1932

Abstract

Human and simian immunodeficiency viruses (HIVs and SIVs, respectively) encode several small proteins (Vif, Vpr, Nef, Vpu, and Vpx) that are called accessory because they are not generally required for viral replication in cell culture. However, they play complex and important roles for viral immune evasion and spread in vivo. Here, we discuss the diverse functions and the relevance of the viral protein U (Vpu) that is expressed from a bicistronic RNA during the late stage of the viral replication cycle and found only in HIV-1 and closely related SIVs. It is well established that Vpu counteracts the restriction factor tetherin, mediates degradation of the primary viral CD4 receptors, and inhibits activation of the transcription factor nuclear factor kappa B. Recent studies identified additional activities and provided new insights into the sophisticated mechanisms by which Vpu enhances and prolongs the release of fully infectious viral particles. In addition, it has been shown that Vpu prevents superinfection not only by degrading CD4 but also by modulating DNA repair mechanisms to promote degradation of nuclear viral complementary DNA in cells that are already productively infected.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-100816
2023-09-29
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-111821-100816.html?itemId=/content/journals/10.1146/annurev-virology-111821-100816&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sharp PM, Hahn BH. 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1:1a006841
    [Google Scholar]
  2. 2.
    Hahn BH, Shaw GM, De Cock KM, Sharp PM. 2000. AIDS as a zoonosis: scientific and public health implications. Science 287:5453607–14
    [Google Scholar]
  3. 3.
    Sauter D, Kirchhoff F. 2019. Key viral adaptations preceding the AIDS pandemic. Cell Host Microbe 25:127–38
    [Google Scholar]
  4. 4.
    Gifford RJ. 2012. Viral evolution in deep time: lentiviruses and mammals. Trends Genet 28:289–100
    [Google Scholar]
  5. 5.
    Etienne L, Hahn BH, Sharp PM, Matsen FA, Emerman M. 2013. Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. Cell Host Microbe 14:185–92
    [Google Scholar]
  6. 6.
    Sharp PM, Bailes E, Stevenson M, Emerman M, Hahn BH. 1996. Gene acquisition in HIV and SIV. Nature 383:6601586–87
    [Google Scholar]
  7. 7.
    Harris RS, Hultquist JF, Evans DT. 2012. The restriction factors of human immunodeficiency virus. J. Biol. Chem. 287:4940875–83
    [Google Scholar]
  8. 8.
    Malim MH, Bieniasz PD. 2012. HIV restriction factors and mechanisms of evasion. Cold Spring Harb. Perspect. Med. 2:5a006940
    [Google Scholar]
  9. 9.
    Kirchhoff F. 2010. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8:155–67
    [Google Scholar]
  10. 10.
    Bailes E, Gao F, Bibollet-Ruche F, Courgnaud V, Peeters M et al. 2003. Hybrid origin of SIV in chimpanzees. Science 300:56261713
    [Google Scholar]
  11. 11.
    Takeuchi JS, Ren F, Yoshikawa R, Yamada E, Nakano Y et al. 2015. Coevolutionary dynamics between tribe Cercopithecini tetherins and their lentiviruses. Sci. Rep. 5:116021
    [Google Scholar]
  12. 12.
    Bell SM, Bedford T. 2017. Modern-day SIV viral diversity generated by extensive recombination and cross-species transmission. PLOS Pathog 13:7e1006466
    [Google Scholar]
  13. 13.
    Péré H, Roques P, Talla F, Meillo H, Charpentier C, Bélec L. 2015. Sustained virological failure in Cameroonese patient infected by HIV-1 group N evidenced by sequence-based genotyping assay. AIDS 29:101267–69
    [Google Scholar]
  14. 14.
    Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M et al. 2011. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:7353658–61
    [Google Scholar]
  15. 15.
    Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C et al. 2011. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:7353654–57
    [Google Scholar]
  16. 16.
