1932

Abstract

There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-093413
2023-09-29
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-111821-093413.html?itemId=/content/journals/10.1146/annurev-virology-111821-093413&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mercer J, Lee JE, Saphire EO, Freeman SA. 2020. Snapshot: enveloped virus entry. Cell 182:3786
    [Google Scholar]
  2. 2.
    White JM, Delos SE, Brecher M, Schornberg K. 2008. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 43:3189–219
    [Google Scholar]
  3. 3.
    Harrison SC. 2015. Viral membrane fusion. Virology 479–480:498–507
    [Google Scholar]
  4. 4.
    White JM, Whittaker GR. 2016. Fusion of enveloped viruses in endosomes. Traffic 17:6593–614
    [Google Scholar]
  5. 5.
    Rey FA, Lok S-M. 2018. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell 172:61319–34
    [Google Scholar]
  6. 6.
    Ebel H, Benecke T, Vollmer B. 2022. Stabilisation of viral membrane fusion proteins in prefusion conformation by structure-based design for structure determination and vaccine development. Viruses 14:81816
    [Google Scholar]
  7. 7.
    Torrents de la Peña A, Sliepen K, Eshun-Wilson L, Newby M, Allen JD et al. 2021. Structure of the hepatitis C virus E1E2 glycoprotein complex. Science 378:6617263–69
    [Google Scholar]
  8. 8.
    Oliver MR, Toon K, Lewis CB, Devlin S, Gifford RJ, Grove J. 2022. Evidence of a novel viral membrane fusion mechanism shared by the Hepaci, Pegi and Pestiviruses. bioRxiv 2022.10.18.512720. https://doi.org/10.1101/2022.10.18.512720
    [Crossref]
  9. 9.
    Kumar A, Rohe TC, Elrod EJ, Khan AG, Dearborn AD et al. 2023. Regions of hepatitis C virus E2 required for membrane association. Nat. Commun. 14:1433
    [Google Scholar]
  10. 10.
    Katz M, Weinstein J, Eilon-Ashkenazy M, Gehring K, Cohen-Dvashi H et al. 2022. Structure and receptor recognition by the Lassa virus spike complex. Nature 603:7899174–79
    [Google Scholar]
  11. 11.
    Vaney M-C, Dellarole M, Duquerroy S, Medits I, Tsouchnikas G et al. 2022. Evolution and activation mechanism of the flavivirus class II membrane-fusion machinery. Nat. Commun. 13:13718
    [Google Scholar]
  12. 12.
    Guardado-Calvo P, Rey FA. 2021. The viral class II membrane fusion machinery: divergent evolution from an ancestral heterodimer. Viruses 13:122368
    [Google Scholar]
  13. 13.
    David SC, Vadas O, Glas I, Schaub A, Luo B et al. 2022. Inactivation of influenza A virus by pH conditions encountered in expiratory aerosol particles results from localized conformational changes within haemagglutinin and matrix 1 proteins. bioRxiv 2022.11.01.514690. https://doi.org/10.1101/2022.11.01.514690
    [Crossref]
  14. 14.
    Russell CJ, Hu M, Okda FA. 2018. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 26:10841–53
    [Google Scholar]
  15. 15.
    Theuerkauf SA, Michels A, Riechert V, Maier TJ, Flory E et al. 2021. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience 24:3102170
    [Google Scholar]
  16. 16.
    Zhou M, Vollmer B, Machala E, Chen M, Grünewald K et al. 2022. Caught in the act: targeted mutagenesis of the herpesvirus glycoprotein B central helix captures fusion transition states. bioRxiv 2022.11.23.517751. https://doi.org/10.1101/2022.11.23.517751
    [Crossref]
  17. 17.
    Gamble A, Yeo YY, Butler AA, Tang H, Snedden CE et al. 2021. Drivers and distribution of henipavirus-induced syncytia: What do we know?. Viruses 13:91755
    [Google Scholar]
  18. 18.
    Cabot M, Kiessling V, White JM, Tamm LK. 2022. Endosomes supporting fusion mediated by vesicular stomatitis virus glycoprotein have distinctive motion and acidification. Traffic 23:4221–34
    [Google Scholar]
  19. 19.
    White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D et al. 2021. Drug combinations as a first line of defense against coronaviruses and other emerging viruses. mBio 12:6e0334721
    [Google Scholar]
  20. 20.
    Gruenberg J. 2020. Life in the lumen: the multivesicular endosome. Traffic 21:176–93
    [Google Scholar]
  21. 21.
    Mannsverk S, Villamil Giraldo AM, Kasson PM 2022. Influenza virus membrane fusion is promoted by the endosome-resident phospholipid bis(monoacylglycero)phosphate. J. Phys. Chem. B 126:4910445–51
    [Google Scholar]
  22. 22.
    Markosyan RM, Marin M, Zhang Y, Cohen FS, Melikyan GB. 2021. The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. PLOS Pathog. 17:9e1009488
    [Google Scholar]
  23. 23.
    Boonstra S, Blijleven JS, Roos WH, Onck PR, van der Giessen E, van Oijen AM. 2018. Hemagglutinin-mediated membrane fusion: a biophysical perspective. Annu. Rev. Biophys. 47:153–73
    [Google Scholar]
  24. 24.
