Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gerlich WH. 1.  2013. Medical virology of hepatitis B: how it began and where we are now. Virol. J. 10:239 [Google Scholar]
  2. Blumberg BS. 2.  1964. Polymorphisms of the serum proteins and the development of iso-precipitins in transfused patients. Bull. N.Y. Acad. Med. 40:377–86 [Google Scholar]
  3. Dane DS, Cameron CH, Briggs M. 3.  1970. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 295:695–98 [Google Scholar]
  4. Ott JJ, Stevens GA, Groeger J, Wiersma ST. 4.  2012. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 30:2212–19 [Google Scholar]
  5. Ni YH, Huang LM, Chang MH, Yen CJ, Lu CY. 5.  et al. 2007. Two decades of universal hepatitis B vaccination in Taiwan: impact and implication for future strategies. Gastroenterology 132:1287–93 [Google Scholar]
  6. Yan H, Zhong G, Xu G, He W, Jing Z. 6.  et al. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1:e00049 [Google Scholar]
  7. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C. 7.  et al. 2014. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146:1070–83 [Google Scholar]
  8. Rigg RJ, Schaller H. 8.  1992. Duck hepatitis B virus infection of hepatocytes is not dependent on low pH. J. Virol. 66:2829–36 [Google Scholar]
  9. Kann M, Sodeik B, Vlachou A, Gerlich WH, Helenius A. 9.  1999. Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J. Cell Biol. 145:45–55 [Google Scholar]
  10. Kann M, Schmitz A, Rabe B. 10.  2007. Intracellular transport of hepatitis B virus. World J. Gastroenterol. 13:39–47 [Google Scholar]
  11. Rabe B, Vlachou A, Panté N, Helenius A, Kann M. 11.  2003. Nuclear import of hepatitis B virus capsids and release of the viral genome. PNAS 100:9849–54 [Google Scholar]
  12. Guo JT, Guo H. 12.  2015. Metabolism and function of hepatitis B virus cccDNA: implications for the development of cccDNA-targeting antiviral therapeutics. Antivir. Res. 122:91–100 [Google Scholar]
  13. Königer C, Wingert I, Marsmann M, Rösler C, Beck J, Nassal M. 13.  2014. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. PNAS 111:E4244–53 [Google Scholar]
  14. Bock CT, Schwinn S, Locarnini S, Fyfe J, Manns MP. 14.  et al. 2001. Structural organization of the hepatitis B virus minichromosome. J. Mol. Biol. 307:183–96 [Google Scholar]
  15. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. 15.  2009. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 51:581–92 [Google Scholar]
  16. Guo YH, Li YN, Zhao JR, Zhang J, Yan Z. 16.  2011. HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. Epigenetics 6:720–26 [Google Scholar]
  17. Tropberger P, Mercier A, Robinson M, Zhong W, Ganem DE, Holdorf M. 17.  2015. Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. PNAS 112:E5715–24 [Google Scholar]
  18. Yang B, Bouchard MJ. 18.  2012. The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J. Virol. 86:313–27 [Google Scholar]
  19. Benhenda S, Ducroux A, Rivière L, Sobhian B, Ward MD. 19.  et al. 2013. Methyltransferase PRMT1 is a binding partner of HBX and a negative regulator of hepatitis B virus transcription. J. Virol. 87:4360–71 [Google Scholar]
  20. Lucifora J, Arzberger S, Durantel D, Belloni L, Strubin M. 20.  et al. 2011. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 55:996–1003 [Google Scholar]
  21. Bartenschlager R, Schaller H. 21.  1992. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J 11:3413–20 [Google Scholar]
  22. Ning X, Nguyen D, Mentzer L, Adams C, Lee H. 22.  et al. 2011. Secretion of genome-free hepatitis B virus: single-strand blocking model for virion morphogenesis of para-retrovirus. PLOS Pathog 7:e1002255 [Google Scholar]
  23. Nassal M. 23.  2008. Hepatitis B viruses: reverse transcription a different way. Virus Res 134:235–49 [Google Scholar]
  24. Crowther RA, Kiselev NA, Böttcher B, Berriman JA, Borisova GP. 24.  et al. 1994. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77:943–50 [Google Scholar]
  25. Menne S, Cote PJ. 25.  2007. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J. Gastroenterol. 13:104–24 [Google Scholar]
  26. Funk A, Mhamdi M, Will H, Sirma H. 26.  2007. Avian hepatitis B viruses: molecular and cellular biology, phylogenesis, and host tropism. World J. Gastroenterol. 13:91–103 [Google Scholar]
