Circular single-stranded DNA viruses infect archaea, bacteria, and eukaryotic organisms. The relatively recent emergence of single-stranded DNA viruses, such as chicken anemia virus (CAV) and porcine circovirus 2 (PCV2), as serious pathogens of eukaryotes is due more to growing awareness than to the appearance of new pathogens or alteration of existing pathogens. In the case of the ubiquitous human circular single-stranded DNA virus family , there is still no convincing direct causal relation to any specific disease. However, infections may play a role in autoimmunity by changing the homeostatic balance of proinflammatory cytokines and the human immune system, indirectly affecting the severity of diseases caused by other pathogens. Infections with CAV (family , genus ) and PCV2 (family , genus ) are presented here because they are immunosuppressive and affect health in domesticated animals. CAV shares genomic organization, genomic orientation, and common features of major proteins with human anelloviruses, and PCV2 DNA may be present in human food and vaccines.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baltimore D. 1.  1971. Expression of animal virus genomes. Bacteriol. Rev. 35:235–41 [Google Scholar]
  2. 2. Int. Comm. Taxon. Viruses (ICTV). 2015. Virus Taxonomy: 2015 Release EC 47 ICTV London: July. Email Ratification 2016 (MSL #30). Accessed July 2016. http://ictvonline.org/virustaxonomy.asp [Google Scholar]
  3. 3. NCBI Resourc. Coord. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44:D7–19 [Google Scholar]
  4. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A. 4.  et al. 2011. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39:D576–82 [Google Scholar]
  5. Rosario K, Duffy S, Breitbart M. 5.  2012. A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch. Virol. 157:1851–71 [Google Scholar]
  6. Davidson I, Shulman LM. 6.  2008. Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus. Virus Res 137:1–15 [Google Scholar]
  7. Noteborn MH, de Boer GF, van Roozelaar DJ, Karreman C, Kranenburg O. 7.  et al. 1991. Characterization of cloned chicken anemia virus DNA that contains all elements for the infectious replication cycle. J. Virol. 65:3131–39 [Google Scholar]
  8. Kamada K, Kuroishi A, Kamahora T, Kabat P, Yamaguchi S, Hino S. 8.  2006. Spliced mRNAs detected during the life cycle of chicken anemia virus. J. Gen. Virol. 87:2227–33 [Google Scholar]
  9. Miyata H, Tsunoda H, Kazi A, Yamada A, Khan MA. 9.  et al. 1999. Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J. Virol. 73:3582–86 [Google Scholar]
  10. Okamoto H, Nishizawa T, Ukita M, Takahashi M, Fukuda M. 10.  et al. 1999. The entire nucleotide sequence of a TT virus isolate from the United States (TUS01): comparison with reported isolates and phylogenetic analysis. Virology 259:437–48 [Google Scholar]
  11. Kamahora T, Hino S, Miyata H. 11.  2000. Three spliced mRNAs of TT virus transcribed from a plasmid containing the entire genome in COS1 cells. J. Virol. 74:9980–86 [Google Scholar]
  12. Ninomiya M, Nishizawa T, Takahashi M, Lorenzo FR, Shimosegawa T, Okamoto H. 12.  2007. Identification and genomic characterization of a novel human torque teno virus of 3.2 kb. J. Gen. Virol. 88:1939–44 [Google Scholar]
  13. Takahashi K, Iwasa Y, Hijikata M, Mishiro S. 13.  2000. Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch. Virol. 145:979–93 [Google Scholar]
  14. Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ. 14.  1997. Mapping and characterization of the origin of DNA replication of porcine circovirus. J. Virol. 71:2562–66 [Google Scholar]
  15. Mankertz A, Caliskan R, Hattermann K, Hillenbrand B, Kurzendoerfer P. 15.  et al. 2004. Molecular biology of porcine circovirus: analyses of gene expression and viral replication. Vet. Microbiol. 98:81–88 [Google Scholar]
  16. Hamel AL, Lin LL, Nayar GP. 16.  1998. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J. Virol. 72:5262–67 [Google Scholar]