    Beilstein F, Abou Hamdan A, Raux H, Belot L, Ouldali M et al. 2020. Identification of a pH-sensitive switch in VSV-G and a crystal structure of the G pre-fusion state highlight the VSV-G structural transition pathway. Cell Rep. 32:7108042
    [Google Scholar]
  25. 25.
    Caffrey M, Lavie A. 2021. pH-dependent mechanisms of influenza infection mediated by hemagglutinin. Front. Mol. Biosci. 8:777095
    [Google Scholar]
  26. 26.
    Trost JF, Wang W, Liang B, Galloway SE, Agbogu E et al. 2019. A conserved histidine in group-1 influenza subtype hemagglutinin proteins is essential for membrane fusion activity. Virology 536:78–90
    [Google Scholar]
  27. 27.
    Lee J, Gregory SM, Nelson EA, White JM, Tamm LK. 2016. The roles of histidines and charged residues as potential triggers of a conformational change in the fusion loop of Ebola virus glycoprotein. PLOS ONE 11:3e0152527
    [Google Scholar]
  28. 28.
    Gregory SM, Harada E, Liang B, Delos SE, White JM, Tamm LK. 2011. Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. PNAS 108:2711211–16
    [Google Scholar]
  29. 29.
    Gregory SM, Larsson P, Nelson EA, Kasson PM, White JM, Tamm LK. 2014. Ebolavirus entry requires a compact hydrophobic fist at the tip of the fusion loop. J. Virol. 88:126636–49
    [Google Scholar]
  30. 30.
    Han X, Bushweller JH, Cafiso DS, Tamm LK. 2001. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol. 8:8715–20
    [Google Scholar]
  31. 31.
    Harrison JS, Koellhoffer JF, Chandran K, Lai JR. 2012. Marburg virus glycoprotein GP2: pH-dependent stability of the ectodomain α-helical bundle. Biochemistry 51:122515–25
    [Google Scholar]
  32. 32.
    Hu M, Jones JC, Banoth B, Ojha CR, Crumpton JC et al. 2022. Swine H1N1 influenza virus variants with enhanced polymerase activity and HA stability promote airborne transmission in ferrets. J. Virol. 96:7e0010022
    [Google Scholar]
  33. 33.
    Chen B. 2019. Molecular mechanism of HIV-1 entry. Trends Microbiol. 27:10878–91
    [Google Scholar]
  34. 34.
    Contreras EM, Monreal IA, Ruvalcaba M, Ortega V, Aguilar HC. 2021. Antivirals targeting paramyxovirus membrane fusion. Curr. Opin. Virol. 51:34–47
    [Google Scholar]
  35. 35.
    Ortega V, Zamora JLR, Monreal IA, Hoffman DT, Ezzatpour S et al. 2022. Novel roles of the Nipah virus attachment glycoprotein and its mobility in early and late membrane fusion steps. mBio 13:3e0322221
    [Google Scholar]
  36. 36.
    Marcink TC, Zipursky G, Cheng W, Stearns K, Stenglein S et al. 2023. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. Sci. Adv. 9:6eade2727
    [Google Scholar]
  37. 37.
    Connolly SA, Jardetzky TS, Longnecker R. 2021. The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 19:2110–21
    [Google Scholar]
  38. 38.
    Fan Q, Hippler DP, Yang Y, Longnecker R, Connolly SA. 2022. Multiple sites on glycoprotein H (gH) functionally interact with the gB fusion protein to promote fusion during herpes simplex virus (HSV) entry. mBio 11:e03368–22
    [Google Scholar]
  39. 39.
    Si Z, Zhang J, Shivakoti S, Atanasov I, Tao C-L et al. 2018. Different functional states of fusion protein gB revealed on human cytomegalovirus by cryo electron tomography with Volta phase plate. PLOS Pathog. 14:12e1007452
    [Google Scholar]
  40. 40.
    Pataki Z, Rebolledo Viveros A, Heldwein EE 2022. Herpes simplex virus 1 entry glycoproteins form complexes before and during membrane fusion. mBio 13:5e0203922
    [Google Scholar]
  41. 41.
    Atanasiu D, Saw W, Cairns T, Friedman H, Eisenberg R, Cohen G. 2023. Receptor binding-induced conformational changes in herpes simplex virus glycoprotein D permit interaction with the gH/gL complex to activate fusion. Viruses 15:895
    [Google Scholar]
  42. 42.
    Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS et al. 2014. Lassa virus entry requires a trigger-induced receptor switch. Science 344:61911506–10
    [Google Scholar]
  43. 43.
    Liu J, Knopp KA, Rackaityte E, Wang CY, Laurie MT et al. 2022. Human sialomucin CD164 is an essential entry factor for lymphocytic choriomeningitis virus. bioRxiv 2022.01.24.477570. https://doi.org/10.1101/2022.01.24.477570
    [Crossref]
  44. 44.
    Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G et al. 2011. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477:7364340–43
    [Google Scholar]
  45. 45.
    Côté M, Misasi J, Ren T, Bruchez A, Lee K et al. 2011. Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature 477:7364344–48
    [Google Scholar]
  46. 46.
    Mittler E, Alkutkar T, Jangra RK, Chandran K. 2021. Direct intracellular visualization of Ebola virus-receptor interaction by in situ proximity ligation. mBio 12:1e03100–20
    [Google Scholar]
  47. 47.
