1932

Abstract

The repertoire of herpesvirus receptors consists of nonintegrin and integrin molecules. Integrins interact with the conserved glycoproteins gH/gL or gB. This interaction is a conserved biology across the family, likely directed to promote virus entry and endocytosis. Herpesviruses exploit this interaction to execute a range of critical functions that include () relocation of nonintegrin receptors (e.g., herpes simplex virus nectin1 and Kaposi's sarcoma–associated herpesvirus EphA2), or association with nonintegrin receptors (i.e., human cytomegalovirus EGFR), to dictate species-specific entry pathways; () activation of multiple signaling pathways (e.g., Ca2+ release, c-Src, FAK, MAPK, and PI3K); and () association with Rho GTPases, tyrosine kinase receptors, Toll-like receptors, which result in cytoskeletal remodeling, differential cell type targeting, and innate responses. In turn, integrins can be modulated by viral proteins (e.g., Epstein-Barr virus LMPs) to favor spread of transformed cells. We propose that herpesviruses evolved a multipartite entry system to allow interaction with multiple receptors, including integrins, required for their sophisticated life cycle.

Keyword(s): EBVHCMVHSVintegrinsKSHVsignal transduction
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-035618
2016-09-29
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-035618.html?itemId=/content/journals/10.1146/annurev-virology-110615-035618&mimeType=html&fmt=ahah

Literature Cited

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 1.  2002. Integrins. Molecular Biology of the Cell B Alberts, A Johnson, J Lewis, M Raff, K Roberts, P Walter 1113–18 New York: Garland Sci., 4th ed.. [Google Scholar]
  2. Berman AE, Kozlova NI, Morozevich GE. 2.  2003. Integrins: structure and signaling. Biochemistry 68:1284–99 [Google Scholar]
  3. Desgrosellier JS, Cheresh DA. 3.  2010. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 109–22 [Google Scholar]
  4. Hynes RO. 4.  2002. Integrins: bidirectional, allosteric signaling machines. Cell 110673–87 [Google Scholar]
  5. Barczyk M, Carracedo S, Gullberg D. 5.  2010. Integrins. Cell Tissue Res. 339:269–80 [Google Scholar]
  6. Campbell ID, Humphries MJ. 6.  2011. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3:a004994 [Google Scholar]
  7. Luo BH, Springer TA. 7.  2006. Integrin structures and conformational signaling. Curr. Opin. Cell Biol. 18:579–86 [Google Scholar]
  8. Caswell PT, Vadrevu S, Norman JC. 8.  2009. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell. Biol. 10843–53 [Google Scholar]
  9. Nicola AV, McEvoy AM, Straus SE. 9.  2003. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J. Virol. 77:5324–32 [Google Scholar]
  10. Gianni T, Campadelli-Fiume G, Menotti L. 10.  2004. Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J. Virol. 78:12268–76 [Google Scholar]
  11. Pellett PE, Roizman B. 11.  2013. Herpesviridae See Reference 156 1802–22 [Google Scholar]
  12. Connolly SA, Jackson JO, Jardetzky TS, Longnecker R. 12.  2011. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat. Rev. Microbiol. 9:369–81 [Google Scholar]
  13. Campadelli-Fiume G, Amasio M, Avitabile E, Cerretani A, Forghieri C. 13.  et al. 2007. The multipartite system that mediates entry of herpes simplex virus into the cell. Rev. Med. Virol 17:313–26 [Google Scholar]
  14. Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC. 14.  2006. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–20 [Google Scholar]
  15. Akula SM, Pramod NP, Wang FZ, Chandran B. 15.  2001. Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology 284:235–49 [Google Scholar]
  16. Wang FZ, Akula SM, Sharma-Walia N, Zeng L, Chandran B. 16.  2003. Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J. Virol. 77:3131–47 [Google Scholar]
