1932

Abstract

The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-111145
2024-09-26
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/11/1/annurev-virology-111821-111145.html?itemId=/content/journals/10.1146/annurev-virology-111821-111145&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pollard AJ, Bijker EM. 2021.. A guide to vaccinology: from basic principles to new developments. . Nat. Rev. Immunol. 21::83100
    [Crossref] [Google Scholar]
  2. 2.
    Plotkin SA. 2014.. The pertussis problem. . Clin. Infect. Dis. 58::83033
    [Crossref] [Google Scholar]
  3. 3.
    Fekrvand S, Yazdani R, Olbrich P, Gennery A, Rosenzweig SD, et al. 2020.. Primary immunodeficiency diseases and Bacillus Calmette-Guérin (BCG)-vaccine–derived complications: a systematic review. . J. Allergy Clin. Immunol. Pract. 8::137186
    [Crossref] [Google Scholar]
  4. 4.
    Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, et al. 2021.. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. . N. Engl. J. Med. 385::117283
    [Crossref] [Google Scholar]
  5. 5.
    Mohsen MO, Bachmann MF. 2022.. Virus-like particle vaccinology, from bench to bedside. . Cell. Mol. Immunol. 19::9931011
    [Crossref] [Google Scholar]
  6. 6.
    Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, et al. 2020.. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. . Nature 586::56771
    [Crossref] [Google Scholar]
  7. 7.
    Ewer KJ, Barrett JR, Belij-Rammerstorfer S, Sharpe H, Makinson R, et al. 2020.. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. . Nat. Med. 27::27078
    [Crossref] [Google Scholar]
  8. 8.
    Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, et al. 2020.. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. . N. Engl. J. Med. 383::260315
    [Crossref] [Google Scholar]
  9. 9.
    Li M, Wang H, Tian L, Pang Z, Yang Q, et al. 2022.. COVID-19 vaccine development: milestones, lessons and prospects. . Signal Transduct. Target. Ther. 7::146
    [Crossref] [Google Scholar]
  10. 10.
    Zhao F, Zai X, Zhang Z, Xu J, Chen W. 2022.. Challenges and developments in universal vaccine design against SARS-CoV-2 variants. . NPJ Vaccines 7::167
    [Crossref] [Google Scholar]
  11. 11.
    Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. 2022.. Intranasal COVID-19 vaccines: from bench to bed. . EBioMedicine 76::103841
    [Crossref] [Google Scholar]
  12. 12.
    Altmann DM, Boyton RJ. 2022.. COVID-19 vaccination: the road ahead. . Science 375::112732
    [Crossref] [Google Scholar]
  13. 13.
    Topol EJ, Iwasaki A. 2022.. Operation nasal vaccine—lightning speed to counter COVID-19. . Sci. Immunol. 7::eadd9947
    [Crossref] [Google Scholar]
  14. 14.
    UN Dev. Programme. 2021.. Global dashboard for vaccine equity. . UN Development Programme. https://data.undp.org/vaccine-equity/
    [Google Scholar]
  15. 15.
    Rao VB, Fokine A, Fang Q, Shao Q. 2023.. Bacteriophage T4 head: structure, assembly, and genome packaging. . Viruses 15::527
    [Crossref] [Google Scholar]
  16. 16.
    Fokine A, Rossmann MG. 2014.. Molecular architecture of tailed double-stranded DNA phages. . Bacteriophage 4::e28281
    [Crossref] [Google Scholar]
  17. 17.
    Rao VB, Feiss M. 2015.. Mechanisms of DNA packaging by large double-stranded DNA viruses. . Annu. Rev. Virol. 2::35178
    [Crossref] [Google Scholar]
  18. 18.
    Jiang J, Abu-Shilbayeh L, Rao VB. 1997.. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. . Infect. Immun. 65::477077
    [Crossref] [Google Scholar]
  19. 19.
    Ren ZJ, Lewis GK, Wingfield PT, Locke EG, Steven AC, Black LW. 1996.. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. . Protein Sci. 5::183343
    [Crossref] [Google Scholar]
  20. 20.
    Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. 2019.. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. . Adv. Drug Deliv. Rev. 145::5772
    [Crossref] [Google Scholar]
  21. 21.
    Li M, Chen C, Wang X, Guo P, Feng H, et al. 2023.. T4 bacteriophage nanoparticles engineered through CRISPR provide a versatile platform for rapid development of flu mucosal vaccines. . Antivir. Res. 217::105688
    [Crossref] [Google Scholar]
  22. 22.