  27. Asabe S, Wieland SF, Chattopadhyay PK, Roederer M, Engle RE. 27.  et al. 2009. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J. Virol. 83:9652–62 [Google Scholar]
  28. Stannard LM, Hodgkiss M. 28.  1979. Morphological irregularities in Dane particle cores. J. Gen. Virol. 45:509–14 [Google Scholar]
  29. Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M. 29.  2006. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell 22:843–50 [Google Scholar]
  30. Seitz S, Urban S, Antoni C, Böttcher B. 30.  2007. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J 26:4160–67 [Google Scholar]
  31. Birnbaum F, Nassal M. 31.  1990. Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J. Virol. 64:3319–30 [Google Scholar]
  32. Nassal M. 32.  1992. The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J. Virol. 66:4107–16 [Google Scholar]
  33. Wang JCY, Dhason MS, Zlotnick A. 33.  2012. Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus. PLOS Pathog 8:e1002919 [Google Scholar]
  34. Conway JF, Cheng N, Zlotnick A, Wingfield PT, Stahl SJ, Steven AC. 34.  1997. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386:91–94 [Google Scholar]
  35. Conway JF, Cheng N, Zlotnick A, Stahl SJ, Wingfield PT. 35.  et al. 1998. Hepatitis B virus capsid: localization of the putative immunodominant loop (residues 78 to 83) on the capsid surface, and implications for the distinction between c and e-antigens. J. Mol. Biol. 279:1111–21 [Google Scholar]
  36. Wynne SA, Crowther RA, Leslie AG. 36.  1999. The crystal structure of the human hepatitis B virus capsid. Mol. Cell 3:771–80 [Google Scholar]
  37. Zlotnick A, Cheng N, Stahl SJ, Conway JF, Steven AC, Wingfield PT. 37.  1997. Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: implications for morphogenesis and organization of encapsidated RNA. PNAS 94:9556–61 [Google Scholar]
  38. Selzer L, Katen SP, Zlotnick A. 38.  2014. The hepatitis B virus core protein intradimer interface modulates capsid assembly and stability. Biochemistry 53:5496–5504 [Google Scholar]
  39. Nassal M, Rieger A, Steinau O. 39.  1992. Topological analysis of the hepatitis B virus core particle by cysteine-cysteine cross-linking. J. Mol. Biol. 225:1013–25 [Google Scholar]
  40. Nassal M, Rieger A. 40.  1993. An intramolecular disulfide bridge between Cys−7 and Cys61 determines the structure of the secretory core gene product (e antigen) of hepatitis B virus. J. Virol. 67:4307–15 [Google Scholar]
  41. Packianathan C, Katen SP, Dann CE, Zlotnick A. 41.  2010. Conformational changes in the hepatitis B virus core protein are consistent with a role for allostery in virus assembly. J. Virol. 84:1607–15 [Google Scholar]
  42. Alexander CG, Jürgens MC, Shepherd DA, Freund SMV, Ashcroft AE, Ferguson N. 42.  2013. Thermodynamic origins of protein folding, allostery, and capsid formation in the human hepatitis B virus core protein. PNAS 110:E2782–91 [Google Scholar]
  43. Klumpp K, Lam AM, Lukacs C, Vogel R, Ren S. 43.  et al. 2015. High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein. PNAS 112:15196–201 [Google Scholar]
  44. Hilmer JK, Zlotnick A, Bothner B. 44.  2008. Conformational equilibria and rates of localized motion within hepatitis B virus capsids. J. Mol. Biol. 375:581–94 [Google Scholar]
  45. Bereszczak JZ, Watts NR, Wingfield PT, Steven AC, Heck AJR. 45.  2014. Assessment of differences in the conformational flexibility of hepatitis B virus core-antigen and e-antigen by hydrogen deuterium exchange-mass spectrometry. Protein Sci. 23:884–96 [Google Scholar]
  46. Standring DN, Ou JH, Masiarz FR, Rutter WJ. 46.  1988. A signal peptide encoded within the precore region of hepatitis B virus directs the secretion of a heterogeneous population of e antigens in Xenopus oocytes. PNAS 85:8405–9 [Google Scholar]
  47. Bruss V, Gerlich WH. 47.  1988. Formation of transmembraneous hepatitis B e-antigen by cotranslational in vitro processing of the viral precore protein. Virology 163:268–75 [Google Scholar]
  48. Ou JH, Laub O, Rutter WJ. 48.  1986. Hepatitis B virus gene function: the precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. PNAS 83:1578–82 [Google Scholar]