  17. Feire AL, Roy RM, Manley K, Compton T. 17.  2010. The glycoprotein B disintegrin-like domain binds β1 integrin to mediate cytomegalovirus entry. J. Virol. 84:10026–37 [Google Scholar]
  18. Stampfer SD, Heldwein EE. 18.  2013. Stuck in the middle: structural insights into the role of the gH/gL heterodimer in herpesvirus entry. Curr. Opin. Virol. 3:13–19 [Google Scholar]
  19. Backovic M, DuBois RM, Cockburn JJ, Sharff AJ, Vaney MC. 19.  et al. 2010. Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody. PNAS 107:22635–40 [Google Scholar]
  20. Campadelli-Fiume G, Menotti L, Avitabile E, Gianni T. 20.  2012. Viral and cellular contributions to herpes simplex virus entry into the cell. Curr. Opin. Virol. 2:28–36 [Google Scholar]
  21. Galdiero M, Whiteley A, Bruun B, Bell S, Minson T, Browne H. 21.  1997. Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H. J. Virol. 71:2163–70 [Google Scholar]
  22. Parry C, Bell S, Minson T, Browne H. 22.  2005. Herpes simplex virus type 1 glycoprotein H binds to αvβ3 integrins. J. Gen. Virol. 86:7–10 [Google Scholar]
  23. Xiao J, Palefsky JM, Herrera R, Berline J, Tugizov SM. 23.  2008. The Epstein-Barr virus BMRF-2 protein facilitates virus attachment to oral epithelial cells. Virology 370:430–42 [Google Scholar]
  24. Xiao J, Palefsky JM, Herrera R, Tugizov SM. 24.  2007. Characterization of the Epstein-Barr virus glycoprotein BMRF-2. Virology 359:382–96 [Google Scholar]
  25. Akula SM, Pramod NP, Wang FZ, Chandran B. 25.  2002. Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma–associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407–19 [Google Scholar]
  26. Wang X, Huang DY, Huong SM, Huang ES. 26.  2005. Integrin αvβ3 is a coreceptor for human cytomegalovirus. Nat. Med. 11:515–21 [Google Scholar]
  27. Feire AL, Koss H, Compton T. 27.  2004. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. PNAS 101:15470–75 [Google Scholar]
  28. Nogalski MT, Chan GCT, Stevenson EV, Collins-McMillen D, Yurochko AD. 28.  2013. The HCMV gH/gL/UL128–131 complex triggers the specific cellular activation required for efficient viral internalization into target monocytes. PLOS Pathog. 9:e1003463 [Google Scholar]
  29. Chesnokova LS, Hutt-Fletcher LM. 29.  2011. Fusion of Epstein-Barr virus with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8, and integrin binding triggers a conformational change in glycoproteins gHgL. J. Virol. 85:13214–23 [Google Scholar]
  30. Chesnokova LS, Nishimura SL, Hutt-Fletcher LM. 30.  2009. Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. PNAS 106:20464–69 [Google Scholar]
  31. Azab W, Lehmann MJ, Osterrieder N. 31.  2013. Glycoprotein H and α4β1 integrins determine the entry pathway of alphaherpesviruses. J. Virol. 87:5937–48 [Google Scholar]
  32. Van de Walle GR, Peters ST, VanderVen BC, O'Callaghan DJ, Osterrieder N. 32.  2008. Equine herpesvirus 1 entry via endocytosis is facilitated by αv integrins and an RSD motif in glycoprotein D. J. Virol. 82:11859–68 [Google Scholar]
  33. Gianni T, Salvioli S, Chesnokova LS, Hutt-Fletcher LM, Campadelli-Fiume G. 33.  2013. αvβ6- and αvβ8-integrins serve as interchangeable receptors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLOS Pathog. 9:e1003806 [Google Scholar]
  34. Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D. 34.  2006. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J. Cell Biol. 174:1009–21 [Google Scholar]
  35. Mercer J, Schelhaas M, Helenius A. 35.  2010. Virus entry by endocytosis. Annu. Rev. Biochem. 79:803–33 [Google Scholar]
  36. Milne RS, Nicola AV, Whitbeck JC, Eisenberg RJ, Cohen GH. 36.  2005. Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J. Virol. 79:6655–63 [Google Scholar]