    Schwartz S, Felber BK, Fenyö EM, Pavlakis GN. 1990. Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J. Virol. 64:115448–56
    [Google Scholar]
  17. 17.
    Stano A, Leaman DP, Kim AS, Zhang L, Autin L et al. 2017. Dense array of spikes on HIV-1 virion particles. J. Virol. 91:14e00415–17
    [Google Scholar]
  18. 18.
    Zhu P, Liu J, Bess J, Chertova E, Lifson JD et al. 2006. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:7095847–52
    [Google Scholar]
  19. 19.
    Zhu P, Chertova E, Bess J, Lifson JD, Arthur LO et al. 2003. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. PNAS 100:2615812–17
    [Google Scholar]
  20. 20.
    Klein JS, Bjorkman PJ. 2010. Few and far between: how HIV may be evading antibody avidity. PLOS Pathog 6:5e1000908
    [Google Scholar]
  21. 21.
    Schiller J, Chackerian B. 2014. Why HIV virions have low numbers of envelope spikes: implications for vaccine development. PLOS Pathog 10:8e1004254
    [Google Scholar]
  22. 22.
    Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA. 1988. Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:6182532–34
    [Google Scholar]
  23. 23.
    Hout DR, Mulcahy ER, Pacyniak E, Gomez LM, Gomez ML, Stephens EB. 2004. Vpu: a multifunctional protein that enhances the pathogenesis of human immunodeficiency virus type 1. Curr. HIV Res. 2:3255–70
    [Google Scholar]
  24. 24.
    Khan N, Geiger JD. 2021. Role of viral protein U (Vpu) in HIV-1 infection and pathogenesis. Viruses 13:81466
    [Google Scholar]
  25. 25.
    Strebel K. 2014. HIV-1 Vpu—an ion channel in search of a job. Biochim. Biophys. Acta 1838:41074–81
    [Google Scholar]
  26. 26.
    McCormick-Davis C, Dalton SB, Singh DK, Stephens EB. 2000. Comparison of Vpu sequences from diverse geographical isolates of HIV type 1 identifies the presence of highly variable domains, additional invariant amino acids, and a signature sequence motif common to subtype C isolates. AIDS Res. Hum. Retroviruses 16:111089–95
    [Google Scholar]
  27. 27.
    Kueck T, Neil SJD. 2012. A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction. PLOS Pathog 8:3e1002609
    [Google Scholar]
  28. 28.
    McNatt MW, Zang T, Bieniasz PD. 2013. Vpu binds directly to tetherin and displaces it from nascent virions. PLOS Pathog 9:4e1003299
    [Google Scholar]
  29. 29.
    Mangeat B, Gers-Huber G, Lehmann M, Zufferey M, Luban J, Piguet V. 2009. HIV-1 Vpu neutralizes the antiviral factor tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLOS Pathog 5:9e1000574
    [Google Scholar]
  30. 30.
    Tervo H-M, Homann S, Ambiel I, Fritz JV, Fackler OT, Keppler OT. 2011. β-TrCP is dispensable for Vpu's ability to overcome the CD317/Tetherin-imposed restriction to HIV-1 release. Retrovirology 8:9
    [Google Scholar]
  31. 31.
    Douglas JL, Viswanathan K, McCarroll MN, Gustin JK, Früh K, Moses AV. 2009. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a βTrCP-dependent mechanism. J. Virol. 83:167931–47
    [Google Scholar]
  32. 32.
    Soper A, Juarez-Fernandez G, Aso H, Moriwaki M, Yamada E et al. 2017. Various plus unique: viral protein U as a plurifunctional protein for HIV-1 replication. Exp. Biol. Med. 242:8850–58
    [Google Scholar]
  33. 33.
    Sauter D, Kirchhoff F. 2018. Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 40:3–12
    [Google Scholar]
  34. 34.
    Kirchhoff F. 2009. Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution?. Nat. Rev. Microbiol. 7:6467–76
    [Google Scholar]
  35. 35.