    Warren CJ, Yu S, Peters DK, Barbachano-Guerrero A, Yang Q et al. 2022. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans. Cell 185:213980–91.e18
    [Google Scholar]
  48. 48.
    Hulseberg CE, Fénéant L, Szymańska KM, White JM. 2018. Lamp1 increases the efficiency of Lassa virus infection by promoting fusion in less acidic endosomal compartments. mBio 9:1e01818–17
    [Google Scholar]
  49. 49.
    Stejskal L, Kalemera MD, Lewis CB, Palor M, Walker L et al. 2022. An entropic safety catch controls hepatitis C virus entry and antibody resistance. eLife 11:e71854
    [Google Scholar]
  50. 50.
    DuBois RM, Vaney M-C, Tortorici MA, Kurdi RA, Barba-Spaeth G et al. 2013. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493:7433552–56
    [Google Scholar]
  51. 51.
    Dubé M, Etienne L, Fels M, Kielian M. 2016. Calcium-dependent rubella virus fusion occurs in early endosomes. J. Virol. 90:146303–13
    [Google Scholar]
  52. 52.
    Das PK, Kielian M. 2021. Molecular and structural insights into the life cycle of rubella virus. J. Virol. 95:10e02349–20
    [Google Scholar]
  53. 53.
    Kreutzberger AJB, Sanyal A, Saminathan A, Bloyet L-M, Stumpf S et al. 2022. SARS-CoV-2 requires acidic pH to infect cells. PNAS 119:38e2209514119
    [Google Scholar]
  54. 54.
    Whittaker GR, Daniel S, Millet JK. 2021. Coronavirus entry: how we arrived at SARS-CoV-2. Curr. Opin. Virol. 47:113–20
    [Google Scholar]
  55. 55.
    Jackson CB, Farzan M, Chen B, Choe H. 2021. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23:13–20
    [Google Scholar]
  56. 56.
    Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR. 2020. Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. J. Mol. Biol. 432:103309–25
    [Google Scholar]
  57. 57.
    Escalera A, Gonzalez-Reiche AS, Aslam S, Mena I, Laporte M et al. 2022. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe 30:3373–87.e7
    [Google Scholar]
  58. 58.
    Letko M, Marzi A, Munster V. 2020. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5:4562–69
    [Google Scholar]
  59. 59.
    Hoffmann M, Kleine-Weber H, Pöhlmann S. 2020. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78:4779–84.e5
    [Google Scholar]
  60. 60.
    Qu P, Evans JP, Kurhade C, Zeng C, Zheng Y-M et al. 2023. Determinants and mechanisms of the low fusogenicity and high dependence on endosomal entry of Omicron subvariants. mBio 10:e03176–22
    [Google Scholar]
  61. 61.
    Kawase M, Kataoka M, Shirato K, Matsuyama S. 2019. Biochemical analysis of coronavirus spike glycoprotein conformational intermediates during membrane fusion. J. Virol. 93:19e00785–19
    [Google Scholar]
  62. 62.
    Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS et al. 2012. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31:81947–60
    [Google Scholar]
  63. 63.
    Wang H, Shi Y, Song J, Qi J, Lu G et al. 2016. Ebola viral glycoprotein bound to its endosomal receptor Niemann–Pick C1. Cell 164:1–2258–68
    [Google Scholar]
  64. 64.
    Benhaim MA, Lee KK. 2020. New biophysical approaches reveal the dynamics and mechanics of type I viral fusion machinery and their interplay with membranes. Viruses 12:4413
    [Google Scholar]
  65. 65.
    Das DK, Bulow U, Diehl WE, Durham ND, Senjobe F et al. 2020. Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. PLOS Biol. 18:2e3000626
    [Google Scholar]
  66. 66.
    Durham ND, Howard AR, Govindan R, Senjobe F, Fels JM et al. 2020. Real-time analysis of individual Ebola virus glycoproteins reveals pre-fusion, entry-relevant conformational dynamics. Viruses 12:1103
    [Google Scholar]
  67. 67.
    Spence JS, Krause TB, Mittler E, Jangra RK, Chandran K. 2016. Direct visualization of Ebola virus fusion triggering in the endocytic pathway. mBio 7:1e01857–15
    [Google Scholar]
  68. 68.
    Lee J, Nyenhuis DA, Nelson EA, Cafiso DS, White JM, Tamm LK. 2017. Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. PNAS 114:38E7987–96
    [Google Scholar]
  69. 69.
    Odongo L. 2023. A study of cellular factors involved in membrane fusion mediated by the Ebola virus glycoprotein PhD Thesis, Univ. Va., Charlottesville, VA
  70. 70.
    Nathan L, Lai AL, Millet JK, Straus MR, Freed JH et al. 2020. Calcium ions directly interact with the Ebola virus fusion peptide to promote structure-function changes that enhance infection. ACS Infect. Dis. 6:2250–60
    [Google Scholar]
  71. 71.
    Kielian M. 2014. Mechanisms of virus membrane fusion proteins. Annu. Rev. Virol. 1:171–89
    [Google Scholar]
  72. 72.
    Dessau M, Modis Y. 2013. Crystal structure of glycoprotein C from Rift Valley fever virus. PNAS 110:51696–701
    [Google Scholar]
  73. 73.
