1932

Abstract

Giant viruses of amoebae were discovered serendipitously in 2003; they are visible via optical microscopy, making them bona fide microbes. Their lifestyle, structure, and genomes break the mold of classical viruses. Giant viruses of amoebae are complex microorganisms. Their genomes harbor between 444 and 2,544 genes, including many that are unique to viruses, and encode translation components; their virions contain >100 proteins as well as mRNAs. Mimiviruses have a specific mobilome, including virophages, provirophages, and transpovirons, and can resist virophages through a system known as MIMIVIRE (mimivirus virophage resistance element). Giant viruses of amoebae bring upheaval to the definition of viruses and tend to separate the current virosphere into two categories: very simple viruses and viruses with complexity similar to that of other microbes. This new paradigm is propitious for enhanced detection and characterization of giant viruses of amoebae, and a particular focus on their role in humans is warranted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041816
2017-09-29
2024-09-11
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-041816.html?itemId=/content/journals/10.1146/annurev-virology-101416-041816&mimeType=html&fmt=ahah

Literature Cited

  1. Lwoff A. 1.  1957. The concept of virus. J. Gen. Microbiol. 17:239–53 [Google Scholar]
  2. Ivanovski D. 2.  1892. Über die Mosaikkrankheit der Tabakspflanze. Bull. Sci. Acad. Imp. Sci. St. Petersb. 35:67–70 [Google Scholar]
  3. Beijerinck MW. 3.  1898. Über ein Contagium Vivum Fluidum als Ursache der Fleckenkrankheit der Tabaksblätter Amsterdam: Müller [Google Scholar]
  4. Loeffler F, Frosch P. 4.  1898. Berichte der Kommission zur Erforschung der Maul- und Klauenseuche bei dem Institut für Infektionskrankheiten in Berlin Jena, Ger.: Fischer [Google Scholar]
  5. Rivers TM. 5.  1927. Filterable viruses: a critical review. J. Bacteriol. 14:217–58 [Google Scholar]
  6. La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X. 6.  et al. 2003. A giant virus in amoebae. Science 299:2033 [Google Scholar]
  7. Scheid P, Balczun C, Schaub GA. 7.  2014. Some secrets are revealed: parasitic keratitis amoebae as vectors of the scarcely described pandoraviruses to humans. Parasitol. Res. 113:3759–64 [Google Scholar]
  8. Raoult D. 8.  2013. TRUC or the need for a new microbial classification. Intervirology 56:349–53 [Google Scholar]
  9. Raoult D, Audic S, Robert C, Abergel C, Renesto P. 9.  et al. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–50 [Google Scholar]
  10. Koonin EV. 10.  2005. Virology: Gulliver among the Lilliputians. Curr. Biol. 15:R167–69 [Google Scholar]
  11. Forterre P, Krupovic M, Prangishvili D. 11.  2014. Cellular domains and viral lineages. Trends Microbiol 22:554–58 [Google Scholar]
  12. Raoult D, Forterre P. 12.  2008. Redefining viruses: lessons from Mimivirus. Nat. Rev. Microbiol. 6:315–19 [Google Scholar]
  13. Claverie JM, Ogata H, Audic S, Abergel C, Suhre K. 13.  et al. 2006. Mimivirus and the emerging concept of “giant” virus. Virus Res 117:133–44 [Google Scholar]
  14. Rowbotham TJ. 14.  1983. Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J. Clin. Pathol. 36:978–86 [Google Scholar]
  15. Philippe N, Legendre M, Doutre G, Coute Y, Poirot O. 15.  et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–86 [Google Scholar]
