1932

Abstract

Genomic analysis is a powerful tool for understanding viral disease outbreaks. Sequencing of viral samples is now easier and cheaper than ever before and can supplement epidemiological methods by providing nucleotide-level resolution of outbreak-causing pathogens. In this review, we describe methods used to answer crucial questions about outbreaks, such as how they began and how a disease is transmitted. More specifically, we explain current techniques for viral sequencing, phylogenetic analysis, transmission reconstruction, and evolutionary investigation of viral pathogens. By detailing the ways in which genomic data can help us understand viral disease outbreaks, we aim to provide a resource that will facilitate the response to future outbreaks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-035747
2016-09-29
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-035747.html?itemId=/content/journals/10.1146/annurev-virology-110615-035747&mimeType=html&fmt=ahah

Literature Cited

  1. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S. 1.  et al. 2003. Transmission dynamics and control of severe acute respiratory syndrome. Science 300:1966–70 [Google Scholar]
  2. Kiss IZ, Green DM, Kao RR. 2.  2005. Disease contact tracing in random and clustered networks. Proc. Biol. Sci. 272:1407–14 [Google Scholar]
  3. Porco TC, Holbrook KA, Fernyak SE, Portnoy DL, Reiter R, Aragón TJ. 3.  2004. Logistics of community smallpox control through contact tracing and ring vaccination: a stochastic network model. BMC Public Health 4:34 [Google Scholar]
  4. Kretzschmar M, van den Hof S, Wallinga J, van Wijngaarden J. 4.  2004. Ring vaccination and smallpox control. Emerg. Infect. Dis. 10:832–41 [Google Scholar]
  5. Klinkenberg D, Fraser C, Heesterbeek H. 5.  2006. The effectiveness of contact tracing in emerging epidemics. PLOS ONE 1:e12 [Google Scholar]
  6. Grad YH, Lipsitch M. 6.  2014. Epidemiologic data and pathogen genome sequences: a powerful synergy for public health. Genome Biol 15:538 [Google Scholar]
  7. 7. Cent. Dis. Control Prev. 2015. Guidance for Clinicians on the Use of RT-PCR and Other Molecular Assays for Diagnosis of Influenza Virus Infection. Atlanta, GA: Cent. Dis. Control Prev. http://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm [Google Scholar]
  8. Harper SA, Bradley JS, Englund JA, File TM, Gravenstein S. 8.  et al. 2009. Seasonal influenza in adults and children—diagnosis, treatment, chemoprophylaxis, and institutional outbreak management: clinical practice guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis. 48:1003–32 [Google Scholar]
  9. Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ. 9.  et al. 2008. The global circulation of seasonal influenza A (H3N2) viruses. Science 320:340–46 [Google Scholar]
  10. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R. 10.  et al. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–99 [Google Scholar]
  11. Wang D, Urisman A, Liu YT, Springer M, Ksiazek TG. 11.  et al. 2003. Viral discovery and sequence recovery using DNA microarrays. PLOS Biol. 1:e2 [Google Scholar]
  12. 12. World Health Organ. 2003. PCR Primers for SARS Developed by WHO Network Laboratories Geneva: World Health Organ. http://www.who.int/csr/sars/primers/en/ [Google Scholar]
  13. Ou CY, Ciesielski CA, Myers G, Bandea CI, Luo CC. 13.  et al. 1992. Molecular epidemiology of HIV transmission in a dental practice. Science 256:1165–71 [Google Scholar]
  14. Djikeng A, Halpin R, Kuzmickas R, Depasse J, Feldblyum J. 14.  et al. 2008. Viral genome sequencing by random priming methods. BMC Genom 9:5 [Google Scholar]
  15. Ninomiya M, Ueno Y, Funayama R, Nagashima T, Nishida Y. 15.  et al. 2012. Use of Illumina deep sequencing technology to differentiate hepatitis C virus variants. J. Clin. Microbiol. 50:857–66 [Google Scholar]