    Dubé M, Bhusan Roy B, Guiot-Guillain P, Binette J, Mercier J et al. 2010. Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLOS Pathog 6:4e1000856
    [Google Scholar]
  36. 36.
    Bour S, Perrin C, Akari H, Strebel K. 2001. The human immunodeficiency virus type 1 Vpu protein inhibits NF-κB activation by interfering with βTrCP-mediated degradation of IκB. J. Biol. Chem. 276:1915920–28
    [Google Scholar]
  37. 37.
    Willey RL, Maldarelli F, Martin MA, Strebel K. 1992. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J. Virol. 66:127193–200
    [Google Scholar]
  38. 38.
    Geleziunas R, Bour S, Wainberg MA. 1994. Cell surface down-modulation of CD4 after infection by HIV-1. FASEB J 8:9593–600
    [Google Scholar]
  39. 39.
    Tanaka M, Ueno T, Nakahara T, Sasaki K, Ishimoto A, Sakai H. 2003. Downregulation of CD4 is required for maintenance of viral infectivity of HIV-1. Virology 311:2316–25
    [Google Scholar]
  40. 40.
    Bour S, Perrin C, Strebel K. 1999. Cell surface CD4 inhibits HIV-1 particle release by interfering with Vpu activity. J. Biol. Chem. 274:4733800–6
    [Google Scholar]
  41. 41.
    Wildum S, Schindler M, Munch J, Kirchhoff F. 2006. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J. Virol. 80:168047–59
    [Google Scholar]
  42. 42.
    Richard J, Prévost J, Alsahafi N, Ding S, Finzi A. 2018. Impact of HIV-1 envelope conformation on ADCC responses. Trends Microbiol 26:4253–65
    [Google Scholar]
  43. 43.
    Pham TN, Lukhele S, Hajjar F, Routy J-P, Cohen ÉA. 2014. HIV Nef and Vpu protect HIV-infected CD4+ T cells from antibody-mediated cell lysis through down-modulation of CD4 and BST2. Retrovirology 11:115
    [Google Scholar]
  44. 44.
    Veillette M, Coutu M, Richard J, Batraville L-A, Dagher O et al. 2015. The HIV-1 gp120 CD4-bound conformation is preferentially targeted by antibody-dependent cellular cytotoxicity-mediating antibodies in sera from HIV-1-infected individuals. J. Virol. 89:1545–51
    [Google Scholar]
  45. 45.
    Jia M, Li D, He X, Zhao Y, Peng H et al. 2013. Impaired natural killer cell-induced antibody-dependent cell-mediated cytotoxicity is associated with human immunodeficiency virus-1 disease progression. Clin. Exp. Immunol. 171:1107–16
    [Google Scholar]
  46. 46.
    Prévost J, Anand SP, Rajashekar JK, Zhu L, Richard J et al. 2022. HIV-1 Vpu restricts Fc-mediated effector functions in vivo. Cell Rep 41:6111624
    [Google Scholar]
  47. 47.
    Strebel K, Klimkait T, Maldarelli F, Martin MA. 1989. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J. Virol. 63:93784–91
    [Google Scholar]
  48. 48.
    Göttlinger HG, Dorfman T, Cohen EA, Haseltine WA. 1993. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. PNAS 90:157381–85
    [Google Scholar]
  49. 49.
    Neil SJD, Zang T, Bieniasz PD. 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:7177425–30
    [Google Scholar]
  50. 50.
    Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R et al. 2008. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:4245–52
    [Google Scholar]
  51. 51.
    Sauter D, Schindler M, Specht A, Landford WN, Münch J et al. 2009. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6:5409–21
    [Google Scholar]
  52. 52.
    Venkatesh S, Bieniasz PD. 2013. Mechanism of HIV-1 virion entrapment by tetherin. PLOS Pathog 9:7e1003483
    [Google Scholar]
  53. 53.