  37. Gianni T, Gatta V, Campadelli-Fiume G. 37.  2010. αvβ3-integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. PNAS 107:22260–65 [Google Scholar]
  38. Gianni T, Campadelli-Fiume G. 38.  2012. αvβ3-integrin relocalizes nectin1 and routes herpes simplex virus to lipid rafts. J. Virol. 86:2850–55 [Google Scholar]
  39. Stewart PL, Nemerow GR. 39.  2007. Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol. 15:500–7 [Google Scholar]
  40. Gianni T, Massaro R, Campadelli-Fiume G. 40.  2015. Dissociation of HSV gL from gH by αvβ6- or αvβ8-integrin promotes gH activation and virus entry. PNAS 112:E3901–10 [Google Scholar]
  41. Maidji E, Genbacev O, Chang HT, Pereira L. 41.  2007. Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta. J. Virol. 81:4701–12 [Google Scholar]
  42. Bentz GL, Yurochko AD. 42.  2008. Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and β1 and β3 integrins. PNAS 105:5531–36 [Google Scholar]
  43. Nogalski MT, Chan G, Stevenson EV, Gray S, Yurochko AD. 43.  2011. Human cytomegalovirus-regulated paxillin in monocytes links cellular pathogenic motility to the process of viral entry. J. Virol. 85:1360–69 [Google Scholar]
  44. Kari B, Gehrz R. 44.  1992. A human cytomegalovirus glycoprotein complex designated gC-II is a major heparin-binding component of the envelope. J. Virol. 66:1761–64 [Google Scholar]
  45. Compton T, Nowlin DM, Cooper NR. 45.  1993. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 193:834–41 [Google Scholar]
  46. Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES. 46.  2003. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424:456–61 [Google Scholar]
  47. Chan GCT, Nogalski MT, Yurochko AD. 47.  2009. Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. PNAS 106:22369–74 [Google Scholar]
  48. Soroceanu L, Akhavan A, Cobbs CS. 48.  2008. Platelet-derived growth factor-α receptor activation is required for human cytomegalovirus infection. Nature 455:391–95 [Google Scholar]
  49. Grundy JE, McKeating JA, Ward PJ, Sanderson AR, Griffiths PD. 49.  1987. β2 microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class I HLA molecules to be used as a virus receptor. J. Gen. Virol. 68:793–803 [Google Scholar]
  50. Wright JF, Kurosky A, Wasi S. 50.  1994. An endothelial cell-surface form of annexin II binds human cytomegalovirus. Biochem. Biophys. Res. Commun. 198:983–89 [Google Scholar]
  51. Soderberg C, Giugni TD, Zaia JA, Larsson S, Wahlberg JM, Moller E. 51.  1993. CD13 (human aminopeptidase N) mediates human cytomegalovirus infection. J. Virol. 67:6576–85 [Google Scholar]
  52. Boehme KW, Guerrero M, Compton T. 52.  2006. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 177:7094–102 [Google Scholar]
  53. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E. 53.  et al. 2003. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77:4588–96 [Google Scholar]
  54. Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G. 54.  et al. 2004. Human cytomegalovirus UL131–128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol. 78:10023–33 [Google Scholar]
  55. Wang D, Shenk T. 55.  2005. Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J. Virol. 79:10330–38 [Google Scholar]
  56. Wang D, Shenk T. 56.  2005. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. PNAS 102:18153–58 [Google Scholar]
  57. Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C. 57.  et al. 2005. Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131–128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J. Gen. Virol. 86:275–84 [Google Scholar]
  58. Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C, Koszinowski U. 58.  2006. Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J. Gen. Virol. 87:2451–60 [Google Scholar]
  59. Straschewski S, Patrone M, Walther P, Gallina A, Mertens T, Frascaroli G. 59.  2011. Protein pUL128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J. Virol. 85:5150–58 [Google Scholar]