  49. Chen MT, Billaud JN, Sällberg M, Guidotti LG, Chisari FV. 49.  et al. 2004. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. PNAS 101:14913–18 [Google Scholar]
  50. Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. 50.  1990. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero?. PNAS 87:6599–6603 [Google Scholar]
  51. Gish RG, Given BD, Lai C-L, Locarnini SA, Lau JYN. 51.  et al. 2015. Chronic hepatitis B: virology, natural history, current management and a glimpse at future opportunities. Antivir. Res. 121:47–58 [Google Scholar]
  52. Samal J, Kandpal M, Vivekanandan P. 52.  2015. Hepatitis B “e” antigen-mediated inhibition of HBV replication fitness and transcription efficiency in vitro. Virology 484:234–40 [Google Scholar]
  53. Watts NR, Conway JF, Cheng N, Stahl SJ, Steven AC, Wingfield PT. 53.  2011. Role of the propeptide in controlling conformation and assembly state of hepatitis B virus e-antigen. J. Mol. Biol. 409:202–13 [Google Scholar]
  54. DiMattia MA, Watts NR, Stahl SJ, Grimes JM, Steven AC. 54.  et al. 2013. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure 21:133–42 [Google Scholar]
  55. Imai M, Nomura M, Gotanda T, Sano T, Tachibana K. 55.  et al. 1982. Demonstration of two distinct antigenic determinants on hepatitis B e antigen by monoclonal antibodies. J. Immunol. 128:69–72 [Google Scholar]
  56. Salfeld J, Pfaff E, Noah M, Schaller H. 56.  1989. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus. J. Virol. 63:798–808 [Google Scholar]
  57. Kenney JM, von Bonsdorff CH, Nassal M, Fuller SD. 57.  1995. Evolutionary conservation in the hepatitis B virus core structure: comparison of human and duck cores. Structure 3:1009–19 [Google Scholar]
  58. Wingfield PT, Stahl SJ, Williams RW, Steven AC. 58.  1995. Hepatitis core antigen produced in Escherichia coli: subunit composition, conformation analysis, and in vitro capsid assembly. Biochemistry 34:4919–32 [Google Scholar]
  59. Zlotnick A, Palmer I, Kaufman JD, Stahl SJ, Steven AC, Wingfield PT. 59.  1999. Separation and crystallization of T = 3 and T = 4 icosahedral complexes of the hepatitis B virus core protein. Acta Crystallogr. D 55:717–20 [Google Scholar]
  60. Böttcher B, Wynne SA, Crowther RA. 60.  1997. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88–91 [Google Scholar]
  61. Yu X, Jin L, Jih J, Shih C, Hong Zhou Z. 61.  2013. 3.5 Å cryoEM structure of hepatitis B virus core assembled from full-length core protein. PLOS ONE 8:e69729 [Google Scholar]
  62. Bourne CR, Finn MG, Zlotnick A. 62.  2006. Global structural changes in hepatitis B virus capsids induced by the assembly effector HAP1. J. Virol. 80:11055–61 [Google Scholar]
  63. Bourne CR, Katen SP, Fulz MR, Packianathan C, Zlotnick A. 63.  2009. A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly. Biochemistry 48:1736–42 [Google Scholar]
  64. Milich DR, McLachlan A, Stahl S, Wingfield P, Thornton GB. 64.  et al. 1988. Comparative immunogenicity of hepatitis B virus core and e antigens. J. Immunol. 141:3617–24 [Google Scholar]
  65. Pushko P, Sallberg M, Borisova G, Ruden U, Bichko V. 65.  et al. 1994. Identification of hepatitis B virus core protein regions exposed or internalized at the surface of HBcAg particles by scanning with monoclonal antibodies. Virology 202:912–20 [Google Scholar]
  66. Belnap DM, Watts NR, Conway JF, Cheng N, Stahl SJ. 66.  et al. 2003. Diversity of core antigen epitopes of hepatitis B virus. PNAS 100:10884–89 [Google Scholar]
  67. Harris A, Belnap DM, Watts NR, Conway JF, Cheng N. 67.  et al. 2006. Epitope diversity of hepatitis B virus capsids: quasi-equivalent variations in spike epitopes and binding of different antibodies to the same epitope. J. Mol. Biol. 355:562–76 [Google Scholar]
  68. Steven AC, Conway JF, Cheng N, Watts NR, Belnap DM. 68.  et al. 2005. Structure, assembly, and antigenicity of hepatitis B virus capsid proteins. Adv. Virus Res. 64:125–64 [Google Scholar]
  69. Peyret H, Stephen SL, Stonehouse NJ, Rowlands DJ. 69.  2016. History and potential of hepatitis B virus core as a VLP vaccine platform. Viral Nanotechnology Y Khudyakov, P Pumpens, pp 177–86 Boca Raton, FL: CRC Press [Google Scholar]
