Herpesviruses have evolved exquisite virus-host interactions that co-opt or evade a number of host pathways to enable the viruses to persist. Persistence of human cytomegalovirus (CMV), the prototypical betaherpesvirus, is particularly complex in the host organism. Depending on host physiology and the cell types infected, CMV persistence comprises latent, chronic, and productive states that may occur concurrently. Viral latency is a central strategy by which herpesviruses ensure their lifelong persistence. Although much remains to be defined about the virus-host interactions important to CMV latency, it is clear that checkpoints composed of viral and cellular factors exist to either maintain a latent state or initiate productive replication in response to host cues. CMV offers a rich platform for defining the virus-host interactions and understanding the host biology important to viral latency. This review describes current understanding of the virus-host interactions that contribute to viral latency and reactivation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L. 1.  et al. 2004. Genetic content of wild-type human cytomegalovirus. J. Gen. Virol. 85:1301–12 [Google Scholar]
  2. Murphy E, Rigoutsos I, Shibuya T, Shenk TE. 2.  2003. Reevaluation of human cytomegalovirus coding potential. PNAS 100:13585–90 [Google Scholar]
  3. Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY. 3.  et al. 2012. Decoding human cytomegalovirus. Science 338:1088–93 [Google Scholar]
  4. Cannon MJ, Schmid DS, Hyde TB. 4.  2010. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 20:202–13 [Google Scholar]
  5. Britt W. 5.  2008. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr. Top. Microbiol. Immunol. 325:417–70 [Google Scholar]
  6. Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN. 6.  et al. 2010. Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8:284–89 [Google Scholar]
  7. Soderberg-Naucler C, Fish KN, Nelson JA. 7.  1997. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91:119–26 [Google Scholar]
  8. Lanzieri TM, Dollard SC, Josephson CD, Schmid DS, Bialek SR. 8.  2013. Breast milk-acquired cytomegalovirus infection and disease in VLBW and premature infants. Pediatrics 131:e1937–45 [Google Scholar]
  9. Boeckh M, Geballe AP. 9.  2011. Cytomegalovirus: pathogen, paradigm, and puzzle. J. Clin. Investig. 121:1673–80 [Google Scholar]
  10. Razonable RR, Humar A. 10. AST Infect. Dis. Community Pract. 2013. Cytomegalovirus in solid organ transplantation. Am. J. Transplant. 13:Suppl. 493–106 [Google Scholar]
  11. Ljungman P, Hakki M, Boeckh M. 11.  2011. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol. Oncol. Clin. N. Am. 25:151–69 [Google Scholar]
  12. Potena L, Valantine HA. 12.  2007. Cytomegalovirus-associated allograft rejection in heart transplant patients. Curr. Opin. Infect. Dis. 20:425–31 [Google Scholar]
  13. Adler SP, Nigro G, Pereira L. 13.  2007. Recent advances in the prevention and treatment of congenital cytomegalovirus infections. Semin. Perinatol. 31:10–18 [Google Scholar]
  14. Cannon MJ. 14.  2009. Congenital cytomegalovirus (CMV) epidemiology and awareness. J. Clin. Virol. 46:Suppl. 4S6–10 [Google Scholar]
  15. Boppana SB, Rivera LB, Fowler KB, Mach M, Britt WJ. 15.  2001. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 344:1366–71 [Google Scholar]
  16. Colugnati FA, Staras SA, Dollard SC, Cannon MJ. 16.  2007. Incidence of cytomegalovirus infection among the general population and pregnant women in the United States. BMC Infect. Dis. 7:71 [Google Scholar]
  17. Read JS, Cannon MJ, Stanberry LR, Schuval S. 17.  2008. Prevention of mother-to-child transmission of viral infections. Curr. Probl. Pediatr. Adolesc. Health Care 38:274–97 [Google Scholar]
  18. Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ. 18.  et al. 2015. Cytomegalovirus infection enhances the immune response to influenza. Sci. Transl. Med. 7:281ra43 [Google Scholar]
  19. Bentz GL, Yurochko AD. 19.  2008. Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and β1 and β3 integrins. PNAS 105:5531–36 [Google Scholar]
  20. Botto S, Streblow DN, DeFilippis V, White L, Kreklywich CN. 20.  et al. 2011. IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 117:352–61 [Google Scholar]