  16. Malboeuf CM, Yang X, Charlebois P, Qu J, Berlin AM. 16.  et al. 2013. Complete viral RNA genome sequencing of ultra-low copy samples by sequence-independent amplification. Nucleic Acids Res 41:e13 [Google Scholar]
  17. Matranga CB, Andersen KG, Winnicki S, Busby M, Gladden AD. 17.  et al. 2014. Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biol 15:519 [Google Scholar]
  18. Park DJ, Dudas G, Wohl S, Goba A, Whitmer SLM. 18.  et al. 2015. Ebola virus epidemiology, transmission, and evolution during seven months in Sierra Leone. Cell 161:1516–26 [Google Scholar]
  19. Flint M, Goodman CH, Bearden S, Blau DM, Amman BR. 19.  et al. 2015. Ebola virus diagnostics: the US Centers for Disease Control and Prevention laboratory in Sierra Leone, August 2014 to March 2015. J. Infect. Dis. 212:Suppl. 2S350–58 [Google Scholar]
  20. Towner JS, Sealy TK, Ksiazek TG, Nichol ST. 20.  2007. High-throughput molecular detection of hemorrhagic fever virus threats with applications for outbreak settings. J. Infect. Dis. 196:Suppl. 2S205–12 [Google Scholar]
  21. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L. 21.  et al. 2014. Emergence of Zaire Ebola virus disease in Guinea—preliminary report. N. Engl. J. Med. 371:1418–25 [Google Scholar]
  22. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E. 22.  et al. 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228–32 [Google Scholar]
  23. Watson SJ, Welkers MRA, Depledge DP, Coulter E, Breuer JM. 23.  et al. 2013. Viral population analysis and minority-variant detection using short read next-generation sequencing. Philos. Trans. R. Soc. B 368:20120205 [Google Scholar]
  24. Reyes GR, Kim JP. 24.  1991. Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol. Cell. Probes 5:473–81 [Google Scholar]
  25. Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ. 25.  et al. 2014. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345:1369–72 [Google Scholar]
  26. Briese T, Kapoor A, Mishra N, Jain K, Kumar A. 26.  et al. 2015. Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio 6:e01491–15 [Google Scholar]
  27. Wylie TN, Wylie KM, Herter BN, Storch GA. 27.  2015. Enhanced virome sequencing using targeted sequence capture. Genome Res. 25:1910–20 [Google Scholar]
  28. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P. 28.  et al. 2015. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7:199 [Google Scholar]
  29. Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. 29.  2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–60 [Google Scholar]
  30. Wood DE, Salzberg SL. 30.  2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46 [Google Scholar]
  31. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 31.  2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9:811–14 [Google Scholar]
  32. Kapoor A, Kumar A, Simmonds P, Bhuva N, Singh Chauhan L. 32.  et al. 2015. Virome analysis of transfusion recipients reveals a novel human virus that shares genomic features with hepaciviruses and pegiviruses. mBio 6:e01466–15 [Google Scholar]
  33. Stremlau MH, Andersen KG, Folarin O, Grove JN, Odia I. 33.  et al. 2015. Discovery of novel rhabdoviruses in the blood of healthy individuals from West Africa. PLOS Negl. Trop. Dis. 9:e0003631 [Google Scholar]
  34. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D. 34.  et al. 2014. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res 24:1180–92 [Google Scholar]
  35. Kostic AD, Ojesina AI, Pedamallu CS, Jung J, Verhaak RGW. 35.  et al. 2011. PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nat. Biotechnol. 29:393–96 [Google Scholar]
  36. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 36.  2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1:vev003 [Google Scholar]
  37. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K. 37.  et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–303 [Google Scholar]