  70. Pumpens P, Borisova GP, Crowther RA, Grens E. 70.  1995. Hepatitis B virus core particles as epitope carriers. Intervirology 38:63–74 [Google Scholar]
  71. Peyret H, Gehin A, Thuenemann EC, Blond D, El Turabi A. 71.  et al. 2015. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLOS ONE 10:e0120751 [Google Scholar]
  72. Walker A, Skamel C, Nassal M. 72.  2011. Splitcore: an exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Sci. Rep. 1:5 [Google Scholar]
  73. Chen C, Wang JCY, Pierson EE, Keifer DZ, Delaleau M. 73.  et al. 2016. Importin β can bind hepatitis B virus core protein and empty core-like particles and induce structural changes. PLOS Pathog. In press [Google Scholar]
  74. Chen C, Wang JCY, Zlotnick A. 74.  2011. A kinase chaperones hepatitis B virus capsid assembly and captures capsid dynamics in vitro. PLOS Pathog. 7:e1002388 [Google Scholar]
  75. Selzer L, Kant R, Wang JCY, Bothner B, Zlotnick A. 75.  2015. Hepatitis B virus core protein phosphorylation sites affect capsid stability and transient exposure of the C-terminal domain. J. Biol. Chem. 290:28584–93 [Google Scholar]
  76. Li HC, Huang EY, Su PY, Wu SY, Yang CC. 76.  et al. 2010. Nuclear export and import of human hepatitis B virus capsid protein and particles. PLOS Pathog. 6:e1001162 [Google Scholar]
  77. Machida A, Ohnuma H, Tsuda F, Yoshikawa A, Hoshi Y. 77.  et al. 1991. Phosphorylation in the carboxyl-terminal domain of the capsid protein of hepatitis B virus: evaluation with a monoclonal antibody. J. Virol. 65:6024–30 [Google Scholar]
  78. Yeh CT, Ou JH. 78.  1991. Phosphorylation of hepatitis B virus precore and core proteins. J. Virol. 65:2327–31 [Google Scholar]
  79. Kann M, Gerlich WH. 79.  1994. Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. J. Virol. 68:7993–8000 [Google Scholar]
  80. Daub H, Blencke S, Habenberger P, Kurtenbach A, Dennenmoser J. 80.  et al. 2002. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J. Virol. 76:8124–37 [Google Scholar]
  81. Ludgate L, Ning X, Nguyen DH, Adams C, Mentzer L, Hu J. 81.  2012. Cyclin-dependent kinase 2 phosphorylates S/T-P sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J. Virol. 86:12237–50 [Google Scholar]
  82. Basagoudanavar SH, Perlman DH, Hu J. 82.  2007. Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation. J. Virol. 81:1641–49 [Google Scholar]
  83. Kock J, Kann M, Putz G, Blum HE, Von Weizsacker F. 83.  2003. Central role of a serine phosphorylation site within duck hepatitis B virus core protein for capsid trafficking and genome release. J. Biol. Chem. 278:28123–29 [Google Scholar]
  84. Gazina EV, Fielding JE, Lin B, Anderson DA. 84.  2000. Core protein phosphorylation modulates pre-genomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J. Virol. 74:4721–28 [Google Scholar]
  85. Belyi VA, Muthukumar M. 85.  2006. Electrostatic origin of the genome packing in viruses. PNAS 103:17174–78 [Google Scholar]
  86. Perlmutter JD, Qiao C, Hagan MF. 86.  2013. Viral genome structures are optimal for capsid assembly. eLife 2e00632 [Google Scholar]
  87. Chua PK, Tang FM, Huang JY, Suen CS, Shih C. 87.  2010. Testing the balanced electrostatic interaction hypothesis of hepatitis B virus DNA synthesis by using an in vivo charge rebalance approach. J. Virol. 84:2340–51 [Google Scholar]
  88. Köck J, Nassal M, Deres K, Blum HE, von Weizsäcker F. 88.  2004. Hepatitis B virus nucleocapsids formed by carboxy-terminally mutated core proteins contain spliced viral genomes but lack full-size DNA. J. Virol. 78:13812–18 [Google Scholar]
  89. Newman M, Chua PK, Tang FM, Su PY, Shih C. 89.  2009. Testing an electrostatic interaction hypothesis of hepatitis B virus capsid stability by using an in vitro capsid disassembly/reassembly system. J. Virol. 83:10616–26 [Google Scholar]
  90. Lewellyn EB, Loeb DD. 90.  2011. The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J. Virol. 85:1298–309 [Google Scholar]
  91. Ludgate L, Liu K, Luckenbaugh L, Streck N, Eng S. 91.  et al. 2016. Cell-free hepatitis B virus capsid assembly dependent on the core protein C-terminal domain and regulated by phosphorylation. J. Virol. 90:5830–44 [Google Scholar]