  21. Wang GC, Kao WH, Murakami P, Xue QL, Chiou RB. 21.  et al. 2010. Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. Am. J. Epidemiol. 171:1144–52 [Google Scholar]
  22. Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. 22.  2011. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLOS ONE 6:e16103 [Google Scholar]
  23. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C. 23.  et al. 2005. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202:673–85 [Google Scholar]
  24. Hadrup SR, Strindhall J, Kollgaard T, Seremet T, Johansson B. 24.  et al. 2006. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J. Immunol. 176:2645–53 [Google Scholar]
  25. Chidrawar S, Khan N, Wei W, McLarnon A, Smith N. 25.  et al. 2009. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin. Exp. Immunol. 155:423–32 [Google Scholar]
  26. Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C. 26.  et al. 2014. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192:2143–55 [Google Scholar]
  27. Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC. 27.  et al. 2010. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 328:102–6 [Google Scholar]
  28. Nikolich-Zugich J. 28.  2008. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat. Rev. Immunol. 8:512–22 [Google Scholar]
  29. Hendrix RM, Wagenaar M, Slobbe RL, Bruggeman CA. 29.  1997. Widespread presence of cytomegalovirus DNA in tissues of healthy trauma victims. J. Clin. Pathol. 50:59–63 [Google Scholar]
  30. Mendelson M, Monard S, Sissons P, Sinclair J. 30.  1996. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J. Gen. Virol. 77:3099–102 [Google Scholar]
  31. von Laer D, Meyer-Koenig U, Serr A, Finke J, Kanz L. 31.  et al. 1995. Detection of cytomegalovirus DNA in CD34+ cells from blood and bone marrow. Blood 86:4086–90 [Google Scholar]
  32. Maciejewski JP, Bruening EE, Donahue RE, Mocarski ES, Young NS, St. Jeor SC. 32.  1992. Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood 80:170–78 [Google Scholar]
  33. Soderberg-Naucler C, Streblow DN, Fish KN, Allan-Yorke J, Smith PP, Nelson JA. 33.  2001. Reactivation of latent human cytomegalovirus in CD14+ monocytes is differentiation dependent. J. Virol. 75:7543–54 [Google Scholar]
  34. Taylor-Wiedeman J, Sissons P, Sinclair J. 34.  1994. Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J. Virol. 68:1597–604 [Google Scholar]
  35. Slobedman B, Mocarski ES. 35.  1999. Quantitative analysis of latent human cytomegalovirus. J. Virol. 73:4806–12 [Google Scholar]
  36. Price AM, Luftig MA. 36.  2015. To be or not IIb: a multi-step process for Epstein-Barr virus latency establishment and consequences for B cell tumorigenesis. PLOS Pathog 11:e1004656 [Google Scholar]
  37. Coronel R, Takayama S, Juwono T, Hertel L. 37.  2015. Dynamics of human cytomegalovirus infection in CD34+ hematopoietic cells and derived Langerhans-type dendritic cells. J. Virol. 89:5615–32 [Google Scholar]
  38. O'Connor CM, Vanicek J, Murphy EA. 38.  2014. Host microRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J. Virol. 88:5524–32 [Google Scholar]
  39. Poole E, Reeves M, Sinclair JH. 39.  2014. The use of primary human cells (fibroblasts, monocytes, and others) to assess human cytomegalovirus function. Methods Mol. Biol. 1119:81–98 [Google Scholar]
  40. Rossetto CC, Tarrant-Elorza M, Pari GS. 40.  2013. cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14+ monocytes and CD34+ cells. PLOS Pathog 9:e1003366 [Google Scholar]
  41. Saffert RT, Penkert RR, Kalejta RF. 41.  2010. Cellular and viral control over the initial events of human cytomegalovirus experimental latency in CD34+ cells. J. Virol. 84:5594–604 [Google Scholar]
  42. Goodrum F, Jordan CT, Terhune SS, High K, Shenk T. 42.  2004. Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood 104:687–95 [Google Scholar]
  43. Humby MS, O'Connor CM. 43.  2015. HCMV US28 is important for latent infection of hematopoietic progenitor cells. J. Virol. 6:2959–70 [Google Scholar]
  44. Umashankar M, Goodrum F. 44.  2014. Hematopoietic long-term culture (hLTC) for human cytomegalovirus latency and reactivation. Methods Mol. Biol. 1119:99–112 [Google Scholar]
  45. Hogge DE, Lansdorp PM, Reid D, Gerhard B, Eaves CJ. 45.  1996. Enhanced detection, maintenance, and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human steel factor, interleukin-3, and granulocyte colony-stimulating factor. Blood 88:3765–73 [Google Scholar]