    Barrett CT, Dutch RE. 2020. Viral membrane fusion and the transmembrane domain. Viruses 12:7693
    [Google Scholar]
  74. 74.
    Das DK, Govindan R, Nikić-Spiegel I, Krammer F, Lemke EA, Munro JB. 2018. Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell 174:4926–37.e12
    [Google Scholar]
  75. 75.
    Benhaim MA, Mangala Prasad V, Garcia NK, Guttman M, Lee KK 2020. Structural monitoring of a transient intermediate in the hemagglutinin fusion machinery on influenza virions. Sci. Adv. 6:18eaaz8822
    [Google Scholar]
  76. 76.
    Benton DJ, Gamblin SJ, Rosenthal PB, Skehel JJ. 2020. Structural transitions in influenza haemagglutinin at membrane fusion pH. Nature 583:7814150–53
    [Google Scholar]
  77. 77.
    Xu R, Wilson IA. 2011. Structural characterization of an early fusion intermediate of influenza virus hemagglutinin. J. Virol. 85:105172–82
    [Google Scholar]
  78. 78.
    Serrão VHB, Cook JD, Lee JE. 2021. Snapshot of an influenza virus glycoprotein fusion intermediate. Cell Rep. 35:7109152
    [Google Scholar]
  79. 79.
    Gao J, Gui M, Xiang Y. 2020. Structural intermediates in the low pH-induced transition of influenza hemagglutinin. PLOS Pathog 16:11e1009062
    [Google Scholar]
  80. 80.
    Li Z, Li T, Liu M, Ivanovic T. 2022. Hemagglutinin stability determines influenza A virus susceptibility to a broad-spectrum fusion inhibitor Arbidol. ACS Infect. Dis. 8:81543–52
    [Google Scholar]
  81. 81.
    Sengar A, Cervantes M, Kasson PM. 2022. Mechanistic dissection of antibody inhibition of influenza entry yields unexpected heterogeneity. Biophys. J. https://doi.org/10.1016/j.bpj.2022.10.026
    [Crossref] [Google Scholar]
  82. 82.
    Kim IS, Jenni S, Stanifer ML, Roth E, Whelan SPJ et al. 2017. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein. PNAS 114:1E28–36
    [Google Scholar]
  83. 83.
    Ladinsky MS, Gnanapragasam PN, Yang Z, West AP, Kay MS, Bjorkman PJ. 2020. Electron tomography visualization of HIV-1 fusion with target cells using fusion inhibitors to trap the pre-hairpin intermediate. eLife 9:e58411
    [Google Scholar]
  84. 84.
    Benton DJ, Nans A, Calder LJ, Turner J, Neu U et al. 2018. Influenza hemagglutinin membrane anchor. PNAS 115:4010112–17
    [Google Scholar]
  85. 85.
    Park HE, Gruenke JA, White JM. 2003. Leash in the groove mechanism of membrane fusion. Nat. Struct. Biol. 10:121048–53
    [Google Scholar]
  86. 86.
    Lu M, Ma X, Castillo-Menendez LR, Gorman J, Alsahafi N et al. 2019. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nature 568:7752415–19
    [Google Scholar]
  87. 87.
    Yang Z, Wang H, Liu AZ, Gristick HB, Bjorkman PJ. 2019. Asymmetric opening of HIV-1 Env bound to CD4 and a coreceptor-mimicking antibody. Nat. Struct. Mol. Biol. 26:121167–75
    [Google Scholar]
  88. 88.
    Díaz-Salinas MA, Li Q, Ejemel M, Yurkovetskiy L, Luban J et al. 2022. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. eLife 11:e75433
    [Google Scholar]
  89. 89.
    Yang Z, Han Y, Ding S, Shi W, Zhou T et al. 2022. SARS-CoV-2 variants increase kinetic stability of open spike conformations as an evolutionary strategy. mBio 13:1e0322721
    [Google Scholar]
  90. 90.
    Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR et al. 2020. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588:7837327–30
    [Google Scholar]
  91. 91.
    Xu C, Wang Y, Liu C, Zhang C, Han W et al. 2021. Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Sci. Adv. 7:1eabe5575
    [Google Scholar]
  92. 92.
    Ke Z, Oton J, Qu K, Cortese M, Zila V et al. 2020. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588:7838498–502
    [Google Scholar]
  93. 93.
    Marcink TC, Kicmal T, Armbruster E, Zhang Z, Zipursky G et al. 2022. Intermediates in SARS-CoV-2 spike-mediated cell entry. Sci. Adv. 8:33eabo3153
    [Google Scholar]
  94. 94.
    Song Y, Yao H, Wu N, Xu J, Zhang Z et al. 2023. In situ architecture and membrane fusion of SARS-CoV-2 Delta variant. PNAS 120:18e2213332120
    [Google Scholar]
  95. 95.
    Costello SM, Shoemaker SR, Hobbs HT, Nguyen AW, Hsieh C-L et al. 2022. The SARS-CoV-2 spike reversibly samples an open-trimer conformation exposing novel epitopes. Nat. Struct. Mol. Biol. 29:3229–38
    [Google Scholar]
  96. 96.