  92. Dhason MS, Wang JCY, Hagan MF, Zlotnick A. 92.  2012. Differential assembly of hepatitis B virus core protein on single- and double-stranded nucleic acid suggest the dsDNA-filled core is spring-loaded. Virology 430:20–29 [Google Scholar]
  93. Chu TH, Liou AT, Su PY, Wu HN, Shih C. 93.  2014. Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis B virus core protein. J. Virol. 88:2530–43 [Google Scholar]
  94. Cingolani G, Petosa C, Weis K, Müller CW. 94.  1999. Structure of importin-β bound to the IBB domain of importin-α. Nature 399:221–29 [Google Scholar]
  95. Lott K, Bhardwaj A, Mitrousis G, Pante N, Cingolani G. 95.  2010. The importin β binding domain modulates the avidity of importin β for the nuclear pore complex. J. Biol. Chem. 285:13769–80 [Google Scholar]
  96. Clark DN, Hu J. 96.  2015. Hepatitis B virus reverse transcriptase: target of current antiviral therapy and future drug development. Antivir. Res. 123:132–37 [Google Scholar]
  97. Wang JCY, Nickens DG, Lentz TB, Loeb DD, Zlotnick A. 97.  2014. Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. PNAS 111:11329–34 [Google Scholar]
  98. Das K, Xiong X, Yang H, Westland CE, Gibbs CS. 98.  et al. 2001. Molecular modeling and biochemical characterization reveal the mechanism of hepatitis B virus polymerase resistance to lamivudine (3TC) and emtricitabine (FTC). J. Virol. 75:4771–79 [Google Scholar]
  99. Tavis JE, Cheng X, Hu Y, Totten M, Cao F. 99.  et al. 2013. The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes. PLOS Pathog. 9:e1003125 [Google Scholar]
  100. Abraham TM, Loeb DD. 100.  2006. Base pairing between the 5′ half of epsilon and a cis-acting sequence, phi, makes a contribution to the synthesis of minus-strand DNA for human hepatitis B virus. J. Virol. 80:4380–87 [Google Scholar]
  101. Lewellyn EB, Loeb DD. 101.  2007. Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus. J. Virol. 81:6207–15 [Google Scholar]
  102. Kim HY, Park GS, Kim EG, Kang SH, Shin HJ. 102.  et al. 2004. Oligomer synthesis by priming deficient polymerase in hepatitis B virus core particle. Virology 322:22–30 [Google Scholar]
  103. Tan Z, Pionek K, Unchwaniwala N, Maguire ML, Loeb DD, Zlotnick A. 103.  2015. The interface between hepatitis B virus capsid proteins affects self-assembly, pregenomic RNA packaging, and reverse transcription. J. Virol. 89:3275–84 [Google Scholar]
  104. Tan Z, Maguire ML, Loeb DD, Zlotnick A. 104.  2013. Genetically altering the thermodynamics and kinetics of hepatitis B virus capsid assembly has profound effects on virus replication in cell culture. J. Virol. 87:3208–16 [Google Scholar]
  105. Lenhoff RJ, Summers J. 105.  1994. Coordinate regulation of replication and virus assembly by the large envelope protein of an avian hepadnavirus. J. Virol. 68:4565–71 [Google Scholar]
  106. Chisari FV, Ferrari C. 106.  1995. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol. 13:29–60 [Google Scholar]
  107. Purcell RH, Gerin JL. 107.  1996. Hepatitis delta virus. Fields Virology BN Fields, DM Knipe, PM Howley, RM Chanock, JL Melnick, et al., pp 2819–29 Philadelphia: Lippincott-Raven [Google Scholar]
  108. Bardens A, Doring T, Stieler J, Prange R. 108.  2011. Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner. Cell Microbiol 13:602–19 [Google Scholar]
  109. Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. 109.  2007. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. PNAS 104:10205–10 [Google Scholar]
  110. Schädler S, Hildt E. 110.  2009. HBV life cycle: entry and morphogenesis. Viruses 1:185–209 [Google Scholar]
  111. Stirk HJ, Thornton JM, Howard CR. 111.  1992. A topological model for hepatitis B surface antigen. Intervirology 33:148–58 [Google Scholar]
  112. Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH. 112.  1984. Large surface proteins of hepatitis B virus containing the pre-s sequence. J. Virol. 52:396–402 [Google Scholar]
  113. Short JM, Chen S, Roseman AM, Butler PJG, Crowther RA. 113.  2009. Structure of hepatitis B surface antigen from subviral tubes determined by electron cryomicroscopy. J. Mol. Biol. 390:135–41 [Google Scholar]