  17. de Villiers EM, Borkosky SS, Kimmel R, Gunst K, Fei JW. 17.  2011. The diversity of torque teno viruses: in vitro replication leads to the formation of additional replication-competent subviral molecules. J. Virol. 85:7284–95 [Google Scholar]
  18. Spandole S, Cimponeriu D, Berca LM, Mihaescu G. 18.  2015. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch. Virol. 160:893–908 [Google Scholar]
  19. Simmonds P. 19.  2002. TT virus infection: a novel virus-host relationship. J. Med. Microbiol 51:455–58 [Google Scholar]
  20. Mushahwar IK, Erker JE, Dille BJ, Desai SM. 20.  2001. Recently discovered blood-borne viruses. Forum 11:98–122 [Google Scholar]
  21. Maggi F, Bendinelli M. 21.  2010. Human anelloviruses and the central nervous system. Rev. Med. Virol 20:392–407 [Google Scholar]
  22. Maggi F, Pifferi M, Tempestini E, Fornai C, Lanini L. 22.  et al. 2003. TT virus loads and lymphocyte subpopulations in children with acute respiratory diseases. J. Virol. 77:9081–83 [Google Scholar]
  23. Gerner P, Oettinger R, Gerner W, Falbrede J, Wirth S. 23.  2000. Mother-to-infant transmission of TT virus: prevalence, extent and mechanism of vertical transmission. Pediatr. Infect. Dis. J. 19:1074–77 [Google Scholar]
  24. Maggi F, Bendinelli M. 24.  2009. Immunobiology of the torque teno viruses and other anelloviruses. Curr. Top. Microbiol. Immunol. 331:65–90 [Google Scholar]
  25. Rocchi J, Ricci V, Albani M, Lanini L, Andreoli E. 25.  et al. 2009. Torquetenovirus DNA drives proinflammatory cytokines production and secretion by immune cells via toll-like receptor 9. Virology 394:235–42 [Google Scholar]
  26. Zheng H, Ye L, Fang X, Li B, Wang Y. 26.  et al. 2007. Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-κB pathways via interaction with IκB kinases. J. Virol. 81:11917–24 [Google Scholar]
  27. Kincaid RP, Burke JM, Cox JC, de Villiers EM, Sullivan CS. 27.  2013. A human torque teno virus encodes a microRNA that inhibits interferon signaling. PLOS Pathog 9:e1003818 [Google Scholar]
  28. Hiscott J. 28.  2007. Convergence of the NF-κB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18:483–90 [Google Scholar]
  29. Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Droge W, Schmitz ML. 29.  2000. The pro- or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus. Eur. J. Biochem. 267:3828–35 [Google Scholar]
  30. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. 30.  2003. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67:657–85 [Google Scholar]
  31. Bao J, Zervos AS. 31.  1996. Isolation and characterization of Nmi, a novel partner of Myc proteins. Oncogene 12:2171–76 [Google Scholar]
  32. Zhu M, John S, Berg M, Leonard WJ. 32.  1999. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNγ-mediated signaling. Cell 96:121–30 [Google Scholar]
  33. Schlierf B, Lang S, Kosian T, Werner T, Wegner M. 33.  2005. The high-mobility group transcription factor Sox10 interacts with the N-myc-interacting protein Nmi. J. Mol. Biol. 353:1033–42 [Google Scholar]
  34. Li H, Lee TH, Avraham H. 34.  2002. A novel tricomplex of BRCA1, Nmi, and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer. J. Biol. Chem. 277:20965–73 [Google Scholar]
  35. Zhang K, Zheng G, Yang YC. 35.  2007. Stability of Nmi protein is controlled by its association with Tip60. Mol. Cell. Biochem. 303:1–8 [Google Scholar]
  36. Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B. 36.  et al. 2014. Reactivation of multiple viruses in patients with sepsis. PLOS ONE 9:e98819 [Google Scholar]
  37. Young JC, Chehoud C, Bittinger K, Bailey A, Diamond JM. 37.  et al. 2015. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am. J. Transplant. 15:200–9 [Google Scholar]
  38. Gorzer I, Haloschan M, Jaksch P, Klepetko W, Puchhammer-Stockl E. 38.  2014. Plasma DNA levels of torque teno virus and immunosuppression after lung transplantation. J. Heart Lung Transplant. 33:320–23 [Google Scholar]