  16. Raoult D, La Scola B, Birtles R. 16.  2007. The discovery and characterization of Mimivirus, the largest known virus and putative pneumonia agent. Clin. Infect. Dis. 45:95–102 [Google Scholar]
  17. Bou Khalil JY, Andreani J, La Scola B. 17.  2016. Updating strategies for isolating and discovering giant viruses. Curr. Opin. Microbiol. 31:80–87 [Google Scholar]
  18. Saadi H, Pagnier I, Colson P, Cherif JK, Beji M. 18.  et al. 2013. First isolation of Mimivirus in a patient with pneumonia. Clin. Infect. Dis. 57:e127–34 [Google Scholar]
  19. Reteno DG, Benamar S, Bou Khalil J, Andreani J, Armstrong N. 19.  et al. 2015. Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J. Virol 89:6585–94 [Google Scholar]
  20. Pagnier I, Reteno DG, Saadi H, Boughalmi M, Gaia M. 20.  et al. 2013. A decade of improvements in Mimiviridae and Marseilleviridae isolation from amoeba. Intervirology 56:354–63 [Google Scholar]
  21. Campos RK, Boratto PV, Assis FL, Aguiar ER, Silva LC. 21.  et al. 2014. Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virol. J. 11:95 [Google Scholar]
  22. Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM. 22.  2011. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. PNAS 108:17486–91 [Google Scholar]
  23. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K. 23.  et al. 2014. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. PNAS 111:4274–79 [Google Scholar]
  24. Boughalmi M, Saadi H, Pagnier I, Colson P, Fournous G. 24.  et al. 2012. High-throughput isolation of giant viruses of the Mimiviridae and Marseilleviridae families in the Tunisian environment. Environ. Microbiol. 15:2000–7 [Google Scholar]
  25. Bou Khalil JY, Robert S, Reteno DG, Andreani J, Raoult D. 25.  et al. 2016. High-throughput isolation of giant viruses in liquid medium using automated flow cytometry and fluorescence staining. Front. Microbiol. 7:26 [Google Scholar]
  26. Iyer LM, Aravind L, Koonin EV. 26.  2001. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75:11720–34 [Google Scholar]
  27. Iyer LM, Balaji S, Koonin EV, Aravind L. 27.  2006. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–84 [Google Scholar]
  28. Suhre K. 28.  2005. Gene and genome duplication in Acanthamoeba polyphaga mimivirus. J. Virol. 79:14095–101 [Google Scholar]
  29. Forterre P. 29.  2010. Giant viruses: conflicts in revisiting the virus concept. Intervirology 53:362–78 [Google Scholar]
  30. Moreira D, Brochier-Armanet C. 30.  2008. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol. Biol. 8:12 [Google Scholar]
  31. Raoult D. 31.  2009. There is no such thing as a tree of life (and of course viruses are out!). Nat. Rev. Microbiol. 7:615 [Google Scholar]
  32. Forterre P, Gaia M. 32.  2016. Giant viruses and the origin of modern eukaryotes. Curr. Opin. Microbiol. 31:44–49 [Google Scholar]
  33. Renesto P, Abergel C, Decloquement P, Moinier D, Azza S. 33.  et al. 2006. Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J. Virol. 80:11678–85 [Google Scholar]
  34. Price MN, Dehal PS, Arkin AP. 34.  2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26:1641–50 [Google Scholar]
  35. Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G. 35.  et al. 2009. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. PNAS 106:21848–53 [Google Scholar]
  36. Raoult D, Boyer M. 36.  2010. Amoebae as genitors and reservoirs of giant viruses. Intervirology 53:321–29 [Google Scholar]
  37. Colson P, de Lamballerie X, Fournous G, Raoult D. 37.  2012. Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales. Intervirology 55:321–32 [Google Scholar]