  38. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J. 38.  et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–79 [Google Scholar]
  39. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T. 39.  et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80 [Google Scholar]
  40. Chen Y, Cunningham F, Rios D, McLaren WM, Smith J. 40.  et al. 2010. Ensembl variation resources. BMC Genom 11:293 [Google Scholar]
  41. Wang K, Li M, Hakonarson H. 41.  2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164 [Google Scholar]
  42. Yang X, Charlebois P, Macalalad A, Henn MR, Zody MC. 42.  2013. V-Phaser 2: variant inference for viral populations. BMC Genom 14:674 [Google Scholar]
  43. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD. 43.  et al. 2009. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25:2283–85 [Google Scholar]
  44. Guan Y, Peiris JSM, Lipatov AS, Ellis TM, Dyrting KC. 44.  et al. 2002. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. PNAS 99:8950–55 [Google Scholar]
  45. Lei F, Shi W. 45.  2011. Prospective of genomics in revealing transmission, reassortment and evolution of wildlife-borne avian influenza A (H5N1) viruses. Curr. Genom. 12:466–74 [Google Scholar]
  46. Guindon S, Gascuel O. 46.  2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696–704 [Google Scholar]
  47. Stamatakis A. 47.  2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–90 [Google Scholar]
  48. Huelsenbeck JP, Ronquist F. 48.  2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–55 [Google Scholar]
  49. Posada D, Crandall KA. 49.  2001. Selecting the best-fit model of nucleotide substitution. Syst. Biol. 50:580–601 [Google Scholar]
  50. Tavare S. 50.  1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17:57–124 [Google Scholar]
  51. Darriba D, Taboada GL, Doallo R, Posada D. 51.  2012. JModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772 [Google Scholar]
  52. Felsenstein J. 52.  1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–91 [Google Scholar]
  53. Efron B, Halloran E, Holmes S. 53.  1996. Bootstrap confidence levels for phylogenetic trees. PNAS 93:13429–34 [Google Scholar]
  54. Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP. 54.  2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20:248–54 [Google Scholar]
  55. Dudas G, Rambaut A. 55.  2014. Phylogenetic analysis of Guinea 2014 EBOV ebolavirus outbreak. PLOS Curr. doi: 10.1371/currents.outbreaks.84eefe5ce43ec9dc0bf0670f7b8b417d [Google Scholar]
  56. Kumar S. 56.  2005. Molecular clocks: four decades of evolution. Nature 6:654–62 [Google Scholar]
  57. Pybus OG, Rambaut A. 57.  2009. Evolutionary analysis of the dynamics of viral infectious disease. Nature 10:540–50 [Google Scholar]
  58. Rambaut A. 58.  2000. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–99 [Google Scholar]
  59. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 59.  2006. Relaxed phylogenetics and dating with confidence. PLOS Biol 4:e88 [Google Scholar]
  60. Drummond AJ, Suchard MA, Xie D, Rambaut A. 60.  2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29:1969–73 [Google Scholar]
  61. Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G. 61.  et al. 2015. Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature 524:756397–101 [Google Scholar]
  62. Frost SDW, Pybus OG, Gog JR, Viboud C, Bonhoeffer S, Bedford T. 62.  2015. Eight challenges in phylodynamic inference. Epidemics 10:88–92 [Google Scholar]
  63. Wertheim JO, Fourment M, Kosakovsky Pond SL. 63.  2012. Inconsistencies in estimating the age of HIV-1 subtypes due to heterotachy. Mol. Biol. Evol. 29:451–56 [Google Scholar]
  64. Huson DH. 64.  1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73 [Google Scholar]
  65. Huson DH, Bryant D. 65.  2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254–67 [Google Scholar]
  66. Rasmussen MD, Hubisz MJ, Gronau I, Siepel A. 66.  2014. Genome-wide inference of ancestral recombination graphs. PLOS Genet 10:e1004342 [Google Scholar]