    Chen C-L, Klose T, Sun C, Kim AS, Buda G et al. 2022. Cryo-EM structures of alphavirus conformational intermediates in low pH-triggered prefusion states. PNAS 119:30e2114119119
    [Google Scholar]
  97. 97.
    Mangala Prasad V, Blijleven JS, Smit JM, Lee KK 2022. Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery. Nat. Commun. 13:14772
    [Google Scholar]
  98. 98.
    Hover S, Charlton F, Hellert J, Barr J, Mankouri J, Fontana J. 2022. Organisation of the orthobunyavirus tripodal spike and the structural changes induced by low pH and K+ during entry. bioRxiv 2022.08.11.503604. https://doi.org/10.1101/2022.08.11.503604
    [Crossref]
  99. 99.
    Belot L, Ouldali M, Roche S, Legrand P, Gaudin Y, Albertini AA. 2020. Crystal structure of Mokola virus glycoprotein in its post-fusion conformation. PLOS Pathog. 16:3e1008383
    [Google Scholar]
  100. 100.
    Baquero E, Albertini AA, Raux H, Abou-Hamdan A, Boeri-Erba E et al. 2017. Structural intermediates in the fusion-associated transition of vesiculovirus glycoprotein. EMBO J. 36:5679–92
    [Google Scholar]
  101. 101.
    Abou-Hamdan A, Belot L, Albertini A, Gaudin Y. 2018. Monomeric intermediates formed by vesiculovirus glycoprotein during its low-pH-induced structural transition. J. Mol. Biol. 430:121685–95
    [Google Scholar]
  102. 102.
    Yang F, Lin S, Ye F, Yang J, Qi J et al. 2020. Structural analysis of rabies virus glycoprotein reveals pH-dependent conformational changes and interactions with a neutralizing antibody. Cell Host Microbe 27:3441–53.e7
    [Google Scholar]
  103. 103.
    Vollmer B, Pražák V, Vasishtan D, Jefferys EE, Hernandez-Duran A et al. 2020. The prefusion structure of herpes simplex virus glycoprotein B. Sci. Adv. 6:39eabc1726
    [Google Scholar]
  104. 104.
    Vollmer B, Grünewald K. 2020. Herpesvirus membrane fusion—a team effort. Curr. Opin. Struct. Biol. 62:112–20
    [Google Scholar]
  105. 105.
    Liu Y, Heim KP, Che Y, Chi X, Qiu X et al. 2021. Prefusion structure of human cytomegalovirus glycoprotein B and structural basis for membrane fusion. Sci. Adv. 7:10eabf3178
    [Google Scholar]
  106. 106.
    Cooper RS, Georgieva ER, Borbat PP, Freed JH, Heldwein EE. 2018. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat. Struct. Mol. Biol. 25:5416–24
    [Google Scholar]
  107. 107.
    Zheng Z, S, Long M. 2022. Simulation and prediction of membrane fusion dynamics. Theor. Appl. Mech. Lett. 12:1100321
    [Google Scholar]
  108. 108.
    Joardar A, Pattnaik GP, Chakraborty H. 2022. Mechanism of membrane fusion: interplay of lipid and peptide. J. Membr. Biol. 255:2–3211–24
    [Google Scholar]
  109. 109.
    Villamil Giraldo AM, Kasson PM. 2020. Bilayer-coated nanoparticles reveal how influenza viral entry depends on membrane deformability but not curvature. J. Phys. Chem. Lett. 11:177190–96
    [Google Scholar]
  110. 110.
    Liao Y, Zhang SM, Neo TL, Tam JP. 2015. Tryptophan-dependent membrane interaction and heteromerization with the internal fusion peptide by the membrane proximal external region of SARS-CoV spike protein. Biochemistry 54:91819–30
    [Google Scholar]
  111. 111.
    Winter SL, Golani G, Lolicato F, Vallbracht M, Thiyagarajah K et al. 2022. The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J. 21:e113578
    [Google Scholar]
  112. 112.
    Stauffer S, Feng Y, Nebioglu F, Heilig R, Picotti P, Helenius A. 2014. Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J. Virol. 88:2213029–46
    [Google Scholar]
  113. 113.
    Fontana J, Steven AC. 2013. At low pH, influenza virus matrix protein M1 undergoes a conformational change prior to dissociating from the membrane. J. Virol. 87:105621–28
    [Google Scholar]
  114. 114.
    Zhang YB, York J, Brindley MA, Nunberg JH, Melikyan GB. 2023. Fusogenic structural changes in arenavirus glycoproteins are associated with viroporin activity. bioRxiv 2023.02.20.529181. https://doi.org/10.1101/2023.02.20.529181
    [Crossref]
  115. 115.
    Ketter E, Randall G. 2019. Virus impact on lipids and membranes. Annu. Rev. Virol. 6:319–40
    [Google Scholar]
  116. 116.
    Meher G, Chakraborty H. 2019. Membrane composition modulates fusion by altering membrane properties and fusion peptide structure. J. Membr. Biol. 252:4–5261–72
    [Google Scholar]
  117. 117.
    Nieto-Garai JA, Contreras F-X, Arboleya A, Lorizate M. 2022. Role of protein–lipid interactions in viral entry. Adv. Biol. 6:3e2101264
    [Google Scholar]
  118. 118.