    Gomez LM, Pacyniak E, Flick M, Hout DR, Gomez ML et al. 2005. Vpu-mediated CD4 down-regulation and degradation is conserved among highly divergent SIVcpz strains. Virology 335:146–60
    [Google Scholar]
  54. 54.
    Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J et al. 2009. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLOS Pathog 5:5e1000429
    [Google Scholar]
  55. 55.
    Yang SJ, Lopez LA, Hauser H, Exline CM, Haworth KG, Cannon PM. 2010. Anti-tetherin activities in Vpu-expressing primate lentiviruses. Retrovirology 7:13
    [Google Scholar]
  56. 56.
    Vigan R, Neil SJD. 2011. Separable determinants of subcellular localization and interaction account for the inability of group O HIV-1 Vpu to counteract tetherin. J. Virol. 85:199737–48
    [Google Scholar]
  57. 57.
    Kluge SF, Mack K, Iyer SS, Pujol FM, Heigele A et al. 2014. Nef proteins of epidemic HIV-1 group O strains antagonize human tetherin. Cell Host Microbe 16:5639–50
    [Google Scholar]
  58. 58.
    Gupta RK, Towers GJ. 2009. A tail of tetherin: how pandemic HIV-1 conquered the world. Cell Host Microbe 6:5393–95
    [Google Scholar]
  59. 59.
    Sauter D, Specht A, Kirchhoff F. 2010. Tetherin: holding on and letting go. Cell 141:392–98
    [Google Scholar]
  60. 60.
    Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G. 2003. Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 4:10694–709
    [Google Scholar]
  61. 61.
    Blanco-Melo D, Venkatesh S, Bieniasz PD. 2016. Origins and evolution of tetherin, an orphan antiviral gene. Cell Host Microbe 20:2189–201
    [Google Scholar]
  62. 62.
    Heusinger E, Kluge SF, Kirchhoff F, Sauter D. 2015. Early vertebrate evolution of the host restriction factor tetherin. J. Virol. 89:2312154–65
    [Google Scholar]
  63. 63.
    Goffinet C, Allespach I, Homann S, Tervo H-M, Habermann A et al. 2009. HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe 5:3285–97
    [Google Scholar]
  64. 64.
    Gupta RK, Hué S, Schaller T, Verschoor E, Pillay D, Towers GJ. 2009. Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion. PLOS Pathog 5:5e1000443
    [Google Scholar]
  65. 65.
    Mitchell RS, Katsura C, Skasko MA, Fitzpatrick K, Lau D et al. 2009. Vpu antagonizes BST-2-mediated restriction of HIV-1 release via β-TrCP and endo-lysosomal trafficking. PLOS Pathog 5:5e1000450
    [Google Scholar]
  66. 66.
    Galão RP, Pickering S, Curnock R, Neil SJD. 2014. Retroviral retention activates a Syk-dependent HemITAM in human tetherin. Cell Host Microbe 16:3291–303
    [Google Scholar]
  67. 67.
    Galão RP, Le Tortorec A, Pickering S, Kueck T, Neil SJD 2012. Innate sensing of HIV-1 assembly by tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe 12:5633–44
    [Google Scholar]
  68. 68.
    Arias JF, Heyer LN, von Bredow B, Weisgrau KL, Moldt B et al. 2014. Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. PNAS 111:176425–30
    [Google Scholar]
  69. 69.
    Alvarez RA, Hamlin RE, Monroe A, Moldt B, Hotta MT et al. 2014. HIV-1 Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J. Virol. 88:116031–46
    [Google Scholar]
  70. 70.
    Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D et al. 2009. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6:154–67
    [Google Scholar]
  71. 71.
    Liberatore RA, Mastrocola EJ, Powell C, Bieniasz PD. 2017. Tetherin inhibits cell-free virus dissemination and retards murine leukemia virus pathogenesis. J. Virol. 91:12e02286–16
    [Google Scholar]
  72. 72.