    Tao P, Mahalingam M, Zhu J, Moayeri M, Sha J, et al. 2018.. A bacteriophage T4 nanoparticle-based dual vaccine against anthrax and plague. . mBio 9::e01926-18
    [Crossref] [Google Scholar]
  23. 23.
    Zhu J, Jain S, Sha J, Batra H, Ananthaswamy N, et al. 2022.. A bacteriophage-based, highly efficacious, needle- and adjuvant-free, mucosal COVID-19 vaccine. . mBio 13::e01822-22
    [Google Scholar]
  24. 24.
    Zhu J, Ananthaswamy N, Jain S, Batra H, Tang W-C, et al. 2021.. A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. . Sci. Adv. 7::eabh1547
    [Crossref] [Google Scholar]
  25. 25.
    Li M, Guo P, Chen C, Feng H, Zhang W, et al. 2021.. Bacteriophage T4 vaccine platform for next-generation influenza vaccine development. . Front. Immunol. 12::745625
    [Crossref] [Google Scholar]
  26. 26.
    Diamond MS, Kanneganti T-D. 2022.. Innate immunity: the first line of defense against SARS-CoV-2. . Nat. Immunol. 23::16576
    [Crossref] [Google Scholar]
  27. 27.
    Li D, Wu M. 2021.. Pattern recognition receptors in health and diseases. . Signal Transduct. Target. Ther. 6::291
    [Crossref] [Google Scholar]
  28. 28.
    Wu J, Chen ZJ. 2014.. Innate immune sensing and signaling of cytosolic nucleic acids. . Annu. Rev. Immunol. 32::46188
    [Crossref] [Google Scholar]
  29. 29.
    Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F. 2017.. Immunological principles guiding the rational design of particles for vaccine delivery. . ACS Nano 11::5468
    [Crossref] [Google Scholar]
  30. 30.
    Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. 2020.. Dendritic cells in cancer immunology and immunotherapy. . Nat. Rev. Immunol. 20::724
    [Crossref] [Google Scholar]
  31. 31.
    Eisenbarth SC. 2019.. Dendritic cell subsets in T cell programming: location dictates function. . Nat. Rev. Immunol. 19::89103
    [Crossref] [Google Scholar]
  32. 32.
    Sun L, Su Y, Jiao A, Wang X, Zhang B. 2023.. T cells in health and disease. . Signal Transduct. Target. Ther. 8::235
    [Crossref] [Google Scholar]
  33. 33.
    Künzli M, Masopust D. 2023.. CD4+ T cell memory. . Nat. Immunol. 24::90314
    [Crossref] [Google Scholar]
  34. 34.
    Ni L, Ye F, Cheng ML, Feng Y, Deng YQ, et al. 2020.. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. . Immunity 52::97177
    [Crossref] [Google Scholar]
  35. 35.
    Liu J, Chandrashekar A, Sellers D, Barrett J, Jacob-Dolan C, et al. 2022.. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. . Nature 603::49396
    [Crossref] [Google Scholar]
  36. 36.
    Mills KHG. 2022.. IL-17 and IL-17-producing cells in protection versus pathology. . Nat. Rev. Immunol. 23::3854
    [Crossref] [Google Scholar]
  37. 37.
    Singh A. 2020.. Eliciting B cell immunity against infectious diseases using nanovaccines. . Nat. Nanotechnol. 16::1624
    [Crossref] [Google Scholar]
  38. 38.
    Cyster JG, Allen CDC. 2019.. B cell responses: cell interaction dynamics and decisions. . Cell 177::52440
    [Crossref] [Google Scholar]
  39. 39.
    Quast I, Tarlinton D. 2021.. B cell memory: understanding COVID-19. . Immunity 54::20510
    [Crossref] [Google Scholar]
  40. 40.
    Bansil R, Turner BS. 2018.. The biology of mucus: composition, synthesis and organization. . Adv. Drug Deliv. Rev. 124::315
    [Crossref] [Google Scholar]
  41. 41.
    Wei X, Narasimhan H, Zhu B, Sun J. 2023.. Host recovery from respiratory viral infection. . Annu. Rev. Immunol. 41::277300
    [Crossref] [Google Scholar]
  42. 42.