  60. Spear PG, Longnecker R. 60.  2003. Herpesvirus entry: an update. J. Virol. 77:10179–85 [Google Scholar]
  61. Connolly SA, Jackson JO, Jardetzky TS, Longnecker R. 61.  2011. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat. Rev. Microbiol. 9:369–81 [Google Scholar]
  62. Chesnokova LS, Jiang R, Hutt-Fletcher LM. 62.  2015. Viral entry. Curr. Top. Microbiol. Immunol. 391:221–35 [Google Scholar]
  63. Mullen MM, Haan KM, Longnecker R, Jardetzky TS. 63.  2002. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol. Cell 9:375–85 [Google Scholar]
  64. Nemerow GR, Mold C, Schwend VK, Tollefson V, Cooper NR. 64.  1987. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J. Virol. 61:1416–20 [Google Scholar]
  65. Sathiyamoorthy K, Jiang J, Hu YX, Rowe CL, Mohl BS. 65.  et al. 2014. Assembly and architecture of the EBV B cell entry triggering complex. PLOS Pathog. 10:e1004309 [Google Scholar]
  66. Ressing ME, van Leeuwen D, Verreck FA, Gomez R, Heemskerk B. 66.  et al. 2003. Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition. PNAS 100:11583–88 [Google Scholar]
  67. Dorner M, Zucol F, Alessi D, Haerle SK, Bossart W. 67.  et al. 2010. β1 integrin expression increases susceptibility of memory B cells to Epstein-Barr virus infection. J. Virol. 84:6667–77 [Google Scholar]
  68. Chen J, Jardetzky TS, Longnecker R. 68.  2013. The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion. J. Virol. 87:3620–27 [Google Scholar]
  69. Shannon-Lowe C, Rowe M. 69.  2011. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLOS Pathog. 7:e1001338 [Google Scholar]
  70. Akula SM, Naranatt PP, Walia NS, Wang FZ, Fegley B, Chandran B. 70.  2003. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J. Virol. 77:7978–90 [Google Scholar]
  71. Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Chandran B. 71.  2009. Kaposi's sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J. Virol. 83:4895–911 [Google Scholar]
  72. Hahn A, Birkmann A, Wies E, Dorer D, Mahr K. 72.  et al. 2009. Kaposi's sarcoma-associated herpesvirus gH/gL: glycoprotein export and interaction with cellular receptors. J. Virol. 83:396–407 [Google Scholar]
  73. Mark L, Lee WH, Spiller OB, Villoutreix BO, Blom AM. 73.  2006. The Kaposi's sarcoma-associated herpesvirus complement control protein (KCP) binds to heparin and cell surfaces via positively charged amino acids in CCP1-2. Mol. Immunol. 43:1665–75 [Google Scholar]
  74. Birkmann A, Mahr K, Ensser A, Yaguboglu S, Titgemeyer F. 74.  et al. 2001. Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J. Virol. 75:11583–93 [Google Scholar]
  75. Wang FZ, Akula SM, Pramod NP, Zeng L, Chandran B. 75.  2001. Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J. Virol. 75:7517–27 [Google Scholar]
  76. Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J. 76.  et al. 2012. The Ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi's sarcoma-associated herpesvirus. Nat. Med. 18:961–66 [Google Scholar]
  77. Chakraborty S, Veettil MV, Bottero V, Chandran B. 77.  2012. Kaposi's sarcoma-associated herpesvirus interacts with EphrinA2 receptor to amplify signaling essential for productive infection. PNAS 109:E1163–72 [Google Scholar]
  78. Veettil MV, Sadagopan S, Sharma-Walia N, Wang FZ, Raghu H. 78.  et al. 2008. Kaposi's sarcoma-associated herpesvirus forms a multimolecular complex of integrins (αvβ5, αvβ3, and α3β1) and CD98-xCT during infection of human dermal microvascular endothelial cells, and CD98-xCT is essential for the postentry stage of infection. J. Virol. 82:12126–44 [Google Scholar]
  79. Veettil MV, Bandyopadhyay C, Dutta D, Chandran B. 79.  2014. Interaction of KSHV with host cell surface receptors and cell entry. Viruses 6:4024–46 [Google Scholar]