  38. Colson P, de Lamballerie X, Yutin N, Asgari S, Bigot Y. 38.  et al. 2013. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158:2517–21 [Google Scholar]
  39. Scheid P, Zoller L, Pressmar S, Richard G, Michel R. 39.  2008. An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis. Parasitol. Res. 102:945–50 [Google Scholar]
  40. Hoffmann R, Michel R, Schmid EN, Muller KD. 40.  1998. Natural infection with microsporidian organisms (KW19) in Vannella spp. (Gymnamoebia) isolated from a domestic tap-water supply. Parasitol. Res. 84:164–66 [Google Scholar]
  41. Sun C, Feschotte C, Wu Z, Mueller RL. 41.  2015. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol 13:38 [Google Scholar]
  42. Yutin N, Koonin EV. 42.  2013. Pandoraviruses are highly derived phycodnaviruses. Biol. Direct 8:25–28 [Google Scholar]
  43. Lwoff A, Horne R, Tournier P. 43.  1962. A system of viruses. Cold Spring Harb. Symp. Quant. Biol. 27:51–55 [Google Scholar]
  44. Sinclair RM, Ravantti JJ, Bamford DH. 44.  2017. Nucleic and amino acid sequences support structure-based viral classification. J. Virol. 91:e02275–16 [Google Scholar]
  45. Levasseur A, Andreani J, Delerce J, Bou Khalil J, Catherine R. 45.  et al. 2016. Comparison of a modern and fossil pithovirus reveals its genetic conservation and evolution. Genome Biol. Evol. 8:2333–39 [Google Scholar]
  46. Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J. 46.  et al. 2015. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. PNAS 112:E5327–35 [Google Scholar]
  47. Bradbury RS. 47.  2014. Free-living amoebae recovered from human stool samples in Strongyloides agar culture. J. Clin. Microbiol. 52:699–700 [Google Scholar]
  48. Pagnier I, Valles C, Raoult D, La Scola B. 48.  2015. Isolation of Vermamoeba vermiformis and associated bacteria in hospital water. Microb. Pathog. 80:14–20 [Google Scholar]
  49. Benamar S, Reteno DG, Bandaly V, Labas N, Raoult D. 49.  et al. 2016. Faustoviruses: comparative genomics of new Megavirales family members. Front. Microbiol. 7:3 [Google Scholar]
  50. Berget SM, Moore C, Sharp PA. 50.  1977. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. PNAS 74:3171–75 [Google Scholar]
  51. Azza S, Cambillau C, Raoult D, Suzan-Monti M. 51.  2009. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain. BMC Mol. Biol. 10:39 [Google Scholar]
  52. Klose T, Reteno DG, Benamar S, Hollerbach A, Colson P. 52.  et al. 2016. Structure of faustovirus, a large dsDNA virus. PNAS 113:6206–11 [Google Scholar]
  53. Bajrai LH, Benamar S, Azhar EI, Robert C, Levasseur A. 53.  et al. 2016. Kaumoebavirus, a new virus that clusters with faustoviruses and Asfarviridae. Viruses 8:E278 [Google Scholar]
  54. Andreani J, Aherfi S, Bou Khalil JY, Di Pinto F, Bitam I. 54.  et al. 2016. Cedratvirus, a double-cork structured giant virus, is a distant relative of pithoviruses. Viruses 8:E300 [Google Scholar]
  55. Bertelli C, Mueller L, Thomas V, Pillonel T, Jacquier N. 55.  et al. 2017. Cedratviruslausannensis—digging into Pithoviridae diversity. Environ. Microbiol Accepted. https://doi.org/10.1111/1462-2920.13813 [Google Scholar]
  56. Andreani J, Bou Khalil JY, Sevvana M, Benamar S, Di Pinto F. 56.  et al. 2017. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and faustoviruses.. J. Virol 91e00212–17 [Google Scholar]