    Lavelle EC, Ward RW. 2021.. Mucosal vaccines—fortifying the frontiers. . Nat. Rev. Immunol. 22::23650
    [Crossref] [Google Scholar]
  43. 43.
    Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. 2008.. The immune geography of IgA induction and function. . Mucosal Immunol. 1::1122
    [Crossref] [Google Scholar]
  44. 44.
    Bunker JJ, Bendelac A. 2018.. IgA responses to microbiota. . Immunity 49::21124
    [Crossref] [Google Scholar]
  45. 45.
    Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. 2018.. Phage-based vaccines. . Adv. Drug Deliv. Rev. 145::4056
    [Crossref] [Google Scholar]
  46. 46.
    Bachmann MF, Jennings GT. 2010.. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. . Nat. Rev. Immunol. 10::78796
    [Crossref] [Google Scholar]
  47. 47.
    Dai X, Zhou ZH. 2018.. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. . Science 360::eaao7298
    [Crossref] [Google Scholar]
  48. 48.
    Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, et al. 2020.. Global organization and proposed megataxonomy of the virus world. . Microbiol. Mol. Biol. Rev. 84::e00061-19
    [Crossref] [Google Scholar]
  49. 49.
    Leoni V, Gianni T, Salvioli S, Campadelli-Fiume G. 2012.. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κB. . J. Virol. 86::655562
    [Crossref] [Google Scholar]
  50. 50.
    Oliveira-Nascimento L, Massari P, Wetzler LM. 2012.. The role of TLR2 in infection and immunity. . Front. Immunol. 3::79
    [Crossref] [Google Scholar]
  51. 51.
    Champagne-Jorgensen K, Luong T, Darby T, Roach DR. 2023.. Immunogenicity of bacteriophages. . Trends Microbiol. 31::105871
    [Crossref] [Google Scholar]
  52. 52.
    Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M, et al. 2019.. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. . Science 363::eaat9691
    [Crossref] [Google Scholar]
  53. 53.
    Popescu M, Van Belleghem JD, Khosravi A, Bollyky PL. 2021.. Bacteriophages and the immune system. . Annu. Rev. Virol. 8::41535
    [Crossref] [Google Scholar]
  54. 54.
    Iwasaki A. 2012.. A virological view of innate immune recognition. . Annu. Rev. Microbiol. 66::17796
    [Crossref] [Google Scholar]
  55. 55.
    Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, et al. 2019.. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. . Cell Host Microbe 25::28599
    [Crossref] [Google Scholar]
  56. 56.
    Wahida A, Tang F, Barr JJ. 2021.. Rethinking phage-bacteria-eukaryotic relationships and their influence on human health. . Cell Host Microbe 29::68188
    [Crossref] [Google Scholar]
  57. 57.
    Ols S, Lenart K, Arcoverde Cerveira R, Miranda MC, Brunette N, et al. 2023.. Multivalent antigen display on nanoparticle immunogens increases B cell clonotype diversity and neutralization breadth to pneumoviruses. . Immunity 56::242541.e14
    [Crossref] [Google Scholar]
  58. 58.
    Lu YC, Yeh WC, Ohashi PS. 2008.. LPS/TLR4 signal transduction pathway. . Cytokine 42::14551
    [Crossref] [Google Scholar]
  59. 59.
    Kan L, Barr JJ. 2023.. A mammalian cell's guide on how to process a bacteriophage. . Annu. Rev. Virol. 10::18398
    [Crossref] [Google Scholar]
  60. 60.
    Merril CR, Scholl D, Adhya SL. 2003.. The prospect for bacteriophage therapy in Western medicine. . Nat. Rev. Drug Discov. 2::48997
    [Crossref] [Google Scholar]
  61. 61.
    Tan X, Chen K, Jiang Z, Liu Z, Wang S, et al. 2023.. Phage administration with repeated intravenous doses leads to faster phage clearance in mammalian hosts. . bioRxiv 2023.03.10.532150. https://doi.org/10.1101/2023.03.10.532150
  62. 62.
    Nguyen S, Baker K, Padman Benjamin S, Patwa R, Dunstan Rhys A, et al. 2017.. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. . mBio 8::e01874-17
    [Google Scholar]
  63. 63.
    Rao VB, Zhu J. 2022.. Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. . Curr. Opin. Virol. 55::101255
    [Crossref] [Google Scholar]
  64. 64.
    Chen Z, Sun L, Zhang Z, Fokine A, Padilla-Sanchez V, et al. 2017.. Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses. . PNAS 114::E818493
    [Google Scholar]
  65. 65.