  39. Maggi F, Pifferi M, Michelucci A, Albani M, Sbranti S. 39.  et al. 2011. Torque teno virus viremia load size in patients with selected congenital defects of innate immunity. Clin. Vaccine Immunol. 18:692–94 [Google Scholar]
  40. Bando M, Nakayama M, Takahashi M, Hosono T, Mato N. 40.  et al. 2015. Serum torque teno virus DNA titer in idiopathic pulmonary fibrosis patients with acute respiratory worsening. Intern. Med. 54:1015–19 [Google Scholar]
  41. Focosi D, Macera L, Pistello M, Maggi F. 41.  2014. Torque teno virus viremia correlates with intensity of maintenance immunosuppression in adult orthotopic liver transplant. J. Infect. Dis. 210:667–68 [Google Scholar]
  42. Brassard J, Gagne MJ, Leblanc D, Poitras E, Houde A. 42.  et al. 2015. Association of age and gender with torque teno virus detection in stools from diarrheic and non-diarrheic people. J. Clin. Virol. 72:55–59 [Google Scholar]
  43. Okamoto H. 43.  2009. History of discoveries and pathogenicity of TT viruses. Curr. Top. Microbiol. Immunol. 331:1–20 [Google Scholar]
  44. Takahashi M, Asabe S, Gotanda Y, Kishimoto J, Tsuda F, Okamoto H. 44.  2002. TT virus is distributed in various leukocyte subpopulations at distinct levels, with the highest viral load in granulocytes. Biochem. Biophys. Res. Commun. 290:242–48 [Google Scholar]
  45. Focosi D, Macera L, Boggi U, Nelli LC, Maggi F. 45.  2015. Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T lymphocytes as the main replication-competent cells. J. Gen. Virol. 96:115–17 [Google Scholar]
  46. Focosi D, Maggi F, Albani M, Macera L, Ricci V. 46.  et al. 2010. Torquetenovirus viremia kinetics after autologous stem cell transplantation are predictable and may serve as a surrogate marker of functional immune reconstitution. J. Clin. Virol. 47:189–92 [Google Scholar]
  47. Maggi F, Ricci V, Bendinelli M, Nelli LC, Focosi D. 47.  et al. 2008. Changes in CD8+57+ T lymphocyte expansions after autologous hematopoietic stem cell transplantation correlate with changes in torquetenovirus viremia. Transplantation 85:1867–68 [Google Scholar]
  48. Nasser TF, Brajao de Oliveira K, Reiche EM, Amarante MK, Pelegrinelli Fungaro MH, Watanabe MA. 48.  2009. Detection of TT virus in HIV-1 exposed but uninfected individuals and in HIV-1 infected patients and its influence on CD4+ lymphocytes and viral load. Microb. Pathog. 47:33–37 [Google Scholar]
  49. Tsuda F, Okamoto H, Ukita M, Tanaka T, Akahane Y. 49.  et al. 1999. Determination of antibodies to TT virus (TTV) and application to blood donors and patients with post-transfusion non-A to G hepatitis in Japan. J. Virol. Methods 77:199–206 [Google Scholar]
  50. Handa A, Dickstein B, Young NS, Brown KE. 50.  2000. Prevalence of the newly described human circovirus, TTV, in United States blood donors. Transfusion 40:245–51 [Google Scholar]
  51. Tsuda F, Takahashi M, Nishizawa T, Akahane Y, Konishi K. 51.  et al. 2001. IgM-class antibodies to TT virus (TTV) in patients with acute TTV infection. Hepatol. Res. 19:1–11 [Google Scholar]
  52. Nishizawa T, Okamoto H, Tsuda F, Aikawa T, Sugai Y. 52.  et al. 1999. Quasispecies of TT virus (TTV) with sequence divergence in hypervariable regions of the capsid protein in chronic TTV infection. J. Virol. 73:9604–8 [Google Scholar]
  53. Yokoyama H, Yasuda J, Okamoto H, Iwakura Y. 53.  2002. Pathological changes of renal epithelial cells in mice transgenic for the TT virus ORF1 gene. J. Gen. Virol. 83:141–50 [Google Scholar]
  54. Tawara A, Akahane Y, Takahashi M, Nishizawa T, Ishikawa T, Okamoto H. 54.  2000. Transmission of human TT virus of genotype 1a to chimpanzees with fecal supernatant or serum from patients with acute TTV infection. Biochem. Biophys. Res. Commun. 278:470–76 [Google Scholar]
  55. Maggi F, Andreoli E, Lanini L, Meschi S, Rocchi J. 55.  et al. 2006. Rapid increase in total torquetenovirus (TTV) plasma viremia load reveals an apparently transient superinfection by a TTV of a novel group 2 genotype. J. Clin. Microbiol. 44:2571–74 [Google Scholar]