  46. Miller CL, Eaves CJ. 46.  2002. Long-term culture-initiating cell assays for human and murine cells. Hematopoietic Stem Cell Protocols CA Klug, CT Jordan 123–41 Totowa, NJ: Humana [Google Scholar]
  47. Goodrum F, Reeves M, Sinclair J, High K, Shenk T. 47.  2007. Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 110:937–45 [Google Scholar]
  48. Goodrum FD, Jordan CT, High K, Shenk T. 48.  2002. Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. PNAS 99:16255–60 [Google Scholar]
  49. Umashankar M, Petrucelli A, Cicchini L, Caposio P, Kreklywich CN. 49.  et al. 2011. A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLOS Pathog 7:e1002444 [Google Scholar]
  50. Umashankar M, Rak M, Bughio F, Zagallo P, Caviness K, Goodrum FD. 50.  2014. Antagonistic determinants controlling replicative and latent states of human cytomegalovirus infection. J. Virol. 88:5987–6002 [Google Scholar]
  51. O'Connor CM, Nukui M, Gurova KV, Murphy EA. 51.  2016. Inhibition of the FACT complex reduces transcription from the human cytomegalovirus major immediate early promoter in models of lytic and latent replication. J. Virol. 90:4249–53 [Google Scholar]
  52. Caviness K, Bughio F, Crawford LB, Streblow DN, Nelson JA. 52.  et al. 2016. Complex interplay of the UL136 isoforms balances cytomegalovirus replication and latency. mBio 7:e01986–15 [Google Scholar]
  53. Caviness K, Cicchini L, Rak M, Umashankar M, Goodrum F. 53.  2014. Complex expression of the UL136 gene of human cytomegalovirus results in multiple protein isoforms with unique roles in replication. J. Virol. 88:14412–25 [Google Scholar]
  54. Petrucelli A, Rak M, Grainger L, Goodrum F. 54.  2009. Characterization of a novel Golgi-localized latency determinant encoded by human cytomegalovirus. J. Virol. 83:5615–29 [Google Scholar]
  55. Movassagh M, Gozlan J, Senechal B, Baillou C, Petit JC, Lemoine FM. 55.  1996. Direct infection of CD34+ progenitor cells by human cytomegalovirus: evidence for inhibition of hematopoiesis and viral replication. Blood 88:1277–83 [Google Scholar]
  56. Sindre H, Tjoonnfjord GE, Rollag H, Ranneberg-Nilsen T, Veiby OP. 56.  et al. 1996. Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 88:4526–33 [Google Scholar]
  57. Zhuravskaya T, Maciejewski JP, Netski DM, Bruening E, Mackintosh FR, St. Jeor S. 57.  1997. Spread of human cytomegalovirus (HCMV) after infection of human hematopoietic progenitor cells: model of HCMV latency. Blood 90:2482–91 [Google Scholar]
  58. Hahn G, Jores R, Mocarski ES. 58.  1998. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. PNAS 95:3937–42 [Google Scholar]
  59. Slobedman B, Stern JL, Cunningham AL, Abendroth A, Abate DA, Mocarski ES. 59.  2004. Impact of human cytomegalovirus latent infection on myeloid progenitor cell gene expression. J. Virol. 78:4054–62 [Google Scholar]
  60. Kondo K, Kaneshima H, Mocarski ES. 60.  1994. Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. PNAS 91:11879–83 [Google Scholar]
  61. Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. 61.  1991. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol. 72:2059–64 [Google Scholar]
  62. Minton EJ, Tysoe C, Sinclair JH, Sissons JG. 62.  1994. Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. J. Virol. 68:4017–21 [Google Scholar]
  63. Smith MS, Bivins-Smith ER, Tilley AM, Bentz GL, Chan G. 63.  et al. 2007. Roles of phosphatidylinositol 3-kinase and NF-κB in human cytomegalovirus-mediated monocyte diapedesis and adhesion: strategy for viral persistence. J. Virol. 81:7683–94 [Google Scholar]
  64. Saffert RT, Kalejta RF. 64.  2007. Human cytomegalovirus gene expression is silenced by the Daxx-mediated intrinsic immune defense when model latent infections are established in vitro. J. Virol. 81:9109–20 [Google Scholar]
  65. Albright ER, Kalejta RF. 65.  2013. Myeloblastic cell lines mimic some but not all aspects of human cytomegalovirus experimental latency defined in primary CD34+ cell populations. J. Virol. 87:9802–12 [Google Scholar]
  66. Yee LF, Lin PL, Stinski MF. 66.  2007. Ectopic expression of HCMV IE72 and IE86 proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1 cells. Virology 363:174–88 [Google Scholar]