  57. Dornas FP, Bou Khalil JY, Pagnier I, Raoult D, Abrahao J. 57.  et al. 2015. Isolation of new Brazilian giant viruses from environmental samples using a panel of protozoa. Front. Microbiol. 6:1086 [Google Scholar]
  58. Ghedin E, Claverie JM. 58.  2005. Mimivirus relatives in the Sargasso Sea. Virol. J. 2:62 [Google Scholar]
  59. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV. 59.  2010. New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19 [Google Scholar]
  60. Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L. 60.  et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J 7:1678–95 [Google Scholar]
  61. Verneau J, Levasseur A, Raoult D, La Scola B, Colson P. 61.  2016. MG-Digger: an automated pipeline to search for giant virus-related sequences in metagenomes. Front. Microbiol. 7:428 [Google Scholar]
  62. Kerepesi C, Grolmusz V. 62.  2015. Nucleotide sequences of giant viruses found in soil samples of the Mojave Desert, the prairie, the tundra and the Antarctic Dry Valleys. arXiv:1503.05575 [q-bio.GN]
  63. Schulz F, Yutin N, Ivanova NN, Ortega DR, Kwon Lee T. 63.  et al. 2017. Giant viruses with an expanded complement of translation system components. Science 356:82–85 [Google Scholar]
  64. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. 64.  2009. Laboratory procedures to generate viral metagenomes. Nat. Protoc. 4:470–83 [Google Scholar]
  65. Colson P, Fancello L, Gimenez G, Armougom F, Desnues C. 65.  et al. 2013. Evidence of the megavirome in humans. J. Clin. Virol. 57:191–200 [Google Scholar]
  66. Bou Khalil JY, Langlois T, Andreani J, Sorraing JM, Raoult D. 66.  et al. 2017. Flow cytometry sorting to separate viable giant viruses from amoeba co-culture supernatants. Front. Cell. Infect. Microbiol. 6:202 [Google Scholar]
  67. Remlinger P. 67.  1903. Le passage du virus rabique a travers les filtres. Ann. Inst. Pasteur 17:834–49 [Google Scholar]
  68. Twort FW. 68.  1915. An investigation on the nature of ultra-microscopic viruses. Lancet 186:1241–43 [Google Scholar]
  69. d'Herelle F. 69.  1917. Sur un microbe invisible antagonistic des bacilles dysenterique. C. R. Acad. Sci. Paris 165:373–75 [Google Scholar]
  70. Torsvik T, Dundas ID. 70.  1974. Bacteriophage of Halobacterium salinarium. Nature 248:680–81 [Google Scholar]
  71. Woese CR, Fox GE. 71.  1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74:5088–90 [Google Scholar]
  72. La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L. 72.  et al. 2008. The virophage as a unique parasite of the giant mimivirus. Nature 455:100–4 [Google Scholar]
  73. Bekliz M, Colson P, La Scola B. 73.  2016. The expanding family of virophages. Viruses 8:E317 [Google Scholar]
  74. Desnues C, La Scola B, Yutin N, Fournous G, Robert C. 74.  et al. 2012. Provirophages and transpovirons as the diverse mobilome of giant viruses. PNAS 109:18078–83 [Google Scholar]
  75. Gaia M, Pagnier I, Campocasso A, Fournous G, Raoult D. 75.  et al. 2013. Broad spectrum of Mimiviridae virophage allows its isolation using a mimivirus reporter. PLOS ONE 8:e61912 [Google Scholar]
  76. Gaia M, Benamar S, Boughalmi M, Pagnier I, Croce O. 76.  et al. 2014. Zamilon, a novel virophage with Mimiviridae host specificity. PLOS ONE 9:e94923 [Google Scholar]
  77. Levasseur A, Bekliz M, Chabriere E, Pontarotti P, La Scola B. 77.  et al. 2016. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage. Nature 531:249–52 [Google Scholar]