    Zaitseva E, Zaitsev E, Melikov K, Arakelyan A, Marin M et al. 2017. Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe 22:199–110.e7
    [Google Scholar]
  119. 119.
    Levental I, Levental KR, Heberle FA. 2020. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol. 30:5341–53
    [Google Scholar]
  120. 120.
    Huarte N, Carravilla P, Cruz A, Lorizate M, Nieto-Garai JA et al. 2016. Functional organization of the HIV lipid envelope. Sci. Rep. 6:34190
    [Google Scholar]
  121. 121.
    Ward AE, Sokovikova D, Waxham MN, Heberle FA, Levental I et al. 2023. Serinc5 restricts HIV membrane fusion by altering lipid order and heterogeneity in the viral membrane. ACS Infect. Dis. 9:773–84
    [Google Scholar]
  122. 122.
    Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J et al. 2012. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338:6106524–28
    [Google Scholar]
  123. 123.
    Nieto-Garai JA, Arboleya A, Otaegi S, Chojnacki J, Casas J et al. 2021. Cholesterol in the viral membrane is a molecular switch governing HIV-1 Env clustering. Adv. Sci. 8:32003468
    [Google Scholar]
  124. 124.
    Tran N, Oh Y, Sutherland M, Cui Q, Hong M. 2022. Cholesterol-mediated clustering of the HIV fusion protein gp41 in lipid bilayers. J. Mol. Biol. 434:2167345
    [Google Scholar]
  125. 125.
    Domanska MK, Dunning RA, Dryden KA, Zawada KE, Yeager M, Kasson PM. 2015. Hemagglutinin spatial distribution shifts in response to cholesterol in the influenza viral envelope. Biophys. J. 109:91917–24
    [Google Scholar]
  126. 126.
    Lee J, Kreutzberger AJB, Odongo L, Nelson EA, Nyenhuis DA et al. 2021. Ebola virus glycoprotein interacts with cholesterol to enhance membrane fusion and cell entry. Nat. Struct. Mol. Biol. 28:2181–89
    [Google Scholar]
  127. 127.
    Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A et al. 2021. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 10:e65962
    [Google Scholar]
  128. 128.
    Yang S-T, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. 2016. The role of cholesterol in membrane fusion. Chem. Phys. Lipids 199:136–43
    [Google Scholar]
  129. 129.
    Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. 2022. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophys. Rev. 14:51109–40
    [Google Scholar]
  130. 130.
    Yang S-T, Kreutzberger AJB, Kiessling V, Ganser-Pornillos BK, White JM, Tamm LK. 2017. HIV virions sense plasma membrane heterogeneity for cell entry. Sci. Adv. 3:6e1700338
    [Google Scholar]
  131. 131.
    Yang S-T, Kiessling V, Simmons JA, White JM, Tamm LK. 2015. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat. Chem. Biol. 11:6424–31
    [Google Scholar]
  132. 132.
    Molotkovsky RJ, Alexandrova VV, Galimzyanov TR, Jiménez-Munguía I, Pavlov KV et al. 2018. Lateral membrane heterogeneity regulates viral-induced membrane fusion during HIV entry. Int. J. Mol. Sci. 19:51483
    [Google Scholar]
  133. 133.
    Yang S-T, Kiessling V, Tamm LK. 2016. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion. Nat. Commun. 7:11401
    [Google Scholar]
  134. 134.
    Drews K, Calgi MP, Harrison WC, Drews CM, Costa-Pinheiro P et al. 2019. Glucosylceramidase maintains influenza virus infection by regulating endocytosis. J. Virol. 93:12e00017–19
    [Google Scholar]
  135. 135.
    Mori Y, Sakata M, Sakai S, Okamoto T, Nakatsu Y et al. 2022. Membrane sphingomyelin in host cells is essential for nucleocapsid penetration into the cytoplasm after hemifusion during rubella virus entry. mBio 13:6e0169822
    [Google Scholar]
  136. 136.
    Lorieau JL, Louis JM, Schwieters CD, Bax A. 2012. pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR. PNAS 109:4919994–99
    [Google Scholar]
  137. 137.
    Tristram-Nagle S, Nagle JF. 2007. HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys. J. 93:62048–55
    [Google Scholar]
  138. 138.
    Lai AL, Moorthy AE, Li Y, Tamm LK. 2012. Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion. J. Mol. Biol. 418:1–23–15
    [Google Scholar]
  139. 139.
    Lai AL, Tamm LK. 2010. Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion. J. Biol. Chem. 285:4837467–75
    [Google Scholar]
  140. 140.
    Rice A, Zimmerberg J, Pastor RW. 2023. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion. Biophys. J. 122:6P1018–32
    [Google Scholar]
  141. 141.
    Lagüe P, Roux B, Pastor RW. 2005. Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids. J. Mol. Biol. 354:51129–41
    [Google Scholar]
  142. 142.
    Guardado-Calvo P, Atkovska K, Jeffers SA, Grau N, Backovic M et al. 2017. A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion. Science 358:6363663–67
    [Google Scholar]
  143. 143.
    Shelly SS, Cairns TM, Whitbeck JC, Lou H, Krummenacher C et al. 2012. The membrane-proximal region (MPR) of herpes simplex virus gB regulates association of the fusion loops with lipid membranes. mBio 3:6e00429–12
    [Google Scholar]
  144. 144.