  67. O'Connor CM, Murphy EA. 67.  2012. A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny. J. Virol. 86:9854–65 [Google Scholar]
  68. Penkert RR, Kalejta RF. 68.  2013. Human embryonic stem cell lines model experimental human cytomegalovirus latency. mBio 4:e00298–13 [Google Scholar]
  69. Crawford LB, Streblow DN, Hakki M, Nelson JA, Caposio P. 69.  2015. Humanized mouse models of human cytomegalovirus infection. Curr. Opin. Virol. 13:86–92 [Google Scholar]
  70. Hakki M, Goldman DC, Streblow DN, Hamlin KL, Krekylwich CN. 70.  et al. 2014. HCMV infection of humanized mice after transplantation of G-CSF-mobilized peripheral blood stem cells from HCMV-seropositive donors. Biol. Blood Marrow Transplant. 20:132–35 [Google Scholar]
  71. Stinski MF, Meier JL. 71.  2007. Immediate-early viral gene regulation and function. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman et al. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  72. Cheung AK, Abendroth A, Cunningham AL, Slobedman B. 72.  2006. Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood 108:3691–99 [Google Scholar]
  73. Goodrum F, Caviness K, Zagallo P. 73.  2012. Human cytomegalovirus persistence. Cell Microbiol 14:644–55 [Google Scholar]
  74. Murphy JC, Fischle W, Verdin E, Sinclair JH. 74.  2002. Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21:1112–20 [Google Scholar]
  75. Poole E, King CA, Sinclair JH, Alcami A. 75.  2006. The UL144 gene product of human cytomegalovirus activates NFκB via a TRAF6-dependent mechanism. EMBO J 25:4390–99 [Google Scholar]
  76. Bego M, Maciejewski J, Khaiboullina S, Pari G, St. Jeor S. 76.  2005. Characterization of an antisense transcript spanning the UL81-82 locus of human cytomegalovirus. J. Virol. 79:11022–34 [Google Scholar]
  77. Keyes LR, Hargett D, Soland M, Bego MG, Rossetto CC. 77.  et al. 2012. HCMV protein LUNA is required for viral reactivation from latently infected primary CD14+ cells. PLOS ONE 7e52827
  78. Reeves MB, Sinclair JH. 78.  2010. Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J. Gen. Virol. 91:599–604 [Google Scholar]
  79. Beisser PS, Laurent L, Virelizier JL, Michelson S. 79.  2001. Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J. Virol. 75:5949–57 [Google Scholar]
  80. Vomaske J, Nelson JA, Streblow DN. 80.  2009. Human cytomegalovirus US28: a functionally selective chemokine binding receptor. Infect. Disord. Drug Targets 9:548–56 [Google Scholar]
  81. Jenkins C, Abendroth A, Slobedman B. 81.  2004. A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J. Virol. 78:1440–47 [Google Scholar]
  82. Poole E, Avdic S, Hodkinson J, Jackson S, Wills M. 82.  et al. 2014. Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. J. Virol. 88:13947–55 [Google Scholar]
  83. Tarrant-Elorza M, Rossetto CC, Pari GS. 83.  2014. Maintenance and replication of the human cytomegalovirus genome during latency. Cell Host Microbe 16:43–54 [Google Scholar]
  84. White KL, Slobedman B, Mocarski ES. 84.  2000. Human cytomegalovirus latency-associated protein pORF94 is dispensable for productive and latent infection. J. Virol. 74:9333–37 [Google Scholar]
  85. Kurz SK, Reddehase MJ. 85.  1999. Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J. Virol. 73:8612–22 [Google Scholar]
  86. Giordani NV, Neumann DM, Kwiatkowski DL, Bhattacharjee PS, McAnany PK. 86.  et al. 2008. During herpes simplex virus type 1 infection of rabbits, the ability to express the latency-associated transcript increases latent-phase transcription of lytic genes. J. Virol. 82:6056–60 [Google Scholar]
  87. Kramer MF, Chen SH, Knipe DM, Coen DM. 87.  1998. Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. J. Virol. 72:1177–85 [Google Scholar]
  88. Ma JZ, Russell TA, Spelman T, Carbone FR, Tscharke DC. 88.  2014. Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response. PLOS Pathog 10:e1004237 [Google Scholar]
  89. Nagel MA, Choe A, Traktinskiy I, Cordery-Cotter R, Gilden D, Cohrs RJ. 89.  2011. Varicella-zoster virus transcriptome in latently infected human ganglia. J. Virol. 85:2276–87 [Google Scholar]
  90. Pan D, Flores O, Umbach JL, Pesola JM, Bentley P. 90.  et al. 2014. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 15:446–56 [Google Scholar]