    Yamada E, Nakaoka S, Klein L, Reith E, Langer S et al. 2018. Human-specific adaptations in Vpu conferring anti-tetherin activity are critical for efficient early HIV-1 replication in vivo. Cell Host Microbe 23:1110–20.e7
    [Google Scholar]
  73. 73.
    Kmiec D, Iyer SS, Stürzel CM, Sauter D, Hahn BH, Kirchhoff F. 2016. Vpu-mediated counteraction of tetherin is a major determinant of HIV-1 interferon resistance. mBio 7:4e00934–16
    [Google Scholar]
  74. 74.
    Casartelli N, Sourisseau M, Feldmann J, Guivel-Benhassine F, Mallet A et al. 2010. Tetherin restricts productive HIV-1 cell-to-cell transmission. PLOS Pathog 6:6e1000955
    [Google Scholar]
  75. 75.
    Kuhl BD, Sloan RD, Donahue DA, Bar-Magen T, Liang C, Wainberg MA. 2010. Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 7:115
    [Google Scholar]
  76. 76.
    Jolly C, Booth NJ, Neil SJD. 2010. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J. Virol. 84:2312185–99
    [Google Scholar]
  77. 77.
    Olety B, Peters P, Wu Y, Usami Y, Göttlinger H. 2021. HIV-1 propagation is highly dependent on basal levels of the restriction factor BST2. Sci. Adv. 7:44eabj7398
    [Google Scholar]
  78. 78.
    Chan JK, Greene WC. 2012. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Immunol. Rev. 246:1286–310
    [Google Scholar]
  79. 79.
    Calman AF, Busch MP, Vyas GN, McHugh TM, Stites DP, Peterlin BM. 1988. Transcription and replication of human immunodeficiency virus-1 in B lymphocytes in vitro. AIDS 2:3185–93
    [Google Scholar]
  80. 80.
    Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C et al. 2012. Human immunodeficiency virus-1 Tat activates NF-κB via physical interaction with IκB-α and p65. Nucleic Acids Res 40:83548–62
    [Google Scholar]
  81. 81.
    Mangino G, Percario ZA, Fiorucci G, Vaccari G, Acconcia F et al. 2011. HIV-1 Nef induces proinflammatory state in macrophages through its acidic cluster domain: involvement of TNF alpha receptor associated factor 2. PLOS ONE 6:8e22982
    [Google Scholar]
  82. 82.
    Pfeffer LM. 2011. The role of nuclear factor κB in the interferon response. J. Interferon Cytokine Res. 31:7553–59
    [Google Scholar]
  83. 83.
    Heusinger E, Kirchhoff F. 2017. Primate lentiviruses modulate NF-κB activity by multiple mechanisms to fine-tune viral and cellular gene expression. Front. Microbiol. 8:198
    [Google Scholar]
  84. 84.
    Sauter D, Hotter D, Van Driessche B, Stürzel CM, Kluge SF et al. 2015. Differential regulation of NF-κB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins. Cell Rep 10:4586–99
    [Google Scholar]
  85. 85.
    Tokarev A, Suarez M, Kwan W, Fitzpatrick K, Singh R, Guatelli J. 2013. Stimulation of NF-κB activity by the HIV restriction factor BST2. J. Virol. 87:42046–57
    [Google Scholar]
  86. 86.
    Akari H, Bour S, Kao S, Adachi A, Strebel K. 2001. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor κB–dependent expression of antiapoptotic factors. J. Exp. Med. 194:91299–311
    [Google Scholar]
  87. 87.
    Langer S, Hammer C, Hopfensperger K, Klein L, Hotter D et al. 2019. HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses.. eLife 8:e41930
    [Google Scholar]
  88. 88.
    Tak PP, Firestein GS. 2001. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107:17–11
    [Google Scholar]
  89. 89.
    Liu T, Zhang L, Joo D, Sun S-C. 2017. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2:117023
    [Google Scholar]
  90. 90.