    Kwon B, Lee M, Waring AJ, Hong M. 2018. Oligomeric structure and three-dimensional fold of the HIV gp41 membrane-proximal external region and transmembrane domain in phospholipid bilayers. J. Am. Chem. Soc. 140:268246–59
    [Google Scholar]
  145. 145.
    Rychłowska M, Owsianka AM, Foung SKH, Dubuisson J, Bieńkowska-Szewczyk K, Patel AH. 2011. Comprehensive linker-scanning mutagenesis of the hepatitis C virus E1 and E2 envelope glycoproteins reveals new structure–function relationships. J. Gen. Virol. 92:Part 102249–61
    [Google Scholar]
  146. 146.
    Mangala Prasad V, Leaman DP, Lovendahl KN, Croft JT, Benhaim MA et al. 2022. Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag lattice. Cell 185:4641–53.e17
    [Google Scholar]
  147. 147.
    Kapoor K, Chen T, Tajkhorshid E. 2022. Posttranslational modifications optimize the ability of SARS-CoV-2 spike for effective interaction with host cell receptors. PNAS 119:28e2119761119
    [Google Scholar]
  148. 148.
    Kubiszewski-Jakubiak S, Worch R. 2022. Unique properties of Coronaviridae single-pass transmembrane domain regions as an adaptation to diverse membrane systems. Virology 570:1–8
    [Google Scholar]
  149. 149.
    Hollingsworth LR, Lemkul JA, Bevan DR, Brown AM. 2018. HIV-1 Env gp41 transmembrane domain dynamics are modulated by lipid, water, and ion interactions. Biophys. J. 115:184–94
    [Google Scholar]
  150. 150.
    Yao H, Lee MW, Waring AJ, Wong GCL, Hong M. 2015. Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus–cell fusion. PNAS 112:3510926–31
    [Google Scholar]
  151. 151.
    Schwarzer R, Levental I, Gramatica A, Scolari S, Buschmann V et al. 2014. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cell Microbiol. 16:101565–81
    [Google Scholar]
  152. 152.
    de Vries M, Herrmann A, Veit M. 2015. A cholesterol consensus motif is required for efficient intracellular transport and raft association of a group 2 HA from influenza virus. Biochem. J. 465:2305–14
    [Google Scholar]
  153. 153.
    Hu B, Höfer CT, Thiele C, Veit M. 2019. Cholesterol binding to the transmembrane region of a group 2 hemagglutinin (HA) of influenza virus is essential for virus replication, affecting both virus assembly and HA fusion activity. J. Virol. 93:15e00555–19
    [Google Scholar]
  154. 154.
    Barrantes FJ. 2022. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog. Lipid Res. 87:101166
    [Google Scholar]
  155. 155.
    Chlanda P, Zimmerberg J. 2016. Protein–lipid interactions critical to replication of the influenza A virus. FEBS Lett. 590:131940–54
    [Google Scholar]
  156. 156.
    Chemudupati M, Kenney AD, Bonifati S, Zani A, McMichael TM et al. 2019. From APOBEC to ZAP: diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim. Biophys. Acta Mol. Cell Res. 1866:3382–94
    [Google Scholar]
  157. 157.
    Majdoul S, Compton AA. 2022. Lessons in self-defence: inhibition of virus entry by intrinsic immunity. Nat. Rev. Immunol. 22:6339–52
    [Google Scholar]
  158. 158.
    Tenthorey JL, Emerman M, Malik HS. 2022. Evolutionary landscapes of host-virus arms races. Annu. Rev. Immunol. 40:271–94
    [Google Scholar]
  159. 159.
    Gómez-Herranz M, Taylor J, Sloan RD. 2022. IFITM proteins: understanding their diverse roles in viral infection, cancer, and immunity. J. Biol. Chem. 299:1102741
    [Google Scholar]
  160. 160.
    Jiménez-Munguía I, Beaven AH, Blank PS, Sodt AJ, Zimmerberg J. 2022. Interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. Curr. Opin. Struct. Biol. 77:102467
    [Google Scholar]
  161. 161.
    Shilagardi K, Spear ED, Abraham R, Griffin DE, Michaelis S. 2022. The integral membrane protein ZMPSTE24 protects cells from SARS-CoV-2 spike-mediated pseudovirus infection and syncytia formation. mBio 13:5e0254322
    [Google Scholar]
  162. 162.
    Xu S, Zheng Z, Pathak JL, Cheng H, Zhou Z et al. 2022. The emerging role of the serine incorporator protein family in regulating viral infection. Front. Cell Dev. Biol. 10:856468
    [Google Scholar]
  163. 163.
    Zhao F, Xu F, Liu X, Hu Y, Wei L et al. 2022. SERINC5 restricts influenza virus infectivity. PLOS Pathog. 18:10e1010907
    [Google Scholar]
  164. 164.
    Lai KK, Munro JB, Shi G, Majdoul S, Compton AA, Rein A. 2022. Restriction of influenza A virus by SERINC5. mBio 13:6e0292322
    [Google Scholar]
  165. 165.
    Diehl WE, Guney MH, Vanzo T, Kyawe PP, White JM et al. 2021. Influence of different glycoproteins and of the virion core on SERINC5 antiviral activity. Viruses 13:71279
    [Google Scholar]
  166. 166.