  56. Maggi F, Pistello M, Vatteroni M, Presciuttini S, Marchi S. 56.  et al. 2001. Dynamics of persistent TT virus infection, as determined in patients treated with alpha interferon for concomitant hepatitis C virus infection. J. Virol. 75:11999–2004 [Google Scholar]
  57. Kakalacheva K, Munz C, Lunemann JD. 57.  2011. Viral triggers of multiple sclerosis. Biochim. Biophys. Acta 1812:132–40 [Google Scholar]
  58. Gergely P Jr., Perl A, Poor G. 58.  2006. Possible pathogenic nature of the recently discovered TT virus: Does it play a role in autoimmune rheumatic diseases?. Autoimmun. Rev. 6:5–9 [Google Scholar]
  59. Blank M, Shoenfeld Y, Perl A. 59.  2009. Cross-talk of the environment with the host genome and the immune system through endogenous retroviruses in systemic lupus erythematosus. Lupus 18:1136–43 [Google Scholar]
  60. Borkosky SS, Whitley C, Kopp-Schneider A, zur Hausen H, de Villiers EM. 60.  2012. Epstein-Barr virus stimulates torque teno virus replication: a possible relationship to multiple sclerosis. PLOS ONE 7:e32160 [Google Scholar]
  61. de Villiers EM, Kimmel R, Leppik L, Gunst K. 61.  2009. Intragenomic rearrangement in TT viruses: a possible role in the pathogenesis of disease. Curr. Top. Microbiol. Immunol. 331:91–107 [Google Scholar]
  62. Lundstrom L, Elmquist A, Bartfai T, Langel U. 62.  2005. Galanin and its receptors in neurological disorders. Neuromol. Med. 7:157–80 [Google Scholar]
  63. Gruninger TR, LeBoeuf B, Liu Y, Garcia LR. 63.  2007. Molecular signaling involved in regulating feeding and other motivated behaviors. Mol. Neurobiol. 35:1–20 [Google Scholar]
  64. Wheway J, Herzog H, Mackay F. 64.  2007. NPY and receptors in immune and inflammatory diseases. Curr. Top. Med. Chem 7:1743–52 [Google Scholar]
  65. Notarangelo LD, Gambineri E, Badolato R. 65.  2006. Immunodeficiencies with autoimmune consequences. Adv. Immunol. 89:321–70 [Google Scholar]
  66. Montuschi P. 66.  2010. Role of leukotrienes and leukotriene modifiers in asthma. Pharmaceuticals 3:1792–811 [Google Scholar]
  67. Luster AD, Tager AM. 67.  2004. T-cell trafficking in asthma: Lipid mediators grease the way. Nat. Rev. Immunol. 4:711–24 [Google Scholar]
  68. Mathis S, Jala VR, Haribabu B. 68.  2007. Role of leukotriene B4 receptors in rheumatoid arthritis. Autoimmun. Rev. 7:12–17 [Google Scholar]
  69. Brubaker PL, Drucker DJ. 69.  2002. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels 8:179–88 [Google Scholar]
  70. Volz A, Goke R, Lankat-Buttgereit B, Fehmann HC, Bode HP, Goke B. 70.  1995. Molecular cloning, functional expression, and signal transduction of the GIP-receptor cloned from a human insulinoma. FEBS Lett 373:23–29 [Google Scholar]
  71. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM. 71.  et al. 1998. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–85 [Google Scholar]
  72. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE. 72.  et al. 1998. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. PNAS 95:322–27 [Google Scholar]
  73. Heinonen MV, Purhonen AK, Makela KA, Herzig KH. 73.  2008. Functions of orexins in peripheral tissues. Acta Physiol 192:471–85 [Google Scholar]
  74. Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J. 74.  et al. 2001. G-protein signaling through tubby proteins. Science 292:2041–50 [Google Scholar]
  75. Boggon TJ, Shan WS, Santagata S, Myers SC, Shapiro L. 75.  1999. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 286:2119–25 [Google Scholar]
  76. Gergely P Jr., Pullmann R, Stancato C, Otvos L Jr., Koncz A. 76.  et al. 2005. Increased prevalence of transfusion-transmitted virus and cross-reactivity with immunodominant epitopes of the HRES-1/p28 endogenous retroviral autoantigen in patients with systemic lupus erythematosus. Clin. Immunol. 116:124–34 [Google Scholar]