  80. Garrigues HJ, Rubinchikova YE, Dipersio CM, Rose TM. 80.  2008. Integrin αvβ3 binds to the RGD motif of glycoprotein B of Kaposi's sarcoma-associated herpesvirus and functions as an RGD-dependent entry receptor. J. Virol. 82:1570–80 [Google Scholar]
  81. Walker LR, Hussein HA, Akula SM. 81.  2014. Disintegrin-like domain of glycoprotein B regulates Kaposi's sarcoma-associated herpesvirus infection of cells. J. Gen. Virol. 95:1770–82 [Google Scholar]
  82. Cheshenko N, Trepanier JB, Gonzalez PA, Eugenin EA, Jacobs WR Jr, Herold BC. 82.  2014. Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells. J. Virol. 88:10026–38 [Google Scholar]
  83. Gianni T, Campadelli-Fiume G. 83.  2014. The epithelial αvβ3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components. PLOS Pathog 10:e1004477 [Google Scholar]
  84. Ladwein M, Rottner K. 84.  2008. On the Rho'd: the regulation of membrane protrusions by Rho-GTPases. FEBS Lett 582:2066–74 [Google Scholar]
  85. Favoreel HW, Enquist LW, Feierbach B. 85.  2007. Actin and Rho GTPases in herpesvirus biology. Trends Microbiol 15:426–33 [Google Scholar]
  86. Hoppe S, Schelhaas M, Jaeger V, Liebig T, Petermann P, Knebel-Morsdorf D. 86.  2006. Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J. Gen. Virol. 87:3483–94 [Google Scholar]
  87. Himpens B, Proot P, Neyts J, De Smedt H, De Clercq E, Casteels R. 87.  1995. Human cytomegalovirus modulates the Ca2+ response to vasopressin and ATP in fibroblast cultures. Cell Calcium 18:111–19 [Google Scholar]
  88. Johnson RA, Wang X, Ma XL, Huong SM, Huang ES. 88.  2001. Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J. Virol. 75:6022–32 [Google Scholar]
  89. Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L. 89.  et al. 2003. Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinases and Src. J. Biol. Chem. 278:50456–65 [Google Scholar]
  90. Boldogh I, AbuBakar S, Deng CZ, Albrecht T. 90.  1991. Transcriptional activation of cellular oncogenes fos, jun, and myc by human cytomegalovirus. J. Virol. 65:1568–71 [Google Scholar]
  91. Kowalik TF, Wing B, Haskill JS, Azizkhan JC, Baldwin ASJ, Huang ES. 91.  1993. Multiple mechanisms are implicated in the regulation of NF-κB activity during human cytomegalovirus infection. PNAS 90:1107–11 [Google Scholar]
  92. Yurochko AD, Kowalik TF, Huong SM, Huang ES. 92.  1995. Human cytomegalovirus upregulates NK-κB activity by transactivating the NF-κB p105/p50 and p65 promoters. J. Virol. 69:5391–400 [Google Scholar]
  93. Yurochko AD, Hwang ES, Rasmussen L, Keay S, Pereira L, Huang ES. 93.  1997. The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-κB during infection. J. Virol. 71:5051–59 [Google Scholar]
  94. Caposio P, Dreano M, Garotta G, Gribaudo G, Landolfo S. 94.  2004. Human cytomegalovirus stimulates cellular IKK2 activity and requires the enzyme for productive replication. J. Virol. 78:3190–95 [Google Scholar]
  95. DeMeritt IB, Milford LE, Yurochko AD. 95.  2004. Activation of the NF-κB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J. Virol. 78:4498–507 [Google Scholar]
  96. DeMeritt IB, Podduturi JP, Tilley AM, Nogalski MT, Yurochko AD. 96.  2006. Prolonged activation of NF-κB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 346:15–31 [Google Scholar]
  97. Yurochko AD, Mayo MW, Poma EE, Baldwin ASJ, Huang ES. 97.  1997. Induction of the transcription factor Sp1 during human cytomegalovirus infection mediates upregulation of the p65 and p105/p50 NF-κB promoters. J. Virol. 71:4638–48 [Google Scholar]
  98. Smith MS, Bentz GL, Smith PM, Bivens ER, Yurochko AD. 98.  2004. HCMV activates PI(3)K in monocytes and promotes monocyte motility and transendothelial migration in a PI(3)K-dependent manner. J. Leukoc. Biol. 76:65–76 [Google Scholar]