  78. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA. 78.  et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13:722–36 [Google Scholar]
  79. Claverie JM, Abergel C. 79.  2016. CRISPR-Cas-like system in giant viruses: why MIMIVIRE is not likely to be an adaptive immune system. Virol. Sin. 31:193–96 [Google Scholar]
  80. Colson P, La Scola B, Levasseur A, Caetano-Anolles G, Raoult D. 80.  2017. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat. Rev. Microbiol. 15:243–54 [Google Scholar]
  81. Legendre M, Audic S, Poirot O, Hingamp P, Seltzer V. 81.  et al. 2010. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res 20:664–74 [Google Scholar]
  82. Byrne D, Grzela R, Lartigue A, Audic S, Chenivesse S. 82.  et al. 2009. The polyadenylation site of Mimivirus transcripts obeys a stringent ‘hairpin rule.’. Genome Res. 19:1233–42 [Google Scholar]
  83. Abrahão JS, Araújo R, Colson P, La Scola B. 83.  2017. The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLOS Genet 13:e1006532 [Google Scholar]
  84. Klose T, Herbst DA, Zhu H, Max JP, Kenttämaa HI. 84.  et al. 2015. A Mimivirus enzyme that participates in viral entry. Structure 23:1058–65 [Google Scholar]
  85. Aherfi S, La Scola B, Pagnier I, Raoult D, Colson P. 85.  2014. The expanding family Marseilleviridae. Virology 466–67:27–37 [Google Scholar]
  86. Sobhy H, La Scola B, Pagnier I, Raoult D, Colson P. 86.  2015. Identification of giant Mimivirus protein functions using RNA interference. Front. Microbiol. 6:345 [Google Scholar]
  87. Klose T, Rossmann MG. 87.  2014. Structure of large dsDNA viruses. Biol. Chem. 395:711–19 [Google Scholar]
  88. Barker J, Brown MR. 88.  1994. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140:1253–59 [Google Scholar]
  89. Horn M, Wagner M. 89.  2004. Bacterial endosymbionts of free-living amoebae. J. Eukaryot. Microbiol. 51:509–14 [Google Scholar]
  90. Greub G, Raoult D. 90.  2004. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17:413–33 [Google Scholar]
  91. Gallot-Lavallee L, Blanc G, Claverie JM. 91.  2017. Comparative genomics of Chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J. Virol 91:e00230–17 [Google Scholar]
  92. Ghigo E, Kartenbeck J, Lien P, Pelkmans L, Capo C. 92.  et al. 2008. Ameobal pathogen Mimivirus infects macrophages through phagocytosis. PLOS Pathog 4:e1000087 [Google Scholar]
  93. Silva LC, Almeida GM, Oliveira DB, Dornas FP, Campos RK. 93.  et al. 2013. A resourceful giant: APMV is able to interfere with the human type I interferon system. Microbes Infect 16:187–95 [Google Scholar]
  94. Popgeorgiev N, Michel G, Lepidi H, Raoult D, Desnues C. 94.  2013. Marseillevirus adenitis in an 11-month-old child. J. Clin. Microbiol. 51:4102–5 [Google Scholar]
  95. Aherfi S, Colson P, Audoly G, Nappez C, Xerri L. 95.  et al. 2016. Marseillevirus in lymphoma: a giant in the lymph node. Lancet Infect. Dis. 16:e225–34 [Google Scholar]
  96. Arantes TS, Rodrigues RA, Dos Santos Silva LK, Oliveira GP, de Souza HL. 96.  et al. 2016. The large Marseillevirus explores different entry pathways by forming giant infectious vesicles. J. Virol. 90:5246–55 [Google Scholar]
  97. Abergel C, Legendre M, Claverie JM. 97.  2015. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiol. Rev. 39:779–96 [Google Scholar]
  98. Fabre E, Jeudy S, Santini S, Legendre M, Trauchessec M. 98.  et al. 2017. Noumeavirus replication relies on a transient remote control of the host nucleus. Nat. Commun. 8:15087 [Google Scholar]