    Fang Q, Tang W-C, Fokine A, Mahalingam M, Shao Q, et al. 2022.. Structures of a large prolate virus capsid in unexpanded and expanded states generate insights into the icosahedral virus assembly. . PNAS 119::e2203272119
    [Crossref] [Google Scholar]
  66. 66.
    Sun L, Zhang X, Gao S, Rao PA, Padilla-Sanchez V, et al. 2015.. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. . Nat. Commun. 6::7548
    [Crossref] [Google Scholar]
  67. 67.
    Sun S, Kondabagil K, Draper B, Alam TI, Bowman VD, et al. 2008.. The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. . Cell 135::125162
    [Crossref] [Google Scholar]
  68. 68.
    Rao VB, Feiss M. 2008.. The bacteriophage DNA packaging motor. . Annu. Rev. Genet. 42::64781
    [Crossref] [Google Scholar]
  69. 69.
    Taylor NM, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, et al. 2016.. Structure of the T4 baseplate and its function in triggering sheath contraction. . Nature 533::34652
    [Crossref] [Google Scholar]
  70. 70.
    Taslem Mourosi J, Awe A, Guo W, Batra H, Ganesh H, et al. 2022.. Understanding bacteriophage tail fiber interaction with host surface receptor: the key “blueprint” for reprogramming phage host range. . Int. J. Mol. Sci. 23::12146
    [Crossref] [Google Scholar]
  71. 71.
    Qin L, Fokine A, O'Donnell E, Rao VB, Rossmann MG. 2010.. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages. . J. Mol. Biol. 395::72841
    [Crossref] [Google Scholar]
  72. 72.
    Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Rao VB. 2022.. CRISPR engineering of bacteriophage T4 to design vaccines against SARS-CoV-2 and emerging pathogens. . Methods Mol. Biol. 2410::20928
    [Crossref] [Google Scholar]
  73. 73.
    Fokine A, Islam MZ, Zhang Z, Bowman VD, Rao VB, Rossmann MG. 2011.. Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like bacteriophage. . J. Virol. 85::814148
    [Crossref] [Google Scholar]
  74. 74.
    Fokine A, Islam MZ, Fang Q, Chen Z, Sun L, Rao VB. 2023.. Structure and function of Hoc—a novel environment sensing device encoded by T4 and other bacteriophages. . Viruses 15::1517
    [Crossref] [Google Scholar]
  75. 75.
    Ishii T, Yanagida M. 1977.. The two dispensable structural proteins (soc and hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro. . J. Mol. Biol. 109::487514
    [Crossref] [Google Scholar]
  76. 76.
    Li Q, Shivachandra SB, Zhang Z, Rao VB. 2007.. Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. . J. Mol. Biol. 370::100619
    [Crossref] [Google Scholar]
  77. 77.
    Tao P, Mahalingam M, Marasa BS, Zhang Z, Chopra AK, Rao VB. 2013.. In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. . PNAS 110::584651
    [Crossref] [Google Scholar]
  78. 78.
    Zhu J, Batra H, Ananthaswamy N, Mahalingam M, Tao P, et al. 2023.. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. . Nat. Commun. 14::2928
    [Crossref] [Google Scholar]
  79. 79.
    Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, et al. 2013.. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. . PLOS Pathog. 9::e1003495
    [Crossref] [Google Scholar]
  80. 80.
    Zhu J, Tao P, Mahalingam M, Sha J, Kilgore P, et al. 2019.. A prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. . Sci. Adv. 5::eaax0064
    [Crossref] [Google Scholar]
  81. 81.
    Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, et al. 2013.. Bacteriophage adhering to mucus provide a non-host-derived immunity. . PNAS 110::1077176
    [Crossref] [Google Scholar]
  82. 82.
    Mullaney JM, Black LW. 2014.. Bacteriophage T4 capsid packaging and unpackaging of DNA and proteins. . Methods Mol. Biol. 1108::6985
    [Crossref] [Google Scholar]
  83. 83.
    Shivachandra SB, Rao M, Janosi L, Sathaliyawala T, Matyas GR, et al. 2006.. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: a strategy for efficient display of large full-length proteins. . Virology 345::19098
    [Crossref] [Google Scholar]
  84. 84.