  114. Bruss V, Lu X, Thomssen R, Gerlich WH. 114.  1994. Post-translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J 13:2273–79 [Google Scholar]
  115. Eble BE, MacRae DR, Lingappa VR, Ganem D. 115.  1987. Multiple topogenic sequences determine the transmembrane orientation of the hepatitis B surface antigen. Mol. Cell. Biol. 7:3591–601 [Google Scholar]
  116. Lempp FA, Urban S. 116.  2014. Inhibitors of hepatitis B virus attachment and entry. Intervirology 57:151–57 [Google Scholar]
  117. Schulze A, Gripon P, Urban S. 117.  2007. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46:1759–68 [Google Scholar]
  118. Sureau C, Salisse J. 118.  2013. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus A-determinant. Hepatol. 57:985–94 [Google Scholar]
  119. Urban S. 119.  2015. Entry and entry inhibition of hepatitis B (HBV) and hepatitis delta virus (HDV) into hepatocytes. Hepatology 63:633 [Google Scholar]
  120. Engelke M, Mills K, Seitz S, Simon P, Gripon P. 120.  et al. 2006. Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 43:750–60 [Google Scholar]
  121. Petersen J, Dandri M, Mier W, Lütgehetmann M, Volz T. 121.  et al. 2008. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 26:335–41 [Google Scholar]
  122. Volz T, Allweiss L, Ben M´Barek M, Warlich M, Lohse AW. 122.  et al. 2013. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J. Hepatol. 58:861–67 [Google Scholar]
  123. Bremer CM, Sominskaya I, Skrastina D, Pumpens P, El Wahed AA. 123.  et al. 2011. N-terminal myristoylation-dependent masking of neutralizing epitopes in the preS1 attachment site of hepatitis B virus. J. Hepatol. 55:29–37 [Google Scholar]
  124. Roseman AM, Berriman JA, Wynne SA, Butler PJG, Crowther RA. 124.  2005. A structural model for maturation of the hepatitis B virus core. PNAS 102:15821–26 [Google Scholar]
  125. Poisson F, Severac A, Hourioux C, Goudeau A, Roingeard P. 125.  1997. Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle. Virology 228:115–20 [Google Scholar]
  126. Bruss V. 126.  1997. A short linear sequence in the pre-S domain of the large hepatitis B virus envelope protein required for virion formation. J. Virol. 71:9350–57 [Google Scholar]
  127. Tan WS, Dyson MR, Murray K. 127.  1999. Two distinct segments of the hepatitis B virus surface antigen contribute synergistically to its association with the viral core particles. J. Mol. Biol. 286:797–808 [Google Scholar]
  128. Ponsel D, Bruss V. 128.  2003. Mapping of amino acid side chains on the surface of hepatitis B virus capsids required for envelopment and virion formation. J. Virol. 77:416–22 [Google Scholar]
  129. Dyson MR, Murray K. 129.  1995. Selection of peptide inhibitors of interactions involved in complex protein assemblies: association of the core and surface antigens of hepatitis B virus. PNAS 92:2194–98 [Google Scholar]
  130. Katen SP, Tan Z, Chirapu SR, Finn MG, Zlotnick A. 130.  2013. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure. Structure 21:1406–16 [Google Scholar]
  131. Le Pogam S, Yuan TT, Sahu GK, Chatterjee S, Shih C. 131.  2000. Low-level secretion of human hepatitis B virus virions caused by two independent, naturally occurring mutations (P5T and I60V) in the capsid protein. J. Virol. 74:9099–105 [Google Scholar]
  132. Yuan TT, Sahu GK, Whitehead WE, Greenberg R, Shih C. 132.  1999. The mechanism of an immature secretion phenotype of a highly frequent naturally occurring missense mutation at codon 97 of human hepatitis B virus core antigen. J. Virol. 73:5731–40 [Google Scholar]
  133. Yuan TT, Tai PC, Shih C. 133.  1999. Subtype-independent immature secretion and subtype-dependent replication deficiency of a highly frequent, naturally occurring mutation of human hepatitis B virus core antigen. J. Virol. 73:10122–28 [Google Scholar]
  134. Böttcher B, Tsuji N, Takahashi H, Dyson MR, Zhao S. 134.  et al. 1998. Peptides that block hepatitis B virus assembly: analysis by cryomicroscopy, mutagenesis and transfection. EMBO J. 17:6839–45 [Google Scholar]
  135. Zlotnick A, Johnson JM, Wingfield PW, Stahl SJ, Endres D. 135.  1999. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry 38:14644–52 [Google Scholar]