    Oh H, Ghosh S. 2013. NF-κB: roles and regulation in different CD4+ T cell subsets. Immunol. Rev. 252:141–51
    [Google Scholar]
  91. 91.
    Galaski J, Ahmad F, Tibroni N, Pujol FM, Müller B et al. 2016. Cell surface downregulation of NK cell ligands by patient-derived HIV-1 Vpu and Nef alleles. JAIDS 72:11–10
    [Google Scholar]
  92. 92.
    Apps R, Del Prete GQ, Chatterjee P, Lara A, Brumme ZL et al. 2016. HIV-1 Vpu mediates HLA-C downregulation. Cell Host Microbe 19:5686–95
    [Google Scholar]
  93. 93.
    Matusali G, Potestà M, Santoni A, Cerboni C, Doria M. 2012. The human immunodeficiency virus type 1 Nef and Vpu proteins downregulate the natural killer cell-activating ligand PVR. J. Virol. 86:84496–504
    [Google Scholar]
  94. 94.
    van Stigt Thans T, Akko JI, Niehrs A, Garcia-Beltran WF, Richert L et al. 2019. Primary HIV-1 strains use Nef to downmodulate HLA-E surface expression. J. Virol. 93:20e00719–19
    [Google Scholar]
  95. 95.
    Hopfensperger K, Richard J, Stürzel CM, Bibollet-Ruche F, Apps R et al. 2020. Convergent evolution of HLA-C downmodulation in HIV-1 and HIV-2. mBio 11:4e00782–20
    [Google Scholar]
  96. 96.
    Bachtel ND, Umviligihozo G, Pickering S, Mota TM, Liang H et al. 2018. HLA-C downregulation by HIV-1 adapts to host HLA genotype. PLOS Pathog 14:9e1007257
    [Google Scholar]
  97. 97.
    Ramirez PW, Famiglietti M, Sowrirajan B, DePaula-Silva AB, Rodesch C et al. 2014. Downmodulation of CCR7 by HIV-1 Vpu results in impaired migration and chemotactic signaling within CD4+ T cells. Cell Rep 7:62019–30
    [Google Scholar]
  98. 98.
    Volcic M, Sparrer KMJ, Koepke L, Hotter D, Sauter D et al. 2020. Vpu modulates DNA repair to suppress innate sensing and hyper-integration of HIV-1. Nat. Microbiol. 5:101247–61
    [Google Scholar]
  99. 99.
    Ahn J, Vu T, Novince Z, Guerrero-Santoro J, Rapic-Otrin V, Gronenborn AM. 2010. HIV-1 Vpr loads uracil DNA glycosylase-2 onto DCAF1, a substrate recognition subunit of a cullin 4A-ring E3 ubiquitin ligase for proteasome-dependent degradation. J. Biol. Chem. 285:4837333–41
    [Google Scholar]
  100. 100.
    Hrecka K, Hao C, Shun M-C, Kaur S, Swanson SK et al. 2016. HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins. PNAS 113:27E3921–30
    [Google Scholar]
  101. 101.
    Yan J, Shun M-C, Hao C, Zhang Y, Qian J et al. 2018. HIV-1 Vpr reprograms CLR4DCAF1 E3 ubiquitin ligase to antagonize exonuclease 1-mediated restriction of HIV-1 infection. mBio 9:5e01732–18
    [Google Scholar]
  102. 102.
    Ariumi Y, Turelli P, Masutani M, Trono D. 2005. DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J. Virol. 79:52973–78
    [Google Scholar]
  103. 103.
    Bryant HE, Helleday T. 2006. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 34:61685–91
    [Google Scholar]
  104. 104.
    Fu S, Phan AT, Mao D, Wang X, Gao G et al. 2022. HIV-1 exploits the Fanconi anemia pathway for viral DNA integration. Cell Rep 39:8110840
    [Google Scholar]
  105. 105.
    Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM. 1990. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64:2621–29
    [Google Scholar]
  106. 106.