  77. Perl A, Rosenblatt JD, Chen IS, DiVincenzo JP, Bever R. 77.  et al. 1989. Detection and cloning of new HTLV-related endogenous sequences in man. Nucleic Acids Res 17:6841–54 [Google Scholar]
  78. Perl A, Nagy G, Koncz A, Gergely P, Fernandez D. 78.  et al. 2008. Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE. Autoimmunity 41:287–97 [Google Scholar]
  79. Costa MR, Costa IP, Devalle S, Castro AR, Freitas SZ. 79.  2012. Prevalence and genetic diversity of torque teno virus in patients with systemic lupus erythematosus in a reference service in Mato Grosso do Sul. Rev. Bras. Reumatol. 52:49–54 [Google Scholar]
  80. Blazsek A, Sillo P, Ishii N, Gergely P Jr., Poor G. 80.  et al. 2008. Searching for foreign antigens as possible triggering factors of autoimmunity: torque teno virus DNA prevalence is elevated in sera of patients with bullous pemphigoid. Exp. Dermatol. 17:446–54 [Google Scholar]
  81. Pifferi M, Maggi F, Andreoli E, Lanini L, Marco ED. 81.  et al. 2005. Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J. Infect. Dis. 192:1141–48 [Google Scholar]
  82. Maximova N, Pizzol A, Ferrara G, Maestro A, Tamaro P. 82.  2015. Does teno torque virus induce autoimmunity after hematopoietic stem cell transplantation? A case report. J. Pediatr. Hematol. Oncol. 37:e194–97 [Google Scholar]
  83. Pifferi M, Maggi F, Caramella D, De Marco E, Andreoli E. 83.  et al. 2006. High torquetenovirus loads are correlated with bronchiectasis and peripheral airflow limitation in children. Pediatr. Infect. Dis. J. 25:804–8 [Google Scholar]
  84. Guney C, Kadayifci A, Savas MC, Uygun A, Balkan A, Kubar A. 84.  2005. Frequency of hepatitis G virus and transfusion-transmitted virus infection in type II diabetes mellitus. Int. J. Clin. Pract. 59:206–9 [Google Scholar]
  85. Gan L, Miller FW. 85.  2011. State of the art: what we know about infectious agents and myositis. Curr. Opin. Rheumatol. 23:585–94 [Google Scholar]
  86. Gergely P Jr., Blazsek A, Danko K, Ponyi A, Poor G. 86.  2005. Detection of TT virus in patients with idiopathic inflammatory myopathies. Ann. N.Y. Acad. Sci. 1050:304–13 [Google Scholar]
  87. Sospedra M, Zhao Y, zur Hausen H, Muraro PA, Hamashin C. 87.  et al. 2005. Recognition of conserved amino acid motifs of common viruses and its role in autoimmunity. PLOS Pathog 1:e41 [Google Scholar]
  88. Komijani M, Bouzari M, Etemadifar M, Zarkesh-Esfahani H, Shaykh-Baygloo N. 88.  et al. 2011. Torque teno mini virus infection and multiple sclerosis. Int. J. Neurosci. 121:437–41 [Google Scholar]
  89. Maggi F, Andreoli E, Riente L, Meschi S, Rocchi J. 89.  et al. 2007. Torquetenovirus in patients with arthritis. Rheumatology 46:885–86 [Google Scholar]
  90. Seemayer CA, Viazov S, Neidhart M, Bruhlmann P, Michel BA. 90.  et al. 2001. Prevalence of TTV DNA and GBV-C RNA in patients with systemic sclerosis, rheumatoid arthritis, and osteoarthritis does not differ from that in healthy blood donors. Ann. Rheum. Dis. 60:806–9 [Google Scholar]
  91. Vasconcelos HC, Cataldo M, Niel C. 91.  2002. Mixed infections of adults and children with multiple TTV-like mini virus isolates. J. Med. Virol 68:291–98 [Google Scholar]
  92. Wei L, Zhu S, Wang J, Quan R, Yan X. 92.  et al. 2016. Induction of a cellular DNA damage response by porcine circovirus type 2 facilitates viral replication and mediates apoptotic responses. Sci. Rep. 6:39444 [Google Scholar]
  93. de Smit MH, Noteborn MH. 93.  2009. Apoptosis-inducing proteins in chicken anemia virus and TT virus. Curr. Top. Microbiol. Immunol. 331:131–49 [Google Scholar]
  94. Gao Z, Dong Q, Jiang Y, Opriessnig T, Wang J. 94.  et al. 2014. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro. Virus Res 183:56–62 [Google Scholar]
  95. Lin WL, Chien MS, Wu PC, Lai CL, Huang C. 95.  2011. The porcine circovirus type 2 nonstructural protein ORF3 induces apoptosis in porcine peripheral blood mononuclear cells. Open Virol. J. 5:148–53 [Google Scholar]