  91. Kim JY, Mandarino A, Chao MV, Mohr I, Wilson AC. 91.  2012. Transient reversal of episome silencing precedes VP16-dependent transcription during reactivation of latent HSV-1 in neurons. PLOS Pathog 8:e1002540 [Google Scholar]
  92. Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R. 92.  et al. 2010. Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe 8:320–30 [Google Scholar]
  93. Cliffe AR, Arbuckle JH, Vogel JL, Geden MJ, Rothbart SB. 93.  et al. 2015. Neuronal stress pathway mediating a histone methyl/phospho switch is required for herpes simplex virus reactivation. Cell Host Microbe 18:649–58 [Google Scholar]
  94. Liang Y, Quenelle D, Vogel JL, Mascaro C, Ortega A, Kristie TM. 94.  2013. A novel selective LSD1/KDM1A inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency. mBio 4:e00558–12 [Google Scholar]
  95. Imperiale MJ, Jiang M. 95.  2015. What DNA viral genomic rearrangements tell us about persistence. J. Virol. 89:1948–50 [Google Scholar]
  96. Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR. 96.  1996. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 70:78–83 [Google Scholar]
  97. Wang W, Taylor SL, Leisenfelder SA, Morton R, Moffat JF. 97.  et al. 2005. Human cytomegalovirus genes in the 15-kilobase region are required for viral replication in implanted human tissues in SCID mice. J. Virol. 79:2115–23 [Google Scholar]
  98. Brown JM, Kaneshima H, Mocarski ES. 98.  1995. Dramatic interstrain differences in the replication of human cytomegalovirus in SCID-hu mice. J. Infect. Dis. 171:1599–603 [Google Scholar]
  99. Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G. 99.  et al. 2004. Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol. 78:10023–33 [Google Scholar]
  100. Mocarski ES, Bonyhadi M, Salimi S, McCune JM, Kaneshima H. 100.  1993. Human cytomegalovirus in a SCID-hu mouse: Thymic epithelial cells are prominent targets of viral replication. PNAS 90:104–8 [Google Scholar]
  101. Prichard MN, Penfold ME, Duke GM, Spaete RR, Kemble GW. 101.  2001. A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev. Med. Virol. 11:191–200 [Google Scholar]
  102. Penfold ME, Dairaghi DJ, Duke GM, Saederup N, Mocarski ES. 102.  et al. 1999. Cytomegalovirus encodes a potent α chemokine. PNAS 96:9839–44 [Google Scholar]
  103. Tomasec P, Wang EC, Davison AJ, Vojtesek B, Armstrong M. 103.  et al. 2005. Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat. Immunol. 6:181–88 [Google Scholar]
  104. Hsu JL, van den Boomen DJ, Tomasec P, Weekes MP, Antrobus R. 104.  et al. 2015. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLOS Pathog 11:e1004811 [Google Scholar]
  105. Smith W, Tomasec P, Aicheler R, Loewendorf A, Nemcovicova I. 105.  et al. 2013. Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host Microbe 13:324–35 [Google Scholar]
  106. Poole E, Atkins E, Nakayama T, Yoshie O, Groves I. 106.  et al. 2008. NF-κB-mediated activation of the chemokine CCL22 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IE86. J. Virol. 82:4250–56 [Google Scholar]
  107. Bughio F, Elliott DA, Goodrum F. 107.  2013. An endothelial cell-specific requirement for the UL133-UL138 locus of human cytomegalovirus for efficient virus maturation. J. Virol. 87:3062–75 [Google Scholar]
  108. Bughio F, Umashankar M, Wilson J, Goodrum F. 108.  2015. Human cytomegalovirus UL135 and UL136 genes are required for post-entry tropism in endothelial cells. J. Virol. 89:6536–50 [Google Scholar]
  109. Stanton RJ, Prod'homme V, Purbhoo MA, Moore M, Aicheler RJ. 109.  et al. 2014. HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells. Cell Host Microbe 16:201–14 [Google Scholar]
  110. Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C, Koszinowski U. 110.  2006. Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J. Gen. Virol. 87:2451–60 [Google Scholar]
  111. Wang D, Shenk T. 111.  2005. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. PNAS 102:18153–58 [Google Scholar]
  112. Ryckman BJ, Rainish BL, Chase MC, Borton JA, Nelson JA. 112.  et al. 2008. Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J. Virol. 82:60–70 [Google Scholar]
  113. Dutta N, Lashmit P, Yuan J, Meier J, Stinski MF. 113.  2015. The human cytomegalovirus UL133-138 gene locus attenuates the lytic viral cycle in fibroblasts. PLOS ONE 10:e0120946 [Google Scholar]