    Werner A, Flotho A, Melchior F. 2012. The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol. Cell 46:3287–98
    [Google Scholar]
  107. 107.
    Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE et al. 2012. Global landscape of HIV-human protein complexes. Nature 481:7381365–70
    [Google Scholar]
  108. 108.
    König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC et al. 2008. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:149–60
    [Google Scholar]
  109. 109.
    Saitoh N, Uchimura Y, Tachibana T, Sugahara S, Saitoh H, Nakao M. 2006. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp. Cell Res. 312:81418–30
    [Google Scholar]
  110. 110.
    Dellaire G, Bazett-Jones DP. 2004. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays 26:9963–77
    [Google Scholar]
  111. 111.
    Zhong S, Hu P, Ye T-Z, Stan R, Ellis NA, Pandolfi PP 1999. A role for PML and the nuclear body in genomic stability. Oncogene 18:567941–47
    [Google Scholar]
  112. 112.
    Lusic M, Marini B, Ali H, Lucic B, Luzzati R, Giacca M. 2013. Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13:665–77
    [Google Scholar]
  113. 113.
    Singh DK, Griffin DM, Pacyniak E, Jackson M, Werle MJ et al. 2003. The presence of the casein kinase II phosphorylation sites of Vpu enhances the CD4+ T cell loss caused by the simian-human immunodeficiency virus SHIVKU-lbMC33 in pig-tailed macaques. Virology 313:2435–51
    [Google Scholar]
  114. 114.
    Stephens EB, McCormick C, Pacyniak E, Griffin D, Pinson DM et al. 2002. Deletion of the vpu sequences prior to the env in a simian–human immunodeficiency virus results in enhanced Env precursor synthesis but is less pathogenic for pig-tailed macaques. Virology 293:2252–61
    [Google Scholar]
  115. 115.
    Sato K, Misawa N, Fukuhara M, Iwami S, An DS et al. 2012. Vpu augments the initial burst phase of HIV-1 propagation and downregulates BST2 and CD4 in humanized mice. J. Virol. 86:95000–13
    [Google Scholar]
  116. 116.
    Dave VP, Hajjar F, Dieng MM, Haddad É, Cohen ÉA. 2013. Efficient BST2 antagonism by Vpu is critical for early HIV-1 dissemination in humanized mice. Retrovirology 10:1128
    [Google Scholar]
  117. 117.
    Heigele A, Kmiec D, Regensburger K, Langer S, Peiffer L et al. 2016. The potency of Nef-mediated SERINC5 antagonism correlates with the prevalence of primate lentiviruses in the wild. Cell Host Microbe 20:3381–91
    [Google Scholar]
  118. 118.
    Schmidt F, Liegeois F, Greenwood EJD, LeBreton M, Lester J et al. 2017. Phyloepidemiological analysis reveals that viral divergence led to the paucity of simian immunodeficiency virus SIVmus/gsn/mon infections in wild populations. J. Virol. 91:6e01884–16
    [Google Scholar]
  119. 119.
    Schmokel J, Sauter D, Schindler M, Leendertz FH, Bailes E et al. 2011. The presence of a vpu gene and the lack of Nef-mediated downmodulation of T cell receptor-CD3 are not always linked in primate lentiviruses. J. Virol. 85:2742–52
    [Google Scholar]
  120. 120.
    Aghokeng AF, Ayouba A, Mpoudi-Ngole E, Loul S, Liegeois F et al. 2010. Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provides insights into risks for potential new cross-species transmissions. Infect. Genet. Evol. 10:3386–96
    [Google Scholar]
  121. 121.
    Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS et al. 2009. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460:7254515–19
    [Google Scholar]
  122. 122.
    Dazza M-C, Ekwalanga M, Nende M, Shamamba KB, Bitshi P et al. 2005. Characterization of a novel vpu-harboring simian immunodeficiency virus from a Dent's Mona monkey (Cercopithecus mona denti). J. Virol. 79:138560–71
    [Google Scholar]
  123. 123.