  96. Liu J, Chen I, Kwang J. 96.  2005. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J. Virol. 79:8262–74 [Google Scholar]
  97. Cancela F, Ramos N, Mirazo S, Mainardi V, Gerona S, Arbiza J. 97.  2016. Detection and molecular characterization of torque teno virus (TTV) in Uruguay. Infect. Genet. Evol. 44:501–6 [Google Scholar]
  98. Wei L, Zhu S, Wang J, Zhang C, Quan R. 98.  et al. 2013. Regulatory role of ASK1 in porcine circovirus type 2-induced apoptosis. Virology 447:285–91 [Google Scholar]
  99. Danen-Van Oorschot AA, Fischer DF, Grimbergen JM, Klein B, Zhuang S. 99.  et al. 1997. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. PNAS 94:5843–47 [Google Scholar]
  100. Noteborn MH. 100.  1999. Apoptin-induced apoptosis: a review. Apoptosis 4:317–19 [Google Scholar]
  101. Noteborn MH. 101.  2005. Apoptin acts as a tumor-specific killer: potentials for an anti-tumor therapy. Cell. Mol. Biol. 51:49–60 [Google Scholar]
  102. Kooistra K, Zhang YH, Henriquez NV, Weiss B, Mumberg D, Noteborn MH. 102.  2004. TT virus-derived apoptosis-inducing protein induces apoptosis preferentially in hepatocellular carcinoma-derived cells. J. Gen. Virol. 85:1445–50 [Google Scholar]
  103. Prasetyo AA, Kamahora T, Kuroishi A, Murakami K, Hino S. 103.  2009. Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV). Virology 385:85–92 [Google Scholar]
  104. zur Hausen H, de Villiers EM. 104.  2009. TT viruses: oncogenic or tumor-suppressive properties?. Curr. Top. Microbiol. Immunol. 331:109–16 [Google Scholar]
  105. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L. 105.  et al. 2003. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–53 [Google Scholar]
  106. Messeguer X, Escudero R, Farré D, Nuñez O, Martínez J, Albà MM. 106.  2002. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–34 [Google Scholar]
  107. Tsuge M, Noguchi C, Akiyama R, Matsushita M, Kunihiro K. 107.  et al. 2010. G to A hypermutation of TT virus. Virus Res 149:211–16 [Google Scholar]
  108. Leppik L, Gunst K, Lehtinen M, Dillner J, Streker K, de Villiers EM. 108.  2007. In vivo and in vitro intragenomic rearrangement of TT viruses. J. Virol. 81:9346–56 [Google Scholar]
  109. Arthur RR, Dagostin S, Shah KV. 109.  1989. Detection of BK virus and JC virus in urine and brain tissue by the polymerase chain reaction. J. Clin. Microbiol. 27:1174–79 [Google Scholar]
  110. Randhawa PS, Khaleel-Ur-Rehman K, Swalsky PA, Vats A, Scantlebury V. 110.  et al. 2002. DNA sequencing of viral capsid protein VP-1 region in patients with BK virus interstitial nephritis. Transplantation 73:1090–94 [Google Scholar]
  111. Gosert R, Rinaldo CH, Funk GA, Egli A, Ramos E. 111.  et al. 2008. Polyomavirus BK with rearranged noncoding control region emerge in vivo in renal transplant patients and increase viral replication and cytopathology. J. Exp. Med. 205:841–52 [Google Scholar]
  112. Perets TT, Silberstein I, Rubinov J, Sarid R, Mendelson E, Shulman LM. 112.  2009. High frequency and diversity of rearrangements in polyomavirus BK noncoding regulatory regions cloned from urine and plasma of Israeli renal transplant patients and evidence for a new genetic subtype. J. Clin. Microbiol. 47:1402–11 [Google Scholar]
  113. Moens U, Van Ghelue M. 113.  2005. Polymorphism in the genome of non-passaged human polyomavirus BK: implications for cell tropism and the pathological role of the virus. Virology 331:209–31 [Google Scholar]
  114. Stoner GL, Alappan R, Jobes DV, Ryschkewitsch CF, Landry ML. 114.  2002. BK virus regulatory region rearrangements in brain and cerebrospinal fluid from a leukemia patient with tubulointerstitial nephritis and meningoencephalitis. Am. J. Kidney Dis. 39:1102–12 [Google Scholar]
  115. Schat KA, Nair V. 115.  2013. Marek's disease. Diseases of Poultry DE Swayne, JR Glisson, LR McDougald, LK Nolan, DL Suarez, V Nair 515–52 Ames, IA: Wiley-Blackwell, 13th ed.. [Google Scholar]