  114. Lee SH, Albright ER, Lee JH, Jacobs D, Kalejta RF. 114.  2015. Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. Sci. Adv. 1:e1501164 [Google Scholar]
  115. Cheung AK, Gottlieb DJ, Plachter B, Pepperl-Klindworth S, Avdic S. 115.  et al. 2009. The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: Implications for virus elimination during latency. Blood 114:4128–37 [Google Scholar]
  116. Petrucelli A, Umashankar M, Zagallo P, Rak M, Goodrum F. 116.  2012. Interactions between proteins encoded within the human cytomegalovirus UL133-UL138 locus. J. Virol. 86:8653–62 [Google Scholar]
  117. Grainger L, Cicchini L, Rak M, Petrucelli A, Fitzgerald KD. 117.  et al. 2010. Stress-inducible alternative translation initiation of human cytomegalovirus latency protein pUL138. J. Virol. 84:9472–86 [Google Scholar]
  118. Buehler J, Zeltzer S, Reitsma J, Petrucelli A, Umashankar M. 118.  et al. 2016. Opposing regulation of the EGF receptor: a molecular switch controlling cytomegalovirus latency and replication. PLOS Pathog. 12:e1005655 [Google Scholar]
  119. Saffert RT, Kalejta RF. 119.  2006. Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J. Virol. 80:3863–71 [Google Scholar]
  120. Woodhall DL, Groves IJ, Reeves MB, Wilkinson G, Sinclair JH. 120.  2006. Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J. Biol. Chem. 281:37652–60 [Google Scholar]
  121. Wagenknecht N, Reuter N, Scherer M, Reichel A, Muller R, Stamminger T. 121.  2015. Contribution of the major ND10 proteins PML, hDaxx and Sp100 to the regulation of human cytomegalovirus latency and lytic replication in the monocytic cell line THP-1. Viruses 7:2884–907 [Google Scholar]
  122. Dag F, Dolken L, Holzki J, Drabig A, Weingartner A. 122.  et al. 2014. Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency. PLOS Pathog 10:e1003962 [Google Scholar]
  123. Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH. 123.  2005. Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. PNAS 102:4140–45 [Google Scholar]
  124. Gatherer D, Seirafian S, Cunningham C, Holton M, Dargan DJ. 124.  et al. 2011. High-resolution human cytomegalovirus transcriptome. PNAS 108:19755–60 [Google Scholar]
  125. Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH. 125.  2007. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316:1345–48 [Google Scholar]
  126. Abraham CG, Kulesza CA. 126.  2013. Polycomb repressive complex 2 silences human cytomegalovirus transcription in quiescent infection models. J. Virol. 87:13193–205 [Google Scholar]
  127. Frappier L. 127.  2015. Regulation of herpesvirus reactivation by host microRNAs. J. Virol. 89:2456–58 [Google Scholar]
  128. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. 128.  2008. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–83 [Google Scholar]
  129. Grey F, Meyers H, White EA, Spector DH, Nelson J. 129.  2007. A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLOS Pathog 3:e163 [Google Scholar]
  130. Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ. 130.  2008. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. PNAS 105:5453–58 [Google Scholar]
  131. Ellis-Connell AL, Iempridee T, Xu I, Mertz JE. 131.  2010. Cellular microRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication. J. Virol. 84:10329–43 [Google Scholar]
  132. Lin Z, Wang X, Fewell C, Cameron J, Yin Q, Flemington EK. 132.  2010. Differential expression of the miR-200 family microRNAs in epithelial and B cells and regulation of Epstein-Barr virus reactivation by the miR-200 family member miR-429. J. Virol. 84:7892–97 [Google Scholar]
  133. Mucke K, Paulus C, Bernhardt K, Gerrer K, Schon K. 133.  et al. 2014. Human cytomegalovirus major immediate early 1 protein targets host chromosomes by docking to the acidic pocket on the nucleosome surface. J. Virol. 88:1228–48 [Google Scholar]
  134. Gao JL, Murphy PM. 134.  1994. Human cytomegalovirus open reading frame US28 encodes a functional β chemokine receptor. J. Biol. Chem. 269:28539–42 [Google Scholar]
  135. Vomaske J, Melnychuk RM, Smith PP, Powell J, Hall L. 135.  et al. 2009. Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility. PLOS Pathog 5:e1000304 [Google Scholar]