  99. Smith MS, Bivens-Smith ER, Tilley AM, Bentz GL, Chan G. 99.  et al. 2007. Roles of phosphatidylinositol 3-kinase and NF-κB in human cytomegalovirus-mediated monocyte diapedesis and adhesion: strategy for viral persistence. J. Virol. 81:7683–94 [Google Scholar]
  100. Yurochko AD. 100.  2008. Human cytomegalovirus modulation of signal transduction. Curr. Top Microbiol. Immunol. 325:205–20 [Google Scholar]
  101. Yurochko AD, Huang ES. 101.  1999. Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. J. Immunol. 162:4806–16 [Google Scholar]
  102. Chan G, Nogalski MT, Stevenson EV, Yurochko AD. 102.  2012. Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy for viral dissemination. J. Leukoc. Biol. 92:743–52 [Google Scholar]
  103. Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B. 103.  2003. Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-ζ-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J. Virol. 77:1524–39 [Google Scholar]
  104. Sharma-Walia N, Naranatt PP, Krishnan HH, Zeng L, Chandran B. 104.  2004. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase-Rho GTPase signal pathways and cytoskeletal rearrangements. J. Virol. 78:4207–23 [Google Scholar]
  105. Krishnan HH, Sharma-Walia N, Streblow DN, Naranatt PP, Chandran B. 105.  2006. Focal adhesion kinase is critical for entry of Kaposi's sarcoma-associated herpesvirus into target cells. J. Virol. 80:1167–80 [Google Scholar]
  106. Veettil MV, Sharma-Walia N, Sadagopan S, Raghu H, Sivakumar R. 106.  et al. 2006. RhoA-GTPase facilitates entry of Kaposi's sarcoma-associated herpesvirus into adherent target cells in a Src-dependent manner. J. Virol. 80:11432–46 [Google Scholar]
  107. Greene W, Gao SJ. 107.  2009. Actin dynamics regulate multiple endosomal steps during Kaposi's sarcoma-associated herpesvirus entry and trafficking in endothelial cells. PLOS Pathog 5:e1000512 [Google Scholar]
  108. Kaleeba JA, Berger EA. 108.  2006. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 311:1921–24 [Google Scholar]
  109. Fenczik CA, Zent R, Dellos M, Calderwood DA, Satriano J. 109.  et al. 2001. Distinct domains of CD98hc regulate integrins and amino acid transport. J. Biol. Chem. 276:8746–52 [Google Scholar]
  110. Feral CC, Zijlstra A, Tkachenko E, Prager G, Gardel ML. 110.  et al. 2007. CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. J. Cell Biol. 178:701–11 [Google Scholar]
  111. Kabir-Salmani M, Fukuda MN, Kanai-Azuma M, Ahmed N, Shiokawa S. 111.  et al. 2008. The membrane-spanning domain of CD98 heavy chain promotes αvβ3 integrin signals in human extravillous trophoblasts. Mol. Endocrinol. 22:707–15 [Google Scholar]
  112. Chakraborty S, ValiyaVeettil M, Sadagopan S, Paudel N, Chandran B. 112.  2011. c-Cbl-mediated selective virus-receptor translocations into lipid rafts regulate productive Kaposi's sarcoma-associated herpesvirus infection in endothelial cells. J. Virol. 85:12410–30 [Google Scholar]
  113. Pasquale EB. 113.  2005. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell. Biol. 6:462–75 [Google Scholar]
  114. Himanen JP, Saha N, Nikolov DB. 114.  2007. Cell-cell signaling via Eph receptors and ephrins. Curr. Opin. Cell Biol. 19:534–42 [Google Scholar]
  115. Dutta D, Chakraborty S, Bandyopadhyay C, ValiyaVeettil M, Ansari MA. 115.  et al. 2013. EphrinA2 regulates clathrin mediated KSHV endocytosis in fibroblast cells by coordinating integrin-associated signaling and c-Cbl directed polyubiquitination. PLOS Pathog. 9:e1003510 [Google Scholar]
  116. Gregory D, Hargett D, Holmes D, Money E, Bachenheimer SL. 116.  2004. Efficient replication by herpes simplex virus type 1 involves activation of the IκB kinase-IκB-p65 pathway. J. Virol. 78:13582–90 [Google Scholar]