    Courgnaud V, Abela B, Pourrut X, Mpoudi-Ngole E, Loul S et al. 2003. Identification of a new simian immunodeficiency virus lineage with a vpu gene present among different Cercopithecus monkeys (C. mona, C. cephus, and C. nictitans) from Cameroon. J. Virol. 77:2312523–34
    [Google Scholar]
  124. 124.
    Schindler M, Münch J, Kutsch O, Li H, Santiago ML et al. 2006. Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125:61055–67
    [Google Scholar]
  125. 125.
    Pandrea I, Sodora DL, Silvestri G, Apetrei C. 2008. Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 29:9419–28
    [Google Scholar]
  126. 126.
    Chahroudi A, Bosinger SE, Vanderford TH, Paiardini M, Silvestri G. 2012. Natural SIV hosts: showing AIDS the door. Science 335:60731188–93
    [Google Scholar]
  127. 127.
    Joas S, Parrish EH, Gnanadurai CW, Lump E, Stürzel CM et al. 2018. Species-specific host factors rather than virus-intrinsic virulence determine primate lentiviral pathogenicity. Nat. Comm. 9:11371
    [Google Scholar]
  128. 128.
    Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J et al. 2006. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313:5786523–26
    [Google Scholar]
  129. 129.
    Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF et al. 2006. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 444:7116164
    [Google Scholar]
  130. 130.
    Li Y, Ndjango J-B, Learn GH, Ramirez MA, Keele BF et al. 2012. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 86:1910776–91
    [Google Scholar]
  131. 131.
    Pereira EA, DaSilva LLP. 2016. HIV-1 Nef: taking control of protein trafficking. Traffic 17:9976–96
    [Google Scholar]
  132. 132.
    Prévost J, Edgar CR, Richard J, Trothen SM, Jacob RA et al. 2020. HIV-1 Vpu downregulates Tim-3 from the surface of infected CD4+ T cells. J. Virol. 94:7e01999–19
    [Google Scholar]
  133. 133.
    Fu Y, He S, Waheed AA, Dabbagh D, Zhou Z et al. 2020. PSGL-1 restricts HIV-1 infectivity by blocking virus particle attachment to target cells. PNAS 117:179537–45
    [Google Scholar]
  134. 134.
    Cong L, Sugden SM, Leclair P, Lim CJ, Pham TNQ, Cohen ÉA. 2021. HIV-1 Vpu promotes phagocytosis of infected CD4+ T cells by macrophages through downregulation of CD47. mBio 12:4e0192021
    [Google Scholar]
  135. 135.
    Xu Z, Lodge R, Power C, Cohen EA, Hobman TC. 2020. The HIV-1 accessory protein Vpu downregulates peroxisome biogenesis. mBio 11:2e03395–19
    [Google Scholar]
  136. 136.
    Deeks SG. 2012. Shock and kill. Nature 487:7408439–40
    [Google Scholar]
  137. 137.
    Darcis G, Van Driessche B, Bouchat S, Kirchhoff F, Van Lint C. 2018. Molecular control of HIV and SIV latency. Curr. Topics Microbiol. Immunol. 417:1–22
    [Google Scholar]
  138. 138.
    Whitaker EE, Matheson NJ, Perlee S, Munson PB, Symeonides M, Thali M. 2019. EWI-2 inhibits cell–cell fusion at the HIV-1 virological presynapse. Viruses 11:121082
    [Google Scholar]
  139. 139.
    Luscombe CA, Avihingsanon A, Supparatpinyo K, Gatechompol S, Han WM et al. 2021. Human immunodeficiency virus type 1 Vpu inhibitor, BIT225, in combination with 3-drug antiretroviral therapy: inflammation and immune cell modulation. J. Infect. Dis. 223:111914–22
    [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-100816
Loading
/content/journals/10.1146/annurev-virology-111821-100816
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error