  136. Endres D, Zlotnick A. 136.  2002. Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys. J. 83:1217–30 [Google Scholar]
  137. Ceres P, Zlotnick A. 137.  2002. Weak protein-protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41:11525–31 [Google Scholar]
  138. Porterfield JZ, Zlotnick A. 138.  2010. An overview of capsid assembly kinetics. Emerging Topics in Physical Virology PG Stockley, R Twarock, pp 131–58 London: Imperial College Press [Google Scholar]
  139. Perlmutter JD, Hagan MF. 139.  2015. Mechanisms of virus assembly. Annu. Rev. Phys. Chem. 66:217–39 [Google Scholar]
  140. Johnson JM, Tang J, Nyame Y, Willits D, Young MJ, Zlotnick A. 140.  2005. Regulating self-assembly of spherical oligomers. Nano Lett 5:765–70 [Google Scholar]
  141. Tresset G, Le Coeur C, Bryche J-F, Tatou M, Zeghal M. 141.  et al. 2013. Norovirus capsid proteins self-assemble through biphasic kinetics via long-lived stave-like intermediates. J. Am. Chem. Soc. 135:15373–81 [Google Scholar]
  142. Katen S, Zlotnick A. 142.  2009. The thermodynamics of virus capsid assembly. Methods Enzymol 455:395–417 [Google Scholar]
  143. Singh S, Zlotnick A. 143.  2003. Observed hysteresis of virus capsid disassembly is implicit in kinetic models of assembly. J. Biol. Chem. 278:18249–55 [Google Scholar]
  144. Hagan MF, Chandler D. 144.  2006. Dynamic pathways for viral capsid assembly. Biophys J 91:42–54 [Google Scholar]
  145. Uetrecht C, Watts NR, Stahl SJ, Wingfield PT, Steven AC, Heck AJR. 145.  2010. Subunit exchange rates in hepatitis B virus capsids are geometry- and temperature-dependent. Phys. Chem. Chem. Phys. 12:13368–71 [Google Scholar]
  146. Uetrecht C, Barbu IM, Shoemaker GK, van Duijn E, Heck AJR. 146.  2011. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat. Chem. 3:126–32 [Google Scholar]
  147. Caspar DL. 147.  1980. Movement and self-control in protein assemblies. Quasi-equivalence revisited. Biophys. J. 32:103–38 [Google Scholar]
  148. Harms ZD, Mogensen KB, Nunes PS, Zhou K, Hildenbrand BW. 148.  et al. 2011. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. Anal. Chem. 83:9573–78 [Google Scholar]
  149. Pierson EE, Keifer DZ, Selzer L, Lee LS, Contino NC. 149.  et al. 2014. Detection of late intermediates in virus capsid assembly by charge detection mass spectrometry. J. Am. Chem. Soc. 136:3536–41 [Google Scholar]
  150. Kukreja AA, Wang JCY, Pierson E, Keifer DZ, Selzer L. 150.  et al. 2014. Structurally similar woodchuck and human hepadnavirus core proteins have distinctly different temperature dependences of assembly. J. Virol. 88:14105–15 [Google Scholar]
  151. Pierson EE, Keifer DZ, Kukreja AA, Wang JCY, Zlotnick A, Jarrold MF. 151.  2016. Charge detection mass spectrometry identifies preferred non-icosahedral polymorphs in the self-assembly of woodchuck hepatitis virus capsids. J. Mol. Biol. 428:292–300 [Google Scholar]
  152. Perlmutter JD, Perkett MR, Hagan MF. 152.  2014. Pathways for virus assembly around nucleic acids. J. Mol. Biol. 426:3148–65 [Google Scholar]
  153. Zlotnick A, Porterfield JZ, Wang JCY. 153.  2013. To build a virus on a nucleic acid substrate. Biophys. J. 104:1595–604 [Google Scholar]
  154. Cui X, Ludgate L, Ning X, Hu J. 154.  2013. Maturation-associated destabilization of hepatitis B virus nucleo-capsid. J. Virol. 87:11494–503 [Google Scholar]
  155. Guo H, Jiang D, Zhou T, Cuconati A, Block TM, Guo JT. 155.  2007. Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation. J. Virol. 81:12472–84 [Google Scholar]
  156. Seeger C, Zoulim F, Mason WS. 156.  2007. Hepadnaviruses. Fields Virology DM Knipe, DE Griffin, RA Lamb, MA Martin, B Roizman, SE Straus, pp 2977–3029 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  157. Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. 157.  2015. Core protein: a pleiotropic keystone in the HBV life cycle. Antivir. Res. 121:82–93 [Google Scholar]
  158. Prevelige PE. 158.  1998. Inhibiting virus-capsid assembly by altering the polymerisation pathway. Trends Biotechnol. 16:61–65 [Google Scholar]
  159. Zlotnick A, Stray SJ. 159.  2003. How does your virus grow? Understanding and interfering with virus assembly. Trends Biotechnol 21:536–42 [Google Scholar]