  116. Schat KA, van Santen VL. 116.  2013. Chicken infectious anemia. Diseases of Poultry DE Swayne, JR Glisson, LR McDougald, LK Nolan, DL Suarez, V Nair 248–64 Ames, IA: Wiley-Blackwell, 13th ed.. [Google Scholar]
  117. Schat KA. 117.  2009. Chicken anemia virus. Curr. Top. Microbiol. Immunol. 331:151–83 [Google Scholar]
  118. Davidson I, Artzi N, Shkoda I, Lublin A, Loeb E, Schat KA. 118.  2008. The contribution of feathers in the spread of chicken anemia virus. Virus Res 132:152–59 [Google Scholar]
  119. van Santen VL, Li L, Hoerr FJ, Lauerman LH. 119.  2001. Genetic characterization of chicken anemia virus from commercial broiler chickens in Alabama. Avian Dis 45:373–88 [Google Scholar]
  120. Smyth JA, Moffett DA, Connor TJ, McNulty MS. 120.  2006. Chicken anaemia virus inoculated by the oral route causes lymphocyte depletion in the thymus in 3-week-old and 6-week-old chickens. Avian Pathol 35:254–59 [Google Scholar]
  121. Davidson I, Raibstein I, Altouri A. 121.  2013. Quantitation of Marek's disease and chicken anemia viruses in organs of experimentally infected chickens and commercial chickens by multiplex real-time PCR. Avian Dis 57:532–38 [Google Scholar]
  122. Wani MY, Dhama K, Malik YS. 122.  2016. Impact of virus load on immunocytological and histopathological parameters during clinical chicken anemia virus (CAV) infection in poultry. Microb. Pathog. 96:42–51 [Google Scholar]
  123. Miller MM, Schat KA. 123.  2004. Chicken infectious anemia virus: an example of the ultimate host-parasite relationship. Avian Dis 48:734–45 [Google Scholar]
  124. Hoerr FJ. 124.  2010. Clinical aspects of immunosuppression in poultry. Avian Dis 54:2–15 [Google Scholar]
  125. Davidson I. 125.  2009. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring. Rev. Bras. Ciênc. Avíc. 11:139–48 [Google Scholar]
  126. Davidson I, Loeb E, Lublin A, Perk S, Shkoda I, Schat KA. 126.  2007. Assessment of various criteria to determine the chicken anemia virus pathogenicity in embryonated eggs and in day-old chicks. Curr. Top. Virol. 6:95–111 [Google Scholar]
  127. Jarosinski KW, Arndt S, Kaufer BB, Osterrieder N. 127.  2012. Fluorescently tagged pUL47 of Marek's disease virus reveals differential tissue expression of the tegument protein in vivo. J. Virol. 86:2428–36 [Google Scholar]
  128. Noteborn MH, Todd D, Verschueren CA, de Gauw HW, Curran WL. 128.  et al. 1994. A single chicken anemia virus protein induces apoptosis. J. Virol. 68:346–51 [Google Scholar]
  129. Ducatez MF, Owoade AA, Abiola JO, Muller CP. 129.  2006. Molecular epidemiology of chicken anemia virus in Nigeria. Arch. Virol. 151:97–111 [Google Scholar]
  130. Ducatez MF, Chen H, Guan Y, Muller CP. 130.  2008. Molecular epidemiology of chicken anemia virus (CAV) in southeastern Chinese live birds markets. Avian Dis 52:68–73 [Google Scholar]
  131. Renshaw RW, Soine C, Weinkle T, O'Connell PH, Ohashi K. 131.  et al. 1996. A hypervariable region in VP1 of chicken infectious anemia virus mediates rate of spread and cell tropism in tissue culture. J. Virol. 70:8872–78 [Google Scholar]
  132. Davidson I, Raibstein I, Altouri A, Elrom K. 132.  2015. The consequence of a single nucleotide substitution on the molecular diagnosis of the chicken anemia virus. Is. J. Vet. Med. 70:30–32 [Google Scholar]
  133. Markowski-Grimsrud CJ, Schat KA. 133.  2003. Infection with chicken anaemia virus impairs the generation of pathogen-specific cytotoxic T lymphocytes. Immunology 109:283–94 [Google Scholar]
  134. Guo P, Thomas JD, Bruce MP, Hinton TM, Bean AG, Lowenthal JW. 134.  2013. The chicken TH1 response: potential therapeutic applications of ChIFN-γ.. Dev. Comp. Immunol. 41:389–96 [Google Scholar]
  135. Adair BM, McNeilly F, McConnell CD, Todd D, Nelson RT, McNulty MS. 135.  1991. Effects of chicken anemia agent on lymphokine production and lymphocyte transformation in experimentally infected chickens. Avian Dis 35:783–92 [Google Scholar]