  99. Sédillot CE. 99.  1878. De l'influence des découvertes de M. Pasteur sur les progrès de la chirurgie. C. R. Acad. Sci. Paris 86:634–40 [Google Scholar]
  100. Sergent E, Parrot L, Horrenberger R. 100.  1951. Un point de sémantique: le mot “virus” ne doit pas rester ambigu. Bulletin de l'Académie Nationale de Médecine, Séance du 26 Juin 1951362–65 Paris: Acad. Natl. Méd. [Google Scholar]
  101. Sapp J. 101.  2005. The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol. Mol. Biol. Rev. 69:292–305 [Google Scholar]
  102. Nocard E, Roux P. 102.  1898. Le microbe de la péripneumonie. Ann. Inst. Pasteur 12:240–62 [Google Scholar]
  103. Lwoff A, Anderson TF, Jacob F. 103.  1959. Remarques sur les caractéristiques de la particule virale infectieuse. Ann. Inst. Pasteur. 97:281–89 [Google Scholar]
  104. Lwoff A, Tournier P. 104.  1966. The classification of viruses. Annu. Rev. Microbiol. 20:45–74 [Google Scholar]
  105. Sharma V, Colson P, Pontarotti P, Raoult D. 105.  2016. Mimivirus inaugurated in the 21st century the beginning of a reclassification of viruses. Curr. Opin. Microbiol. 31:16–24 [Google Scholar]
  106. Buist JB. 106.  1887. Vaccinia and Variola. A Study of Their Life History London: Churchill [Google Scholar]
  107. Yutin N, Wolf YI, Raoult D, Koonin EV. 107.  2009. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 17:223 [Google Scholar]
  108. Koonin EV, Yutin N. 108.  2010. Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses. Intervirology 53:284–92 [Google Scholar]
  109. Boyer M, Madoui MA, Gimenez G, La Scola B, Raoult D. 109.  2010. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4 domain of life including giant viruses. PLOS ONE 5:e15530 [Google Scholar]
  110. Sharma V, Colson P, Giorgi R, Pontarotti P, Raoult D. 110.  2014. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol. Evol. 6:1603–10 [Google Scholar]
  111. Sharma V, Colson P, Chabrol O, Scheid P, Pontarotti P, Raoult D. 111.  2015. Welcome to pandoraviruses at the ‘Fourth TRUC’ club. Front. Microbiol. 6:423 [Google Scholar]
  112. Moreira D, Lopez-Garcia P. 112.  2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7:306–11 [Google Scholar]
  113. Williams TA, Embley TM, Heinz E. 113.  2011. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLOS ONE 6:e21080 [Google Scholar]
  114. Yutin N, Wolf YI, Koonin EV. 114.  2014. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466–67:38–52 [Google Scholar]
  115. Moreira D, Lopez-Garcia P. 115.  2015. Evolution of viruses and cells: Do we need a fourth domain of life to explain the origin of eukaryotes?. Philos. Trans. R. Soc. Lond. 370:20140327 [Google Scholar]
  116. Wu D, Wu M, Halpern A, Rusch DB, Yooseph S. 116.  et al. 2011. Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLOS ONE 6:e18011 [Google Scholar]
  117. Nasir A, Kim KM, Caetano-Anolles G. 117.  2012. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol. Biol. 12:156 [Google Scholar]
  118. Nasir A, Caetano-Anolles G. 118.  2015. A phylogenomic data-driven exploration of viral origins and evolution. Sci. Adv. 1:e1500527 [Google Scholar]
  119. Harish A, Abroi A, Gough J, Kurland C. 119.  2016. Did viruses evolve as a distinct supergroup from common ancestors of cells?. Genome Biol. Evol. 8:2474–81 [Google Scholar]
  120. Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR. 120.  et al. 2017. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15:161–68 [Google Scholar]