  117. Taddeo B, Zhang W, Lakeman F, Roizman B. 117.  2004. Cells lacking NF-κB or in which NF-κB is not activated vary with respect to ability to sustain herpes simplex virus 1 replication and are not susceptible to apoptosis induced by a replication-incompetent mutant virus. J. Virol. 78:11615–21 [Google Scholar]
  118. Paludan SR, Bowie AG, Horan KA, Fitzgerald KA. 118.  2011. Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol. 11:143–54 [Google Scholar]
  119. Roizman B, Knipe DM, Whitely RJ. 119.  2013. Herpes simplex viruses. See Reference 156 1823–97
  120. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G. 120.  et al. 2004. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. PNAS 101:1315–20 [Google Scholar]
  121. Kurt-Jones EA, Belko J, Yu C, Newburger PE, Wang J. 121.  et al. 2005. The role of Toll-like receptors in herpes simplex infection in neonates. J. Infect. Dis. 191:746–48 [Google Scholar]
  122. Gianni T, Leoni V, Chesnokova LS, Hutt-Fletcher LM, Campadelli-Fiume G. 122.  2012. αvβ3-integrin is a major sensor and activator of innate immunity to herpes simplex virus-1. PNAS 109:19792–97 [Google Scholar]
  123. Taddeo B, Zhang W, Roizman B. 123.  2006. The UL41 protein of herpes simplex virus 1 degrades RNA by endonucleolytic cleavage in absence of other cellular or viral proteins. PNAS 103:2827–32 [Google Scholar]
  124. Cotter CR, Kim WK, Nguyen ML, Yount JS, Lopez CB. 124.  et al. 2011. The virion host shutoff protein of herpes simplex virus 1 blocks the replication-independent activation of NF-κB in dendritic cells in the absence of type I interferon signaling. J. Virol. 85:12662–72 [Google Scholar]
  125. Hardwicke MA, Sandri-Goldin RM. 125.  1994. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J. Virol. 68:4797–810 [Google Scholar]
  126. Sandri-Goldin RM, Mendoza GE. 126.  1992. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev 6:848–63 [Google Scholar]
  127. Casiraghi C, Gianni T, Campadelli-Fiume G. 127.  2016. αvβ3-integrin boosts the innate response elicited in epithelial cells through plasma membrane and endosomal Toll-like receptors. J. Virol. 90:4243–48 [Google Scholar]
  128. Leoni V, Gianni T, Salvioli S, Campadelli-Fiume G. 128.  2012. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κB. J. Virol. 86:6555–62 [Google Scholar]
  129. Gianni T, Leoni V, Campadelli-Fiume G. 129.  2013. Type I interferon and NF-κB activation elicited by herpes simplex virus gH/gL via αvβ3 integrin in epithelial and neuronal cell lines. J. Virol. 87:13911–6 [Google Scholar]
  130. van Lint AL, Murawski MR, Goodbody RE, Severa M, Fitzgerald KA. 130.  et al. 2010. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-κB signaling. J. Virol. 84:10802–11 [Google Scholar]
  131. Gerold G, Abu Ajaj K, Bienert M, Laws HJ, Zychlinsky A, de Diego JL. 131.  2008. A Toll-like receptor 2–integrin β3 complex senses bacterial lipopeptides via vitronectin. Nat. Immunol. 9:761–68 [Google Scholar]
  132. Ulanova M, Gravelle S, Barnes R. 132.  2009. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J. Innate Immun. 1:4–17 [Google Scholar]
  133. Browne EP, Wing B, Coleman D, Shenk T. 133.  2001. Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol. 75:12319–30 [Google Scholar]
  134. Maciejewski JP, Bruening EE, Donahue RE, Sellers SE, Carter C. 134.  et al. 1993. Infection of mononucleated phagocytes with human cytomegalovirus. Virology 195:327–36 [Google Scholar]
  135. Saederup N, Aguirre SA, Sparer TE, Bouley DM, Mocarski ES. 135.  2001. Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. J. Virol. 75:9966–76 [Google Scholar]
  136. Chan GCT, Bivens-Smith ER, Smith MS, Yurochko AD. 136.  2009. NF-κB and phosphatidylinositol 3-kinase activity mediates the HCMV-induced atypical M1/M2 polarization of monocytes. Virus Res. 144:329–33 [Google Scholar]
