcocks MM. 121.  et al. 1999. Prevalence of antibodies to astrovirus types 1 and 3 in children and adolescents in Norfolk, Virginia. Pediatr. Infect. Dis. J. 18:249–54 [Google Scholar]
  122. Kurtz J, Lee T. 122.  1978. Astrovirus gastroenteritis age distribution of antibody. Med. Microbiol. Immunol 166227–30 [Google Scholar]
  123. Kurtz JB, Lee TW, Craig JW, Reed SE. 123.  1979. Astrovirus infection in volunteers. J. Med. Virol 3221–30 [Google Scholar]
  124. Midthun K, Greenberg HB, Kurtz JB, Gary GW, Lin FY, Kapikian AZ. 124.  1993. Characterization and seroepidemiology of a type 5 astrovirus associated with an outbreak of gastroenteritis in Marin County, California. J. Clin. Microbiol. 31:955–62 [Google Scholar]
  125. Cortez V, Freiden P, Gu Z, Adderson E, Hayden R, Schultz-Cherry S. 125.  2017. Persistent infections with diverse co-circulating astroviruses in pediatric oncology patients, Memphis, Tennessee, USA. Emerg. Infect. Dis. 23:288–90 [Google Scholar]
  126. Maldonado Y, Cantwell M, Old M, Hill D, Sanchez ML. 126.  et al. 1998. Population-based prevalence of symptomatic and asymptomatic astrovirus infection in rural Mayan infants. J. Infect. Dis. 178:334–39 [Google Scholar]
  127. Kapusinszky B, Minor P, Delwart E. 127.  2012. Nearly constant shedding of diverse enteric viruses by two healthy infants. J. Clin. Microbiol. 50:3427–34 [Google Scholar]
  128. Quan PL, Wagner TA, Briese T, Torgerson TR, Hornig M. 128.  et al. 2010. Astrovirus encephalitis in boy with X-linked agammaglobulinemia. Emerg. Infect. Dis. 16:918–25 [Google Scholar]
  129. Wunderli W, Meerbach A, Guengoer T, Berger C, Greiner O. 129.  et al. 2011. Astrovirus infection in hospitalized infants with severe combined immunodeficiency after allogeneic hematopoietic stem cell transplantation. PLOS ONE 6:e27483 [Google Scholar]
  130. Brown JR, Morfopoulou S, Hubb J, Emmett WA, Ip W. 130.  et al. 2015. Astrovirus VA1/HMO-C: an increasingly recognized neurotropic pathogen in immunocompromised patients. Clin. Infect. Dis. 60:881–88 [Google Scholar]
  131. Frémond ML, Pérot P, Muth E, Cros G, Dumarest M. 131.  et al. 2015. Next-generation sequencing for diagnosis and tailored therapy: a case report of astrovirus-associated progressive encephalitis. J. Pediatr. Infect. Dis. Soc. 4:e53–57 [Google Scholar]
  132. Naccache SN, Peggs KS, Mattes FM, Phadke R, Garson JA. 132.  et al. 2015. Diagnosis of neuroinvasive astrovirus infection in an immunocompromised adult with encephalitis by unbiased next-generation sequencing. Clin. Infect. Dis. 60:919–23 [Google Scholar]
  133. Sato M, Kuroda M, Kasai M, Matsui H, Fukuyama T. 133.  et al. 2016. Acute encephalopathy in an immunocompromised boy with astrovirus-MLB1 infection detected by next generation sequencing. J. Clin. Virol. 78:66–70 [Google Scholar]
  134. Cordey S, Vu DL, Schibler M, L'Huillier AG, Brito F. 134.  et al. 2016. Astrovirus MLB2, a new gastroenteric virus associated with meningitis and disseminated infection. Emerg. Infect. Dis. 22:846–53 [Google Scholar]
  135. Holtz LR, Wylie KM, Sodergren E, Jiang Y, Franz CJ. 135.  et al. 2011. Astrovirus MLB2 viremia in febrile child. Emerg. Infect. Dis. 17:2050–52 [Google Scholar]
  136. van der Doef HPJ, Bathoorn E, van der Linden MPM, Wolfs TFW, Minderhoud ALC. 136.  et al. 2016. Astrovirus outbreak at a pediatric hematology and hematopoietic stem cell transplant unit despite strict hygiene rules. Bone Marrow Transplant 51747–50 [Google Scholar]
  137. Wylie KM, Mihindukulasuriya KA, Sodergren E, Weinstock GM, Storch GA. 137.  2012. Sequence analysis of the human virome in febrile and afebrile children. PLOS ONE 7:e27735 [Google Scholar]
  138. Taboada B, Espinoza MA, Isa P, Aponte FE, Arias-Ortiz MA. 138.  et al. 2014. Is there still room for novel viral pathogens in pediatric respiratory tract infections?. PLOS ONE 9:e113570 [Google Scholar]
  139. Cordey S, Brito F, Vu DL, Turin L, Kilowoko M. 139.  et al. 2016. Astrovirus VA1 identified by next-generation sequencing in a nasopharyngeal specimen of a febrile Tanzanian child with acute respiratory disease of unknown etiology. Emerg. Microbes Infect. 5:e67 [Google Scholar]
  140. Guix S, Pérez-Bosque A, Miró L, Moretó M, Bosch A, Pintó RM. 140.  2015. Type I interferon response is delayed in human astrovirus infections. PLOS ONE 10:e0123087 [Google Scholar]
  141. Guttman JA, Finlay BB. 141.  2009. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta 1788:832–41 [Google Scholar]