  121. La Scola B, de Lamballerie XN, Claverie JM, Drancourt M, Raoult D. 121.  2005. Genus Mimivirus. Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses C Fauquet, MA Mayo: J Maniloff, U Desselberger, LA Ball275–76 San Diego, CA: Academic, 1st ed.. [Google Scholar]
  122. Colson P, Pagnier I, Yoosuf N, Fournous G, La Scola B. 122.  et al. 2013. “Marseilleviridae”, a new family of giant viruses infecting amoebae. Arch. Virol. 158:915–20 [Google Scholar]
  123. Krupovic M, Kuhn JH, Fischer MG. 123.  2016. A classification system for virophages and satellite viruses. Arch. Virol. 161:233–47 [Google Scholar]
  124. Fournier PE, Lagier JC, Dubourg G, Raoult D. 124.  2015. From culturomics to taxonomogenomics: a need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 36:73–78 [Google Scholar]
  125. Andrade KR, Boratto PP, Rodrigues FP, Silva LC, Dornas FP. 125.  et al. 2015. Oysters as hot spots for mimivirus isolation. Arch. Virol. 160:477–82 [Google Scholar]
  126. Dos Santos RN, Campos FS, Medeiros de Albuquerque NR, Finoketti F, Correa RA. 126.  et al. 2016. A new marseillevirus isolated in Southern Brazil from Limnoperna fortunei. Sci. Rep. 6:35237 [Google Scholar]
  127. La Scola B, Marrie TJ, Auffray JP, Raoult D. 127.  2005. Mimivirus in pneumonia patients. Emerg. Infect. Dis. 11:449–52 [Google Scholar]
  128. Berger P, Papazian L, Drancourt M, La Scola B, Auffray JP. 128.  et al. 2006. Ameba-associated microorganisms and diagnosis of nosocomial pneumonia. Emerg. Infect. Dis. 12:248–55 [Google Scholar]
  129. Vincent A, La Scola B, Forel JM, Pauly V, Raoult D. 129.  et al. 2009. Clinical significance of a positive serology for mimivirus in patients presenting a suspicion of ventilator-associated pneumonia. Crit. Care Med. 37:111–18 [Google Scholar]
  130. Bousbia S, Papazian L, Saux P, Forel JM, Auffray JP. 130.  et al. 2013. Serologic prevalence of amoeba-associated microorganisms in intensive care unit pneumonia patients. PLOS ONE 8:e58111 [Google Scholar]
  131. Raoult D, Renesto P, Brouqui P. 131.  2006. Laboratory infection of a technician by Mimivirus. Ann. Intern. Med. 144:702–3 [Google Scholar]
  132. Golden HD, Chang RS, Prescott W, Simpson E, Cooper TY. 132.  1973. Leukocyte-transforming agent: prolonged excretion by patients with mononucleosis and excretion by normal individuals. J. Infect. Dis. 127:471–73 [Google Scholar]
  133. Parola P, Renvoise A, Botelho-Nevers E, La Scola B, Desnues C. 133.  et al. 2012. Acanthamoeba polyphaga mimivirus virophage seroconversion in travelers returning from Laos. Emerg. Infect. Dis. 18:1500–2 [Google Scholar]
  134. Saadi H, Reteno DG, Colson P, Aherfi S, Minodier P. 134.  et al. 2013. Shan virus: a new mimivirus isolated from the stool of a Tunisian patient with pneumonia. Intervirology 56:424–29 [Google Scholar]
  135. Zhang XA, Zhu T, Zhang PH, Li H, Li Y. 135.  et al. 2016. Lack of mimivirus detection in patients with respiratory disease, China. Emerg. Infect. Dis. 22:10 [Google Scholar]
  136. Ngounga T, Pagnier I, Reteno D, Raoult D, La Scola B. 136.  et al. 2013. Real-time PCR systems targeting giant viruses of amoebae and their virophages. Intervirology 56:413–23 [Google Scholar]
  137. Raoult D, Levasseur A, La Scola B. 137.  2017. PCR detection of Mimivirus. Emerg. Infect. Dis. 23:1044–45 [Google Scholar]
  138. Slimani M, Pagnier I, Boughalmi M, Raoult D, La Scola B. 138.  2013. Alcohol disinfection procedure for isolating giant viruses from contaminated samples. Intervirology 56:434–40 [Google Scholar]