  137. Raab-Traub N. 137.  2002. Epstein-Barr virus in the pathogenesis of NPC. Semin. Cancer Biol. 12:431–41 [Google Scholar]
  138. Wasil LR, Shair KH. 138.  2015. Epstein-Barr virus LMP1 induces focal adhesions and epithelial cell migration through effects on integrin-α5 and N-cadherin. Oncogenesis 4:e171 [Google Scholar]
  139. Cen O, Longnecker R. 139.  2015. Latent Membrane Protein 2 (LMP2). Curr. Top Microbiol. Immunol. 391:151–80 [Google Scholar]
  140. Fotheringham JA, Coalson NE, Raab-Traub N. 140.  2012. Epstein-Barr virus latent membrane protein-2A induces ITAM/Syk- and Akt-dependent epithelial migration through αv-integrin membrane translocation. J. Virol. 86:10308–20 [Google Scholar]
  141. Brown J, Wang H, Hajishengallis GN, Martin M. 141.  2011. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res. 90:417–27 [Google Scholar]
  142. Brulois K, Jung JU. 142.  2014. Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev. 25:597–609 [Google Scholar]
  143. West J, Damania B. 143.  2008. Upregulation of the TLR3 pathway by Kaposi's sarcoma-associated herpesvirus during primary infection. J. Virol. 82:5440–49 [Google Scholar]
  144. West JA, Gregory SM, Sivaraman V, Su L, Damania B. 144.  2011. Activation of plasmacytoid dendritic cells by Kaposi's sarcoma-associated herpesvirus. J. Virol. 85:895–904 [Google Scholar]
  145. Lagos D, Vart RJ, Gratrix F, Westrop SJ, Emuss V. 145.  et al. 2008. Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus. Cell Host Microbe 4:470–83 [Google Scholar]
  146. Zhao Q, Liang D, Sun R, Jia B, Xia T. 146.  et al. 2015. Kaposi's sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88. J. Virol. 89:415–27 [Google Scholar]
  147. Gregory SM, West JA, Dillon PJ, Hilscher C, Dittmer DP, Damania B. 147.  2009. Toll-like receptor signaling controls reactivation of KSHV from latency. PNAS 106:11725–30 [Google Scholar]
  148. Kim JH, Collins-McMillen D, Caposio P, Yurochko AD. 148.  2016. Viral binding-induced signaling drives a unique and extended intracellular trafficking pattern during infection of primary monocytes. PNAS In press [Google Scholar]
  149. Chan GCT, Bivens-Smith ER, Smith MS, Smith PM, Yurochko AD. 149.  2008. Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J. Immunol. 181:698–711 [Google Scholar]
  150. Chan GCT, Nogalski MT, Bentz GL, Smith MS, Parmater A, Yurochko AD. 150.  2010. PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes. J. Immunol. 184:3213–22 [Google Scholar]
  151. Chan GCT, Nogalski MT, Yurochko AD. 151.  2012. Human cytomegalovirus stimulates monocyte-to-macrophage differentiation via the temporal regulation of caspase 3. J. Virol. 86:10714–23 [Google Scholar]
  152. Collins-McMillen D, Kim JH, Nogalski MT, Stevenson EV, Chan GC. 152.  et al. 2015. HCMV promotes survival of infected monocytes via a distinct temporal regulation of cellular Bcl-2 family proteins. J. Virol. 90:2356–71 [Google Scholar]
  153. Smith MS, Bentz GL, Alexander JS, Yurochko AD. 153.  2004. Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J. Virol. 78:4444–53 [Google Scholar]
  154. Bentz GL, Jarquin-Pardo M, Chan GCT, Smith MS, Sinzger C, Yurochko AD. 154.  2006. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J. Virol. 80:11539–55 [Google Scholar]
  155. Chan G, Bivins-Smith ER, Smith MS, Yurochko AD. 155.  2008. Transcriptome analysis of NF-κB- and phosphatidylinositol 3-kinase-regulated genes in human cytomegalovirus-infected monocytes. J. Virol. 82:1040–46 [Google Scholar]
  156. Knipe DM, Howley PM. 156.  2013. Fields Virology Philadelphia, PA: Lippincott Williams & Wilkins [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-035618
Loading
/content/journals/10.1146/annurev-virology-110615-035618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error