  136. Jenkins C, Garcia W, Godwin MJ, Spencer JV, Stern JL. 136.  et al. 2008. Immunomodulatory properties of a viral homolog of human interleukin-10 expressed by human cytomegalovirus during the latent phase of infection. J. Virol. 82:3736–50 [Google Scholar]
  137. Powers C, DeFilippis V, Malouli D, Fruh K. 137.  2008. Cytomegalovirus immune evasion. Curr. Top Microbiol. Immunol. 325:333–59 [Google Scholar]
  138. Stinski MF, Isomura H. 138.  2008. Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med. Microbiol. Immunol. 197:223–31 [Google Scholar]
  139. Caposio P, Luganini A, Bronzini M, Landolfo S, Gribaudo G. 139.  2010. The Elk-1 and serum response factor binding sites in the major immediate-early promoter of human cytomegalovirus are required for efficient viral replication in quiescent cells and compensate for inactivation of the NF-κB sites in proliferating cells. J. Virol. 84:4481–93 [Google Scholar]
  140. Benedict CA, Angulo A, Patterson G, Ha S, Huang H. 140.  et al. 2004. Neutrality of the canonical NF-κB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J. Virol. 78:741–50 [Google Scholar]
  141. Caposio P, Luganini A, Hahn G, Landolfo S, Gribaudo G. 141.  2007. Activation of the virus-induced IKK/NF-κB signalling axis is critical for the replication of human cytomegalovirus in quiescent cells. Cell Microbiol 9:2040–54 [Google Scholar]
  142. DeMeritt IB, Milford LE, Yurochko AD. 142.  2004. Activation of the NF-κB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J. Virol. 78:4498–507 [Google Scholar]
  143. Liu R, Baillie J, Sissons JG, Sinclair JH. 143.  1994. The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acids Res 22:2453–59 [Google Scholar]
  144. Wright E, Bain M, Teague L, Murphy J, Sinclair J. 144.  2005. Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J. Gen. Virol. 86:535–44 [Google Scholar]
  145. Poole E, McGregor Dallas SR, Colston J, Joseph RS, Sinclair J. 145.  2011. Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34 progenitors. J. Gen. Virol. 92:1539–49 [Google Scholar]
  146. Chan G, Bivins-Smith ER, Smith MS, Yurochko AD. 146.  2008. Transcriptome analysis of NF-κB- and phosphatidylinositol 3-kinase-regulated genes in human cytomegalovirus-infected monocytes. J. Virol. 82:1040–46 [Google Scholar]
  147. Johnson RA, Wang X, Ma XL, Huong SM, Huang ES. 147.  2001. Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: Inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J. Virol. 75:6022–32 [Google Scholar]
  148. Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES. 148.  2003. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424:456–61 [Google Scholar]
  149. Chan G, Nogalski MT, Yurochko AD. 149.  2009. Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. PNAS 106:22369–74 [Google Scholar]
  150. Smith MS, Bentz GL, Smith PM, Bivins ER, Yurochko AD. 150.  2004. HCMV activates PI(3)K in monocytes and promotes monocyte motility and transendothelial migration in a PI(3)K-dependent manner. J. Leukoc. Biol. 76:65–76 [Google Scholar]
  151. Reeves MB, Breidenstein A, Compton T. 151.  2012. Human cytomegalovirus activation of ERK and myeloid cell leukemia-1 protein correlates with survival of latently infected cells. PNAS 109:588–93 [Google Scholar]
  152. Chan G, Nogalski MT, Bentz GL, Smith MS, Parmater A, Yurochko AD. 152.  2010. PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes. J. Immunol. 184:3213–22 [Google Scholar]
  153. Peppenelli MA, Arend KC, Cojohari O, Moorman NJ, Chan GC. 153.  2016. Human cytomegalovirus stimulates the synthesis of select Akt-dependent antiapoptotic proteins during viral entry to promote survival of infected monocytes. J. Virol. 903138–47
  154. Fairley JA, Baillie J, Bain M, Sinclair JH. 154.  2002. Human cytomegalovirus infection inhibits epidermal growth factor (EGF) signalling by targeting EGF receptors. J. Gen. Virol. 83:2803–10 [Google Scholar]
  155. Jafferji I, Bain M, King C, Sinclair JH. 155.  2009. Inhibition of epidermal growth factor receptor (EGFR) expression by human cytomegalovirus correlates with an increase in the expression and binding of Wilms' tumour 1 protein to the EGFR promoter. J. Gen. Virol. 90:1569–74 [Google Scholar]
  156. Kung CP, Meckes DG Jr., Raab-Traub N. 156.  2011. Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCδ. J. Virol. 85:4399–408 [Google Scholar]