    Rao M, Peachman KK, Li Q, Matyas GR, Shivachandra SB, et al. 2011.. Highly effective generic adjuvant systems for orphan or poverty-related vaccines. . Vaccine 29::87377
    [Crossref] [Google Scholar]
  85. 85.
    Keeble AH, Turkki P, Stokes S, Khairil Anuar INA, Rahikainen R, et al. 2019.. Approaching infinite affinity through engineering of peptide-protein interaction. . PNAS 116::2652333
    [Crossref] [Google Scholar]
  86. 86.
    Li Q, Shivachandra SB, Leppla SH, Rao VB. 2006.. Bacteriophage T4 capsid: a unique platform for efficient surface assembly of macromolecular complexes. . J. Mol. Biol. 363::57788
    [Crossref] [Google Scholar]
  87. 87.
    Kaźmierczak Z, Majewska J, Milczarek M, Owczarek B, Dąbrowska K. 2021.. Circulation of fluorescently labelled phage in a murine model. . Viruses 13::297
    [Crossref] [Google Scholar]
  88. 88.
    Mullaney JM, Black LW. 1996.. Capsid targeting sequence targets foreign proteins into bacteriophage T4 and permits proteolytic processing. . J. Mol. Biol. 261::37285
    [Crossref] [Google Scholar]
  89. 89.
    Liu JL, Dixit AB, Robertson KL, Qiao E, Black LW. 2014.. Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression. . PNAS 111::1331924
    [Crossref] [Google Scholar]
  90. 90.
    Liu Y, Dai L, Dong J, Chen C, Zhu J, et al. 2020.. Covalent modifications of bacteriophage genome confer a degree of resistance to bacterial CRISPR systems. . J. Virol. 94::e01630-20
    [Google Scholar]
  91. 91.
    Tao P, Wu X, Tang WC, Zhu J, Rao V. 2017.. Engineering of bacteriophage T4 genome using CRISPR-Cas9. . ACS Synth. Biol. 6::195261
    [Crossref] [Google Scholar]
  92. 92.
    Carmody CM, Nugen SR. 2023.. Monomeric streptavidin phage display allows efficient immobilization of bacteriophages on magnetic particles for the capture, separation, and detection of bacteria. . Sci. Rep. 13::16207
    [Crossref] [Google Scholar]
  93. 93.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013.. Multiplex genome engineering using CRISPR/Cas systems. . Science 339::81923
    [Crossref] [Google Scholar]
  94. 94.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, et al. 2015.. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. . Cell 163::75971
    [Crossref] [Google Scholar]
  95. 95.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. . Science 337::81621
    [Crossref] [Google Scholar]
  96. 96.
    Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W. 2003.. Bacteriophage T4 genome. . Microbiol. Mol. Biol. Rev. 67::86156
    [Crossref] [Google Scholar]
  97. 97.
    Zhu J, Tao P, Mahalingam M, Rao VB. 2020.. Preparation of a bacteriophage T4-based prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. . Bio-protocol 10::e3573
    [Crossref] [Google Scholar]
  98. 98.
    Yao H, Song Y, Chen Y, Wu N, Xu J, et al. 2020.. Molecular architecture of the SARS-CoV-2 virus. . Cell 183::73038
    [Crossref] [Google Scholar]
  99. 99.
    Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, et al. 2020.. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. . Cell 181::1489501
    [Crossref] [Google Scholar]
  100. 100.
    Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, et al. 2020.. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. . Cell 183::16984
    [Crossref] [Google Scholar]
  101. 101.
    Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Viant C, et al. 2021.. Enhanced SARS-CoV-2 neutralization by dimeric IgA. . Sci. Transl. Med. 13::eabf1555
    [Crossref] [Google Scholar]
  102. 102.
    Ying B, Scheaffer SM, Whitener B, Liang C-Y, Dmytrenko O, et al. 2022.. Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. . Cell 185::157287
    [Crossref] [Google Scholar]
  103. 103.
    Sette A, Crotty S. 2021.. Adaptive immunity to SARS-CoV-2 and COVID-19. . Cell 184::86180
    [Crossref] [Google Scholar]
  104. 104.
    Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, et al. 2021.. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. . Nat. Commun. 12::6871
    [Crossref] [Google Scholar]
  105. 105.
    Khader SA, Gaffen SL, Kolls JK. 2009.. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. . Mucosal Immunol. 2::40311
    [Crossref] [Google Scholar]
  106. 106.
    Bouvier NM, Palese P. 2008.. The biology of influenza viruses. . Vaccine 4::D4953
    [Crossref] [Google Scholar]
  107. 107.