  139. Campos RK, Andrade KR, Ferreira PC, Bonjardim CA, La Scola B. 139.  et al. 2012. Virucidal activity of chemical biocides against mimivirus, a putative pneumonia agent. J. Clin. Virol. 55:323–28 [Google Scholar]
  140. Khan M, La Scola B, Lepidi H, Raoult D. 140.  2007. Pneumonia in mice inoculated experimentally with Acanthamoeba polyphaga mimivirus. Microb. Pathog. 42:56–61 [Google Scholar]
  141. Shah N, Hulsmeier AJ, Hochhold N, Neidhart M, Gay S. 141.  et al. 2014. Exposure to mimivirus collagen promotes arthritis. J. Virol. 88:838–45 [Google Scholar]
  142. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I. 142.  et al. 2012. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol. Infect. 18:1185–93 [Google Scholar]
  143. Popgeorgiev N, Boyer M, Fancello L, Monteil S, Robert C. 143.  et al. 2013. Marseillevirus-like virus recovered from blood donated by asymptomatic humans. J. Infect. Dis. 208:1042–50 [Google Scholar]
  144. Popgeorgiev N, Colson P, Thuret I, Chiarioni J, Gallian P. 144.  et al. 2013. Marseillevirus prevalence in multitransfused patients suggests blood transmission. J. Clin. Virol. 58:722–25 [Google Scholar]
  145. Mueller L, Baud D, Bertelli C, Greub G. 145.  2013. Lausannevirus seroprevalence among asymptomatic young adults. Intervirology 56:430–33 [Google Scholar]
  146. Goodman JL. 146.  2013. Marseillevirus, blood safety, and the human virome. J. Infect. Dis. 208:1039–41 [Google Scholar]
  147. Phan TG, Desnues C, Switzer WM, Djoko CF, Schneider BS. 147.  et al. 2015. Absence of giant blood Marseille-like virus DNA detection by polymerase chain reaction in plasma from healthy US blood donors and serum from multiply transfused patients from Cameroon. Transfusion 55:1256–62 [Google Scholar]
  148. Sauvage V, Livartowski A, Boizeau L, Servant-Delmas A, Lionnet F. 148.  et al. 2014. No evidence of Marseillevirus-like virus presence in blood donors and recipients of multiple blood transfusions. J. Infect. Dis. 210:2017–18 [Google Scholar]
  149. Moustafa A, Xie C, Kirkness E, Biggs W, Wong E. 149.  et al. 2017. The blood DNA virome in 8,000 humans. PLOS Pathog 13:e1006292 [Google Scholar]
  150. Aherfi S, Colson P, Raoult D. 150.  2016. Marseillevirus in the pharynx of a patient with neurological disorders. Emerg. Infect. Dis. 22:2008–10 [Google Scholar]
  151. Law J, Jovel J, Patterson J, Ford G, O'keefe S. 151.  et al. 2013. Identification of hepatotropic viruses from plasma using deep sequencing: a next generation diagnostic tool. PLOS ONE 8:e60595 [Google Scholar]
  152. Rampelli S, Soverini M, Turroni S, Quercia S, Biagi E. 152.  et al. 2016. ViromeScan: a new tool for metagenomic viral community profiling. BMC Genom 17:165 [Google Scholar]
  153. Smelov V, Bzhalava D, Arroyo Muhr LS, Eklund C, Komyakov B. 153.  et al. 2016. Detection of DNA viruses in prostate cancer. Sci. Rep. 6:25235 [Google Scholar]
  154. Anzivino E, Rodio DM, Mischitelli M, Bellizzi A, Sciarra A. 154.  et al. 2015. High frequency of JCV DNA detection in prostate cancer tissues. Cancer Genom. Proteom. 12:189–200 [Google Scholar]
  155. Zhou J, Zhang W, Yan S, Xiao J, Zhang Y. 155.  et al. 2013. Diversity of virophages in metagenomic data sets. J. Virol. 87:4225–36 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041816
Loading
/content/journals/10.1146/annurev-virology-101416-041816
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error