  157. Kung CP, Raab-Traub N. 157.  2010. Epstein-Barr virus latent membrane protein 1 modulates distinctive NF- κB pathways through C-terminus-activating region 1 to regulate epidermal growth factor receptor expression. J. Virol. 84:6605–14 [Google Scholar]
  158. Miller WE, Earp HS, Raab-Traub N. 158.  1995. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J. Virol. 69:4390–98 [Google Scholar]
  159. Miller WE, Mosialos G, Kieff E, Raab-Traub N. 159.  1997. Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-κB activation. J. Virol. 71:586–94 [Google Scholar]
  160. Portis T, Longnecker R. 160.  2004. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 23:8619–28 [Google Scholar]
  161. Alwine JC. 161.  2012. The human cytomegalovirus assembly compartment: a masterpiece of viral manipulation of cellular processes that facilitates assembly and egress. PLOS Pathog 8:e1002878 [Google Scholar]
  162. Das S, Pellett PE. 162.  2011. Spatial relationships between markers for secretory and endosomal machinery in human cytomegalovirus-infected cells versus those in uninfected cells. J. Virol. 85:5864–79 [Google Scholar]
  163. Sanchez V, Greis KD, Sztul E, Britt WJ. 163.  2000. Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J. Virol. 74:975–86 [Google Scholar]
  164. Hook LM, Grey F, Grabski R, Tirabassi R, Doyle T. 164.  et al. 2014. Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15:363–73 [Google Scholar]
  165. Krzyzaniak MA, Mach M, Britt WJ. 165.  2009. HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 10:1439–57 [Google Scholar]
  166. Clippinger AJ, Maguire TG, Alwine JC. 166.  2011. Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. J. Virol. 85:9369–76 [Google Scholar]
  167. Le VT, Trilling M, Hengel H. 167.  2011. The cytomegaloviral protein pUL138 acts as potentiator of TNF receptor 1 surface density to enhance ULb'-encoded modulation of TNF-α signaling. J. Virol. 85:13260–70 [Google Scholar]
  168. Montag C, Wagner JA, Gruska I, Vetter B, Wiebusch L, Hagemeier C. 168.  2011. The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor alpha (TNF-α) signaling by upregulating TNF-α receptor 1 cell surface expression. J. Virol. 85:11409–21 [Google Scholar]
  169. Weekes MP, Tan SY, Poole E, Talbot S, Antrobus R. 169.  et al. 2013. Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science 340:199–202 [Google Scholar]
  170. Hummel M, Zhang Z, Yan S, DePlaen I, Golia P. 170.  et al. 2001. Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency. J. Virol. 75:4814–22 [Google Scholar]
  171. Simon CO, Seckert CK, Dreis D, Reddehase MJ, Grzimek NK. 171.  2005. Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. J. Virol. 79:326–40 [Google Scholar]
  172. Soderberg-Naucler C, Fish KN, Nelson JA. 172.  1997. Interferon-γ and tumor necrosis factor-α specifically induce formation of cytomegalovirus-permissive monocyte-derived macrophages that are refractory to the antiviral activity of these cytokines. J. Clin. Investig. 100:3154–63 [Google Scholar]
  173. Kim SY, Solomon DH. 173.  2010. Tumor necrosis factor blockade and the risk of viral infection. Nat. Rev. Rheumatol. 6:165–74 [Google Scholar]
  174. Moorman NJ, Cristea IM, Terhune SS, Rout MP, Chait BT, Shenk T. 174.  2008. Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell Host Microbe 3:253–62 [Google Scholar]
  175. Moorman NJ, Shenk T. 175.  2010. Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication. J. Virol. 84:5260–69 [Google Scholar]
  176. Clippinger AJ, Maguire TG, Alwine JC. 176.  2011. The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection. J. Virol. 85:3930–39 [Google Scholar]
  177. Rauwel B, Jang SM, Cassano M, Kapopoulou A, Barde I, Trono D. 177.  2015. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. eLife 4:e06068 [Google Scholar]
  178. Chang PC, Fitzgerald LD, Van Geelen A, Izumiya Y, Ellison TJ. 178.  et al. 2009. Kruppel-associated box domain-associated protein-1 as a latency regulator for Kaposi's sarcoma-associated herpesvirus and its modulation by the viral protein kinase. Cancer Res 69:5681–89 [Google Scholar]
  179. Cai Q, Cai S, Zhu C, Verma SC, Choi JY, Robertson ES. 179.  2013. A unique SUMO-2-interacting motif within LANA is essential for KSHV latency. PLOS Pathog 9:e1003750 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error