    Medina RA, García-Sastre A. 2011.. Influenza A viruses: new research developments. . Nat. Rev. Microbiol. 9::590603
    [Crossref] [Google Scholar]
  108. 108.
    Yamayoshi S, Kawaoka Y. 2019.. Current and future influenza vaccines. . Nat. Med. 25::21220
    [Crossref] [Google Scholar]
  109. 109.
    Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, et al. 2015.. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. . Science 349::13016
    [Crossref] [Google Scholar]
  110. 110.
    Kavishna R, Kang TY, Vacca M, Chua BYL, Park H-Y, et al. 2022.. A single-shot vaccine approach for the universal influenza A vaccine candidate M2e. . PNAS 119::e2025607119
    [Crossref] [Google Scholar]
  111. 111.
    Mock M, Fouet A. 2001.. Anthrax. . Annu. Rev. Microbiol. 55::64771
    [Crossref] [Google Scholar]
  112. 112.
    Young JAT, Collier RJ. 2007.. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. . Annu. Rev. Biochem. 76::24365
    [Crossref] [Google Scholar]
  113. 113.
    Clark A, Wolfe DN. 2020.. Current state of anthrax vaccines and key R&D gaps moving forward. . Microorganisms 8::651
    [Crossref] [Google Scholar]
  114. 114.
    Peachman KK, Li Q, Matyas GR, Shivachandra SB, Lovchik J, et al. 2012.. Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. . Clin. Vaccine Immunol. 19::1116
    [Crossref] [Google Scholar]
  115. 115.
    Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, et al. 2008.. Plague: past, present, and future. . PLOS Med. 5::e3
    [Crossref] [Google Scholar]
  116. 116.
    Rosenzweig JA, Hendrix EK, Chopra AK. 2021.. Plague vaccines: new developments in an ongoing search. . Appl. Microbiol. Biotechnol. 105::493141
    [Crossref] [Google Scholar]
  117. 117.
    Escolano A, Gristick HB, Abernathy ME, Merkenschlager J, Gautam R, et al. 2019.. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. . Nature 570::46873
    [Crossref] [Google Scholar]
  118. 118.
    Fougeroux C, Goksoyr L, Idorn M, Soroka V, Myeni SK, et al. 2021.. Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. . Nat. Commun. 12::324
    [Crossref] [Google Scholar]
  119. 119.
    Guo C, Peng Y, Lin L, Pan X, Fang M, et al. 2021.. A pathogen-like antigen-based vaccine confers immune protection against SARS-CoV-2 in non-human primates. . Cell Rep. Med. 2::100448
    [Crossref] [Google Scholar]
  120. 120.
    Volkmann A, Koopman G, Mooij P, Verschoor EJ, Verstrepen BE, et al. 2022.. A capsid virus-like particle-based SARS-CoV-2 vaccine induces high levels of antibodies and protects rhesus macaques. . Front. Immunol. 13::857440
    [Crossref] [Google Scholar]
  121. 121.
    Smit MJ, Sander AF, Ariaans MBPA, Fougeroux C, Heinzel C, et al. 2023.. First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, phase 1 clinical trial of the SARS-CoV-2 vaccine ABNCoV2. . Lancet Microbe 4::e14048
    [Crossref] [Google Scholar]
  122. 122.
    Nicastro J, Sheldon K, Slavcev RA. 2014.. Bacteriophage lambda display systems: developments and applications. . Appl. Microbiol. Biotechnol. 98::285366
    [Crossref] [Google Scholar]
  123. 123.
    Zanghi CN, Lankes HA, Bradel-Tretheway B, Wegman J, Dewhurst S. 2005.. A simple method for displaying recalcitrant proteins on the surface of bacteriophage lambda. . Nucleic Acids Res. 33::e160
    [Crossref] [Google Scholar]
  124. 124.
    Davenport BJ, Catala A, Weston SM, Johnson RM, Ardanuy J, et al. 2022.. Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. . NPJ Vaccines 7::57
    [Crossref] [Google Scholar]
  125. 125.
    Vasiljeva I, Kozlovska T, Cielens I, Strelnikova A, Kazaks A, et al. 1998.. Mosaic Qβ coats as a new presentation model. . FEBS Lett. 431::711
    [Crossref] [Google Scholar]
  126. 126.