    Timilsina U, Stavrou S. 2023. SERINC5: one antiviral factor to bind them all. PLOS Pathog. 19:1e1011076
    [Google Scholar]
  167. 167.
    Ward AE, Kiessling V, Pornillos O, White JM, Ganser-Pornillos BK, Tamm LK. 2020. HIV-cell membrane fusion intermediates are restricted by Serincs as revealed by cryo-electron and TIRF microscopy. J. Biol. Chem. 295:4515183–95
    [Google Scholar]
  168. 168.
    Leonhardt SA, Purdy MD, Grover JR, Yang Z, Poulos S et al. 2022. CryoEM structures of the human HIV-1 restriction factor SERINC3 and function as a lipid transporter. bioRxiv 2022.07.06.498924. https://doi.org/10.1101/2022.07.06.498924
    [Crossref]
  169. 169.
    Luo S, Zhang J, Kreutzberger AJB, Eaton A, Edwards RJ et al. 2022. An antibody from single human VH-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion. Sci. Immunol. 7:76eadd5446
    [Google Scholar]
  170. 170.
    van Dongen MJP, Kadam RU, Juraszek J, Lawson E, Brandenburg B et al. 2019. A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science 363:6431eaar6221
    [Google Scholar]
  171. 171.
    Ng WM, Fedosyuk S, English S, Augusto G, Berg A et al. 2022. Structure of trimeric pre-fusion rabies virus glycoprotein in complex with two protective antibodies. Cell Host Microbe 30:91219–30.e7
    [Google Scholar]
  172. 172.
    Low JS, Jerak J, Tortorici MA, McCallum M, Pinto D et al. 2022. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 377:6607735–42
    [Google Scholar]
  173. 173.
    Dacon C, Tucker C, Peng L, Lee C-CD, Lin T-H et al. 2022. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377:6607728–35
    [Google Scholar]
  174. 174.
    Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. 2020. Neutralizing antibodies targeting HIV-1 gp41. Viruses 12:111210
    [Google Scholar]
  175. 175.
    Rantalainen K, Berndsen ZT, Antanasijevic A, Schiffner T, Zhang X et al. 2020. HIV-1 envelope and MPER antibody structures in lipid assemblies. Cell Rep. 31:4107583
    [Google Scholar]
  176. 176.
    Flyak AI, Kuzmina N, Murin CD, Bryan C, Davidson E et al. 2018. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. Nat. Microbiol. 3:6670–77
    [Google Scholar]
  177. 177.
    Guthmiller JJ, Han J, Utset HA, Li L, Lan LY-L et al. 2022. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature 602:7896314–20
    [Google Scholar]
  178. 178.
    De Cae S, Van Molle I, van Schie L, Shoemaker SR, Deckers J et al. 2023. Ultrapotent SARS coronavirus-neutralizing single-domain antibodies that bind a conserved membrane proximal epitope of the spike. bioRxiv 2023.03.10.531533. https://doi.org/10.1101/2023.03.10.531533
    [Crossref]
  179. 179.
    Marcink TC, Yariv E, Rybkina K, Más V, Bovier FT et al. 2020. Hijacking the fusion complex of human parainfluenza virus as an antiviral strategy. mBio 11:1e03203–19
    [Google Scholar]
  180. 180.
    Yang K, Wang C, Kreutzberger AJB, White KI, Pfuetzner RA et al. 2023. Structure-based design of a SARS-CoV-2 Omicron-specific inhibitor. PNAS 120:13e2300360120
    [Google Scholar]
  181. 181.
    de Vries RD, Schmitz KS, Bovier FT, Predella C, Khao J et al. 2021. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 371:65361379–82
    [Google Scholar]
  182. 182.
    Schmitz KS, Geers D, de Vries RD, Bovier TF, Mykytyn AZ et al. 2022. Potency of fusion-inhibitory lipopeptides against SARS-CoV-2 variants of concern. mBio 13:3e0124922
    [Google Scholar]
  183. 183.
    Kadam RU, Juraszek J, Brandenburg B, Buyck C, Schepens WBG et al. 2017. Potent peptidic fusion inhibitors of influenza virus. Science 358:6362496–502
    [Google Scholar]
  184. 184.
    Kadam RU, Wilson IA. 2017. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. PNAS 114:2206–14
    [Google Scholar]
  185. 185.
    Ren J, Zhao Y, Fry EE, Stuart DI. 2018. Target identification and mode of action of four chemically divergent drugs against Ebolavirus infection. J. Med. Chem. 61:3724–33
    [Google Scholar]
  186. 186.
    Xiao T, Frey G, Fu Q, Lavine CL, Scott DA et al. 2020. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat. Chem. Biol. 16:5529–37
    [Google Scholar]
  187. 187.
    Moi D, Nishio S, Li X, Valansi C, Langleib M et al. 2022. Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nat. Commun. 13:13880
    [Google Scholar]
  188. 188.
    Brukman NG, Li X, Podbilewicz B. 2021. Fusexins, HAP2/GCS1 and evolution of gamete fusion. Front. Cell Dev. Biol. 9:824024
    [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-093413
Loading
/content/journals/10.1146/annurev-virology-111821-093413
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error