  67. Pinzon JE, Wilson JM, Tucker CJ, Arthur R, Jahrling PB, Formenty P. 67.  2004. Trigger events: enviroclimatic coupling of Ebola hemorrhagic fever outbreaks. Am. J. Trop. Med. Hyg. 71:664–74 [Google Scholar]
  68. Alexander KA, Sanderson CE, Marathe M, Lewis BL, Rivers CM. 68.  et al. 2015. What factors might have led to the emergence of Ebola in West Africa?. PLOS Negl. Trop. Dis. 9:e0003652 [Google Scholar]
  69. Alizon S, Lion S, Murall CL, Abbate JL. 69.  2014. Quantifying the epidemic spread of Ebola virus (EBOV) in Sierra Leone using phylodynamics. Virulence 5:825–27 [Google Scholar]
  70. Althaus CL. 70.  2014. Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in West Africa. PLOS Curr. doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288 [Google Scholar]
  71. Chowell G, Nishiura H. 71.  2015. Characterizing the transmission dynamics and control of Ebola virus disease. PLOS Biol 13:e1002057 [Google Scholar]
  72. Chowell G, Viboud C, Hyman JM, Simonsen L. 72.  2015. The Western Africa Ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLOS Curr. doi: 10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261 [Google Scholar]
  73. Fisman D, Khoo E, Tuite A. 73.  2014. Early epidemic dynamics of the West African 2014 Ebola outbreak: estimates derived with a simple two-parameter model. PLOS Curr. doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571 [Google Scholar]
  74. House T. 74.  2014. Epidemiological dynamics of Ebola outbreaks. eLife 3:e03908 [Google Scholar]
  75. Lewnard JA, Ndeffo Mbah ML, Alfaro-Murillo JA, Altice FL, Bawo L. 75.  et al. 2014. Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect. Dis. 14:1189–95 [Google Scholar]
  76. Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW. 76.  et al. 2014. Estimating the future number of cases in the Ebola epidemic—Liberia and Sierra Leone, 2014–2015. MMWR Surveill. Summ. 63:Suppl. 31–14 [Google Scholar]
  77. Nishiura H, Chowell G. 77.  2014. Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Eurosurveillance 19:20894 [Google Scholar]
  78. Siettos C, Anastassopoulou C, Russo L, Grigoras C, Mylonakis E. 78.  2015. Modeling the 2014 Ebola Virus epidemic—agent-based simulations, temporal analysis and future predictions for Liberia and Sierra Leone. PLOS Curr. doi: 10.1371/currents.outbreaks.8d5984114855fc425e699e1a18cdc6c9 [Google Scholar]
  79. Towers S, Patterson-Lomba O, Castillo-Chavez C. 79.  2014. Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak. PLOS Curr. doi: 10.1371/currents.outbreaks.9e4c4294ec8ce1adad283172b16bc908 [Google Scholar]
  80. 80. World Health Organ. 2016. Ebola Situation Report—20 January 2016 Geneva: World Health Organ. http://apps.who.int/ebola/current-situation/ebola-situation-report-20-january-2016 [Google Scholar]
  81. Ypma RJF, van Ballegooijen WM, Wallinga J. 81.  2013. Relating phylogenetic trees to transmission trees of infectious disease outbreaks. Genetics 195:1055–62 [Google Scholar]
  82. Lemey P, Derdelinckx I, Rambaut A, Van Laethem K, Dumont S. 82.  et al. 2005. Molecular footprint of drug-selective pressure in a human immunodeficiency virus transmission chain. J. Virol. 79:11981–89 [Google Scholar]
  83. Leitner T, Escanilla D, Franzén C, Uhlén M, Albert J. 83.  1996. Accurate reconstruction of a known HIV-1 transmission history by phylogenetic tree analysis. PNAS 93:10864–69 [Google Scholar]
  84. Paraskevis D, Magiorkinis E, Magiorkinis G, Kiosses VG, Lemey P. 84.  et al. 2004. Phylogenetic reconstruction of a known HIV-1 CRF04_cpx transmission network using maximum likelihood and Bayesian methods. J. Mol. Evol. 59:709–17 [Google Scholar]
  85. Jombart T, Eggo RM, Dodd PJ, Balloux F. 85.  2010. Reconstructing disease outbreaks from genetic data: a graph approach. Heredity 106:383–90 [Google Scholar]