  160. King RW, Ladner SK, Miller TJ, Zaifert K, Perni RB. 160.  et al. 1998. Inhibition of human hepatitis B virus replication by AT-61, a phenylpropenamide derivative, alone and in combination with (−)β-l-2′,3′-dideoxy-3′-thiacytidine. Antimicrob. Agents Chemother. 42:3179–86 [Google Scholar]
  161. Weber O, Schlemmer KH, Hartmann E, Hagelschuer I, Paessens A. 161.  et al. 2002. Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antivir. Res. 54:69–78 [Google Scholar]
  162. Feld JJ, Colledge D, Sozzi V, Edwards R, Littlejohn M, Locarnini SA. 162.  2007. The phenylpropenamide derivative AT-130 blocks HBV replication at the level of viral RNA packaging. Antivir. Res. 76:168–77 [Google Scholar]
  163. Deres K, Schröder CH, Paessens A, Goldmann S, Hacker HJ. 163.  et al. 2003. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science 299:893–96 [Google Scholar]
  164. Billioud G, Pichoud C, Puerstinger G, Neyts J, Zoulim F. 164.  2011. The main hepatitis B virus (HBV) mutants resistant to nucleoside analogs are susceptible in vitro to non-nucleoside inhibitors of HBV replication. Antivir. Res. 92:271–76 [Google Scholar]
  165. Bourne C, Lee S, Venkataiah B, Lee A, Korba B. 165.  et al. 2008. Small-molecule effectors of hepatitis B virus capsid assembly give insight into virus life cycle. J. Virol. 82:10262–70 [Google Scholar]
  166. Delaney WE, Edwards R, Colledge D, Shaw T, Furman P. 166.  et al. 2002. Phenylpropenamide derivatives AT-61 and AT-130 inhibit replication of wild-type and lamivudine-resistant strains of hepatitis B virus in vitro. Antimicrob. Agents Chemother. 46:3057–60 [Google Scholar]
  167. Katen SP, Chirapu SR, Finn MG, Zlotnick A. 167.  2010. Trapping of hepatitis B virus capsid assembly intermediates by phenylpropenamide assembly accelerators. ACS Chem. Biol. 5:1125–36 [Google Scholar]
  168. Stray SJ, Bourne CR, Punna S, Lewis WG, Finn MG, Zlotnick A. 168.  2005. A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly. PNAS 102:8138–43 [Google Scholar]
  169. Stray SJ, Zlotnick A. 169.  2006. Bay 41–4109 has multiple effects on hepatitis B virus capsid assembly. J. Mol. Recognit. 19:542–48 [Google Scholar]
  170. Hacker HJ, Deres K, Mildenberger M, Schröder CH. 170.  2003. Antivirals interacting with hepatitis B virus core protein and core mutations may misdirect capsid assembly in a similar fashion. Biochem. Pharmacol. 66:2273–79 [Google Scholar]
  171. Hagan MF, Elrad OM. 171.  2010. Understanding the concentration dependence of viral capsid assembly kinetics: the origin of the lag time and identifying the critical nucleus size. Biophys. J. 98:1065–74 [Google Scholar]
  172. Venkatakrishnan B, Katen SP, Francis S, Chirapu S, Finn MG, Zlotnick A. 172.  2016. Hepatitis B virus capsids have diverse structural responses to small-molecule ligands bound to the heteroaryldihydropyrimidine pocket. J. Virol. 90:3994–4004 [Google Scholar]
  173. Bereszczak JZ, Rose RJ, van Duijn E, Watts NR, Wingfield PT. 173.  et al. 2013. Epitope-distal effects accompany the binding of two distinct antibodies to hepatitis B virus capsids. J. Am. Chem. Soc. 135:6504–12 [Google Scholar]
  174. Andoh Y, Yoshii N, Yamada A, Fujimoto K, Kojima H. 174.  et al. 2014. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution. J. Chem. Phys. 141:165101 [Google Scholar]
  175. Phelps DK, Post CB. 175.  1995. A novel basis of capsid stabilization by antiviral compounds. J. Mol. Biol. 254:544–51 [Google Scholar]
  176. Gish RG, Yuen MF, Chan HL, Given BD, Lai CL. 176.  et al. 2015. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent. Antivir. Res. 121:97–108 [Google Scholar]
  177. Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L. 177.  et al. 2016. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531:386–89 [Google Scholar]
  178. Seitz S, Iancu C, Volz T, Mier W, Dandri M. 178.  et al. 2016. A slow maturation process renders hepatitis B virus infectious. Cell Host Microbe 20:25–35 [Google Scholar]
  179. Campagna MR, Liu F, Mao R, Mills C, Cai D. 179.  et al. 2013. Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids. J. Virol 87:6931–42 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error