  136. McConnell CD, Adair BM, McNulty MS. 136.  1993. Effects of chicken anemia virus on cell-mediated immune function in chickens exposed to the virus by a natural route. Avian Dis 37:366–74 [Google Scholar]
  137. Ragland WL, Novak R, El-Attrache J, Savic V, Ester K. 137.  2002. Chicken anemia virus and infectious bursal disease virus interfere with transcription of chicken IFN-α and IFN-γ mRNA. J. Interferon Cytokine Res. 22:437–41 [Google Scholar]
  138. Yuasa N, Taniguchi T, Yoshida I. 138.  1979. Isolation and some characteristics of an agent inducing anemia in chicks. Avian Dis 23:366–85 [Google Scholar]
  139. Rijsewijk FA, Dos Santos HF, Teixeira TF, Cibulski SP, Varela AP. 139.  et al. 2011. Discovery of a genome of a distant relative of chicken anemia virus reveals a new member of the genus Gyrovirus. Arch. Virol. 156:1097–100 [Google Scholar]
  140. Yao S, Tuo T, Gao X, Han C, Li Y. 140.  et al. 2016. Avian gyrovirus 2 in poultry, China, 2015–2016. Emerg. Microbes Infect 5:e112 [Google Scholar]
  141. Sauvage V, Cheval J, Foulongne V, Gouilh MA, Pariente K. 141.  et al. 2011. Identification of the first human gyrovirus, a virus related to chicken anemia virus. J. Virol. 85:7948–50 [Google Scholar]
  142. Chu DK, Poon LL, Chiu SS, Chan KH, Ng EM. 142.  et al. 2012. Characterization of a novel gyrovirus in human stool and chicken meat. J. Clin. Virol. 55:209–13 [Google Scholar]
  143. Phan TG, Vo NP, Sdiri-Loulizi K, Aouni M, Pothier P. 143.  et al. 2013. Divergent gyroviruses in the feces of Tunisian children. Virology 446:346–48 [Google Scholar]
  144. Ye J, Tian X, Xie Q, Zhang Y, Sheng Y. 144.  et al. 2015. Avian gyrovirus 2 DNA in fowl from live poultry markets and in healthy humans, China. Emerg. Infect. Dis. 21:1486–88 [Google Scholar]
  145. Palinski R, Pineyro P, Shang P, Yuan F, Guo R. 145.  et al. 2017. A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. J. Virol. 91:e01879–16 [Google Scholar]
  146. Tischer I, Gelderblom H, Vettermann W, Koch MA. 146.  1982. A very small porcine virus with circular single-stranded DNA. Nature 295:64–66 [Google Scholar]
  147. Ellis J, Clark E, Haines D, West K, Krakowka S. 147.  et al. 2004. Porcine circovirus-2 and concurrent infections in the field. Vet. Microbiol. 98:159–63 [Google Scholar]
  148. Gillespie J, Opriessnig T, Meng XJ, Pelzer K, Buechner-Maxwell V. 148.  2009. Porcine circovirus type 2 and porcine circovirus-associated disease. J. Vet. Intern. Med. 23:1151–63 [Google Scholar]
  149. Fenaux M, Opriessnig T, Halbur PG, Elvinger F, Meng XJ. 149.  2004. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo. J. Virol. 78:13440–46 [Google Scholar]
  150. Zhang W, Li L, Deng X, Kapusinszky B, Delwart E. 150.  2014. What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology 468–70:303–10 [Google Scholar]
  151. Ma H, Shaheduzzaman S, Willliams DK, Gao Y, Khan AS. 151.  2011. Investigations of porcine circovirus type 1 (PCV1) in vaccine-related and other cell lines. Vaccine 29:8429–37 [Google Scholar]
  152. Dubin G, Toussaint JF, Cassart JP, Howe B, Boyce D. 152.  et al. 2013. Investigation of a regulatory agency enquiry into potential porcine circovirus type 1 contamination of the human rotavirus vaccine, Rotarix: approach and outcome. Hum. Vaccines Immunother. 9:2398–408 [Google Scholar]
  153. Esona MD, Mijatovic-Rustempasic S, Yen C, Parashar UD, Gentsch JR. 153.  et al. 2014. Detection of PCV-2 DNA in stool samples from infants vaccinated with RotaTeq®. Hum. Vaccines Immunother. 10:25–32 [Google Scholar]
  154. Burbelo PD, Ragheb JA, Kapoor A, Zhang Y. 154.  2013. The serological evidence in humans supports a negligible risk of zoonotic infection from porcine circovirus type 2. Biologicals 41:430–34 [Google Scholar]
  155. Bonnamain V, Neveu I, Naveilhan P. 155.  2011. In vitro analyses of the immunosuppressive properties of neural stem/progenitor cells using anti-CD3/CD28-activated T cells. Methods Mol. Biol. 677:233–43 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error