  86. Morelli MJ, Thébaud G, Chadœuf J, King DP, Haydon DT, Soubeyrand S. 86.  2012. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLOS Comput. Biol. 8:e1002768 [Google Scholar]
  87. Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, Ferguson N. 87.  2014. Bayesian reconstruction of disease outbreaks by combining epidemiologic and genomic data. PLOS Comput. Biol. 10:e1003457 [Google Scholar]
  88. Didelot X, Gardy J, Colijn C. 88.  2014. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol. Biol. Evol. 31:1869–79 [Google Scholar]
  89. Jombart T, Aanensen DM, Baguelin M, Birrell P, Cauchemez S. 89.  et al. 2014. OutbreakTools: a new platform for disease outbreak analysis using the R software. Epidemics 7:28–34 [Google Scholar]
  90. Worby CJ, Lipsitch M, Hanage WP. 90.  2014. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLOS Comput. Biol. 10:e1003549 [Google Scholar]
  91. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM. 91.  et al. 2004. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303:327–32 [Google Scholar]
  92. Lemey P, Rambaut A, Pybus OG. 92.  2006. HIV evolutionary dynamics within and among hosts. AIDS Rev 8:125–40 [Google Scholar]
  93. Khiabanian H, Carpenter Z, Kugelman J, Chan J, Trifonov V. 93.  et al. 2014. Viral diversity and clonal evolution from unphased genomic data. BMC Genom 15:Suppl. 6S17 [Google Scholar]
  94. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT. 94.  et al. 2008. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. PNAS 105:7552–57 [Google Scholar]
  95. Emmett KJ, Lee A, Khiabanian H, Rabadan R. 95.  2015. High-resolution genomic surveillance of 2014 ebolavirus using shared subclonal variants. PLOS Curr. doi: 10.1371/currents.outbreaks.c7fd7946ba606c982668a96bcba43c90 [Google Scholar]
  96. Pybus OG, Charleston MA, Gupta S, Rambaut A, Holmes EC, Harvey PH. 96.  2001. The epidemic behavior of the hepatitis C virus. Science 292:2323–25 [Google Scholar]
  97. Stadler T, Kouyos R, von Wyl V, Yerly S, Böoni J. 97.  et al. 2012. Estimating the basic reproductive number from viral sequence data. Mol. Biol. Evol. 29:347–57 [Google Scholar]
  98. Gomes MFC, Pastore Y, Piontti A, Rossi L, Chao D, Longini I. 98.  et al. 2014. Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLOS Curr. doi: 10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5 [Google Scholar]
  99. Lloyd-Smith JO, Cross PC, Briggs CJ, Daugherty M, Getz WM. 99.  et al. 2005. Should we expect population thresholds for wildlife disease?. Trends Ecol. Evol. 20:511–19 [Google Scholar]
  100. Duffy S, Shackelton LA, Holmes EC. 100.  2008. Rates of evolutionary change in viruses: patterns and determinants. Nature 9:267–76 [Google Scholar]
  101. Drake JW. 101.  1993. Rates of spontaneous mutation among RNA viruses. PNAS 90:4171–75 [Google Scholar]
  102. Drake JW, Hwang CBC. 102.  2005. On the mutation rate of herpes simplex virus type 1. Genetics 170:969–70 [Google Scholar]
  103. Jenkins GM, Rambaut A, Pybus OG, Holmes EC. 103.  2002. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 54:156–65 [Google Scholar]
  104. Yang Z. 104.  2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–91 [Google Scholar]
  105. Pond SLK, Frost SDW, Muse SV. 105.  2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–79 [Google Scholar]
  106. Pond SLK, Frost SDW. 106.  2005. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–33 [Google Scholar]
  107. Kimura M. 107.  1977. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–76 [Google Scholar]
  108. Kryazhimskiy S, Plotkin JB. 108.  2008. The population genetics of dN/dS. PLOS Genet 4:e1000304 [Google Scholar]
  109. Liu SQ, Deng CL, Yuan ZM, Rayner S, Zhang B. 109.  2015. Identifying the pattern of molecular evolution for Zaire ebolavirus in the 2014 outbreak in West Africa. Infect. Genet. Evol. 32:51–59 [Google Scholar]
  110. Wertheim JO, Worobey M. 110.  2009. Relaxed selection and the evolution of RNA virus mucin-like pathogenicity factors. J. Virol. 83:4690–94 [Google Scholar]