    Sungsuwan S, Wu X, Shaw V, Kavunja H, McFall-Boegeman H, et al. 2022.. Structure guided design of bacteriophage Qβ mutants as next generation carriers for conjugate vaccines. . ACS Chem. Biol. 17::304758
    [Crossref] [Google Scholar]
  127. 127.
    Tan Z YC, Lin P-h, Ramadan S, Yang W, Rashidijahanabad Z, et al. 2022.. Inducing long lasting B cell and T cell immunity against multiple variants of SARS-CoV-2 through mutant bacteriophage Qβ–receptor binding domain conjugate. . ChemRxiv. https://doi.org/10.26434/chemrxiv-2022-rdk8m
  128. 128.
    Fu Y, Li J. 2016.. A novel delivery platform based on Bacteriophage MS2 virus-like particles. . Virus Res. 211::916
    [Crossref] [Google Scholar]
  129. 129.
    Chiba S, Frey SJ, Halfmann PJ, Kuroda M, Maemura T, et al. 2021.. Multivalent nanoparticle-based vaccines protect hamsters against SARS-CoV-2 after a single immunization. . Commun. Biol. 4::597
    [Crossref] [Google Scholar]
  130. 130.
    Blumenthal A, Hatfull GF. 2022.. Mycobacteriophages: from Petri dish to patient. . PLOS Pathog. 18::e1010602
    [Crossref] [Google Scholar]
  131. 131.
    Freeman KG, Wetzel KS, Zhang Y, Zack KM, Jacobs-Sera D, et al. 2021.. A mycobacteriophage-based vaccine platform: SARS-CoV-2 antigen expression and display. . Microorganisms 9::2414
    [Crossref] [Google Scholar]
  132. 132.
    Henry KA, Arbabi-Ghahroudi M, Scott JK. 2015.. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. . Front. Microbiol. 6::755
    [Google Scholar]
  133. 133.
    Staquicini DI, Tang FHF, Markosian C, Yao VJ, Staquicini FI, et al. 2021.. Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. . PNAS 118::e2105739118
    [Crossref] [Google Scholar]
  134. 134.
    Salehi Z, Rasaee MJ. 2023.. A recombinant RBD-based phage vaccine report: a solution to the prevention of new diseases?. Vaccines 11::833
    [Crossref] [Google Scholar]
  135. 135.
    Zhu F, Zhuang C, Chu K, Zhang L, Zhao H, et al. 2022.. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. . Lancet Respir. Med. 10::74960
    [Crossref] [Google Scholar]
  136. 136.
    Li H, Zhang Y, Li D, Deng Y-Q, Xu H, et al. 2021.. Enhanced protective immunity against SARS-CoV-2 elicited by a VSV vector expressing a chimeric spike protein. . Signal Transduct. Target. Ther. 6::389
    [Crossref] [Google Scholar]
  137. 137.
    Sun W, Liu Y, Amanat F, González-Domínguez I, McCroskery S, et al. 2021.. A Newcastle disease virus expressing a stabilized spike protein of SARS-CoV-2 induces protective immune responses. . Nat. Commun. 12::6197
    [Crossref] [Google Scholar]
  138. 138.
    Madhavan M, Ritchie AJ, Aboagye J, Jenkin D, Provstgaad-Morys S, et al. 2022.. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. . EBioMedicine 85::104298
    [Crossref] [Google Scholar]
  139. 139.
    Hatfull GF, Dedrick RM, Schooley RT. 2022.. Phage therapy for antibiotic-resistant bacterial infections. . Annu. Rev. Med. 73::197211
    [Crossref] [Google Scholar]
  140. 140.
    Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT. 2023.. Phage therapy: from biological mechanisms to future directions. . Cell 186::1731
    [Crossref] [Google Scholar]
  141. 141.
    Kortright KE, Chan BK, Koff JL, Turner PE. 2019.. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. . Cell Host Microbe 25::21932
    [Crossref] [Google Scholar]
  142. 142.
    Lavery JV, Porter RM, Addiss DG. 2023.. Cascading failures in COVID-19 vaccine equity. . Science 380::46062
    [Crossref] [Google Scholar]
  143. 143.
    Gavin Y, Patricia G, Fatima H, Wenhui M, Kaci Kennedy M, et al. 2022.. It is not too late to achieve global covid-19 vaccine equity. . BMJ 376::e070650
    [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-111145
Loading
/content/journals/10.1146/annurev-virology-111821-111145
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error