  142. Meliopoulos V, Schultz-Cherry S. 142.  2012. Astrovirus pathogenesis. Astrovirus Research S Schultz-Cherry 65–77 New York: Springer [Google Scholar]
  143. Cattoli G, Chu DKW, Peiris M. 143.  2012. Astrovirus infections in animal mammalian species. Astrovirus Research S Schultz-Cherry 135–49 New York: Springer [Google Scholar]
  144. Dufkova L, Scigalkova I, Moutelikova R, Malenovska H, Prodelalova J. 144.  2013. Genetic diversity of porcine sapoviruses, kobuviruses, and astroviruses in asymptomatic pigs: an emerging new sapovirus GIII genotype. Arch. Virol. 158:549–58 [Google Scholar]
  145. Martella V, Moschidou P, Pinto P, Catella C, Desario C. 145.  et al. 2011. Astroviruses in rabbits. Emerg. Infect. Dis. 17:2287–93 [Google Scholar]
  146. Mendenhall IH, Smith GJD, Vijaykrishna D. 146.  2015. Ecological drivers of virus evolution: astrovirus as a case study. J. Virol. 89:6978–81 [Google Scholar]
  147. Sajewicz-Krukowska J, Pać K, Lisowska A, Pikuła A, Minta Z. 147.  et al. 2016. Astrovirus-induced “white chicks” condition—field observation, virus detection and preliminary characterization. Avian Pathol 45:2–12 [Google Scholar]
  148. Behling-Kelly E, Schultz-Cherry S, Koci M, Kelley L, Larsen D, Brown C. 148.  2002. Localization of astrovirus in experimentally infected turkeys as determined by in situ hybridization. Vet. Pathol. 39:595–98 [Google Scholar]
  149. Imada T, Yamaguchi S, Mase M, Tsukamoto K, Kubo M, Morooka A. 149.  2000. Avian nephritis virus (ANV) as a new member of the family Astroviridae and construction of infectious ANV cDNA. J. Virol. 74:8487–93 [Google Scholar]
  150. Li L, Diab S, McGraw S, Barr B, Traslavina R. 150.  et al. 2013. Divergent astrovirus associated with neurologic disease in cattle. Emerg. Infect. Dis. 19:1385–92 [Google Scholar]
  151. Bouzalas IG, Wüthrich D, Walland J, Drögemüller C, Zurbriggen A. 151.  et al. 2014. Neurotropic astrovirus in cattle with nonsuppurative encephalitis in Europe. J. Clin. Microbiol. 52:3318–24 [Google Scholar]
  152. Seuberlich T, Wüthrich D, Selimovic-Hamza S, Drögemüller C, Oevermann A. 152.  et al. 2016. Identification of a second encephalitis-associated astrovirus in cattle. Emerg. Microbes Infect. 5:e5 [Google Scholar]
  153. Wüthrich D, Boujon CL, Truchet L, Selimovic-Hamza S, Oevermann A. 153.  et al. 2016. Exploring the virome of cattle with non-suppurative encephalitis of unknown etiology by metagenomics. Virology 493:22–30 [Google Scholar]
  154. Blomström AL, Widén F, Hammer AS, Belák S, Berg M. 154.  2010. Detection of a novel astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral metagenomics. J. Clin. Microbiol. 48:4392–96 [Google Scholar]
  155. Blomström AL, Ley C, Jacobson M. 155.  2014. Astrovirus as a possible cause of congenital tremor type AII in piglets?. Acta Vet. Scand. 56:82 [Google Scholar]
  156. Nighot PK, Moeser A, Ali RA, Blikslager AT, Koci MD. 156.  2010. Astrovirus infection induces sodium malabsorption and redistributes sodium hydrogen exchanger expression. Virology 401:146–54 [Google Scholar]
  157. Koci MD, Kelley LA, Larsen D, Schultz-Cherry S. 157.  2004. Astrovirus-induced synthesis of nitric oxide contributes to virus control during infection. J. Virol. 78:1564–74 [Google Scholar]
  158. Ipek A, Sahan U, Baycan SC, Sozcu A. 158.  2014. The effects of different eggshell temperatures on embryonic development, hatchability, chick quality, and first-week broiler performance. Poult. Sci. 93:464–72 [Google Scholar]
  159. Melgar S, Karlsson A, Michaëlsson E. 159.  2005. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G1328–38 [Google Scholar]
  160. Kahan SM, Liu G, Reinhard MK, Hsu CC, Livingston RS, Karst SM. 160.  2011. Comparative murine norovirus studies reveal a lack of correlation between intestinal virus titers and enteric pathology. Virology 421:202–10 [Google Scholar]
  161. Nelson AM, Elftman MD, Pinto AK, Baldridge M, Hooper P. 161.  et al. 2013. Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota. Microbiome 1:7 [Google Scholar]
  162. Hickman D, Jones MK, Zhu S, Kirkpatrick E, Ostrov DA. 162.  et al. 2014. The effect of malnutrition on norovirus infection. mBio 5:e01032–1013 [Google Scholar]
  163. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR. 163.  et al. 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346:755–59 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error