  111. Andersen KG, Shapiro BJ, Matranga CB, Sealfon R, Lin AE. 111.  et al. 2015. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell 162:738–50 [Google Scholar]
  112. Sealfon RS, Lin MF, Jungreis I, Wolf MY, Kellis M, Sabeti PC. 112.  2015. FRESCo: finding regions of excess synonymous constraint in diverse viruses. Genome Biol 16:38 [Google Scholar]
  113. Bedford T, Cobey S, Pascual M. 113.  2011. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol. Biol. 11:220 [Google Scholar]
  114. Neher RA, Russell CA, Shraiman BI. 114.  2014. Predicting evolution from the shape of genealogical trees. eLife 3:e03568 [Google Scholar]
  115. Drummond AJ, Suchard MA. 115.  2008. Fully Bayesian tests of neutrality using genealogical summary statistics. BMC Genet 9:68 [Google Scholar]
  116. Tajima F. 116.  1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–95 [Google Scholar]
  117. Fu YX, Li WH. 117.  1993. Statistical tests of neutrality of mutations. Genetics 133:693–709 [Google Scholar]
  118. Kirkpatrick M, Slatkin M. 118.  1993. Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution 47:1171 [Google Scholar]
  119. McKenzie A, Steel M. 119.  2000. Distributions of cherries for two models of trees. Math. Biosci. 164:81–92 [Google Scholar]
  120. Colless DH. 120.  1982. Review of Phylogenetics: The Theory and Practice of Phylogenetic Systematics. Syst. Zool. 31:100–4 [Google Scholar]
  121. Edwards CTT, Holmes EC, Pybus OG, Wilson DJ, Viscidi RP. 121.  et al. 2006. Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection. Genetics 174:1441–53 [Google Scholar]
  122. Lefever S, Pattyn F, Hellemans J, Vandesompele J. 122.  2013. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin. Chem. 59:1470–80 [Google Scholar]
  123. Kugelman JR, Sanchez-Lockhart M, Andersen KG, Gire S, Park DJ. 123.  et al. 2015. Evaluation of the potential impact of Ebola virus genomic drift on the efficacy of sequence-based candidate therapeutics. mBio 6:e02227–14 [Google Scholar]
  124. Kugelman JR, Wiley MR, Mate S, Ladner JT, Beitzel B. 124.  et al. 2015. Monitoring of Ebola Virus Makona evolution through establishment of advanced genomic capability in Liberia. Emerg. Infect. Dis. 21:1135–43 [Google Scholar]
  125. Castilletti C, Carletti F, Gruber CEM, Bordi L, Lalle E. 125.  et al. 2015. Molecular characterization of the first Ebola virus isolated in Italy, from a health care worker repatriated from Sierra Leone. Genome Announc 3:e00639–15 [Google Scholar]
  126. Bell A, Lewandowski K, Myers R, Wooldridge D, Aarons E. 126.  et al. 2015. Genome sequence analysis of Ebola virus in clinical samples from three British healthcare workers, August 2014 to March 2015. Eurosurveillance 20:6–10 [Google Scholar]
  127. Tong YG, Shi WF, Liu D, Qian J, Liang L. 127.  et al. 2015. Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone. Nature 524:93–96 [Google Scholar]
  128. Simon-Loriere E, Faye O, Faye O, Koivogui L, Magassouba N. 128.  et al. 2015. Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic. Nature 524:102–4 [Google Scholar]
  129. Metcalf CJE, Birger RB, Funk S, Kouyos RD, Lloyd-Smith JO, Jansen VAA. 129.  2015. Five challenges in evolution and infectious diseases. Epidemics 10:40–44 [Google Scholar]
  130. Yozwiak NL, Schaffner SF, Sabeti PC. 130.  2015. Data sharing: Make outbreak research open access. Nature 518:477–79 [Google Scholar]
  131. MacConaill L, Meyerson M. 131.  2008. Adding pathogens by genomic subtraction. Nat. Genet. 40:380–82 [Google Scholar]
  132. Vega VB, Ruan Y, Liu J, Lee WH, Wei CL. 132.  et al. 2004. Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003. BMC Infect. Dis. 4:32 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-035747
Loading
/content/journals/10.1146/annurev-virology-110615-035747
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error