1932

Abstract

Bacteriophages are enigmatic entities that defy definition. Classically, they are specialist viruses that exclusively parasitize bacterial hosts. Yet this definition becomes limiting when we consider their ubiquity in the body coupled with their vast capacity to directly interact with the mammalian host. While phages certainly do not infect nor replicate within mammalian cells, they do interact with and gain unfettered access to the eukaryotic cell structure. With the growing appreciation for the human virome, coupled with our increased application of phages to patients within clinical settings, the potential impact of phage-mammalian interactions is progressively recognized. In this review, we provide a detailed mechanistic overview of how phages interact with the mammalian cell surface, the processes through which said phages are internalized by the cell, and the intracellular processing and fate of the phages. We then summarize the current state-of-the-field with respect to phage-mammalian interactions and their associations with health and disease states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-111322
2023-09-29
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-111821-111322.html?itemId=/content/journals/10.1146/annurev-virology-111821-111322&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Clokie MRJ, Millard AD, Letarov AV, Heaphy S. 2011. Phages in nature. Bacteriophage 1:31–45
    [Google Scholar]
  2. 2.
    Rohwer F, Edwards R. 2002. The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184:4529–35
    [Google Scholar]
  3. 3.
    Youle M, Haynes M, Rohwer F. 2012. Scratching the surface of biology's dark matter. Viruses: Essential Agents of Life G Witzany 61–81. Dordrecht, Neth.: Springer
    [Google Scholar]
  4. 4.
    Locey KJ, Lennon JT. 2016. Scaling laws predict global microbial diversity. PNAS 113:5970–75
    [Google Scholar]
  5. 5.
    Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 14:e1002533
    [Google Scholar]
  6. 6.
    Oh J, Allyson LB, Park M, Kong HH, Segre JA 2016. Temporal stability of the human skin microbiome. Cell 165:854–66
    [Google Scholar]
  7. 7.
    Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C et al. 2012. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 6:915–26
    [Google Scholar]
  8. 8.
    Santiago-Rodriguez TM, Ly M, Bonilla N, Pride DT. 2015. The human urine virome in association with urinary tract infections. Front. Microbiol. 6:14
    [Google Scholar]
  9. 9.
    Minot S, Sinha R, Chen J, Li H, Keilbaugh SA et al. 2011. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21:1616–25
    [Google Scholar]
  10. 10.
    Haddock N, Barkal L, Ram-Mohan N, Kaber G, Chiu C et al. 2022. The circulating phageome reflects bacterial infections. bioRxiv 2022.08.15.504009. https://doi.org/10.1101/2022.08.15.504009
  11. 11.
    Ghose C, Ly M, Schwanemann LK, Shin JH, Atab K et al. 2019. The virome of cerebrospinal fluid: viruses where we once thought there were none. Front. Microbiol. 10:2061
    [Google Scholar]
  12. 12.
    Dickson RP, Huffnagle GB. 2015. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLOS Pathog. 11:e1004923
    [Google Scholar]
  13. 13.
    Nguyen S, Baker K, Padman BS, Patwa R, Dunstan RA et al. 2017. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 8:e01874–17
    [Google Scholar]
  14. 14.
    Bichet MC, Chin WH, Richards W, Lin YW, Avellaneda-Franco L et al. 2021. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 24:102287
    [Google Scholar]
  15. 15.
    Barr JJ. 2017. A bacteriophages journey through the human body. Immunol. Rev. 279:106–22
    [Google Scholar]
  16. 16.
    Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU et al. 2022. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci. Immunol. 7:eabn6660
    [Google Scholar]
  17. 17.
    Shkoporov AN, Stockdale SR, Lavelle A, Kondova I, Heuston C et al. 2022. Viral biogeography of the mammalian gut and parenchymal organs. Nat. Microbiol. 7:1301–11
    [Google Scholar]
  18. 18.
    Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J et al. 2017. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61:e00954–17
    [Google Scholar]
  19. 19.
    Federici S, Kredo-Russo S, Valdés-Mas R, Kviatcovsky D, Weinstock E et al. 2022. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185:2879–98.e24
    [Google Scholar]
  20. 20.
    Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG et al. 2019. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25:285–99.e8
    [Google Scholar]
  21. 21.
    Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J et al. 2022. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 30:340–56.e8
    [Google Scholar]
  22. 22.
    Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P et al. 2020. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369:936–42
    [Google Scholar]
  23. 23.
    Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M et al. 2019. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363:eaat9691
    [Google Scholar]
  24. 24.
    Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL et al. 2020. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 5:465–72
    [Google Scholar]
  25. 25.
    Crandall ED, Matthay MA. 2001. Alveolar epithelial transport. Am. J. Respir. Crit. Care Med. 163:1021–29
    [Google Scholar]
  26. 26.
    Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A et al. 2012. Collective and single cell behavior in epithelial contact inhibition. . PNAS 109:739–44
    [Google Scholar]
  27. 27.
    Simpson DJ, Sacher JC, Szymanski CM. 2015. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates. Curr. Opin. Struct. Biol. 34:69–77
    [Google Scholar]
  28. 28.
    Lim TS, Montague-Cardoso K. 2021. Glycans housed by a bacteriophage enable rapid identification of glycan recognition patterns. Commun. Biol. 4:976
    [Google Scholar]
  29. 29.
    Gustafsson JK, Johansson MEV. 2022. The role of goblet cells and mucus in intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 19:785–803
    [Google Scholar]
  30. 30.
    Johansson MEV, Larsson JMH, Hansson GC. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. PNAS 108:4659–65
    [Google Scholar]
  31. 31.
    Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML et al. 2013. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS 110:10771–76
    [Google Scholar]
  32. 32.
    Almeida GMF, Laanto E, Ashrafi R, Sundberg LR. 2019. Bacteriophage adherence to mucus mediates preventive protection against pathogenic bacteria. mBio 10:e01984–19
    [Google Scholar]
  33. 33.
    Barr JJ, Auro R, Sam-Soon N, Kassegne S, Peters G et al. 2015. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. PNAS 112:13675–80
    [Google Scholar]
  34. 34.
    Green SI, Liu CG, Yu X, Gibson S, Salmen W et al. 2021. Targeting of mammalian glycans enhances phage predation in the gastrointestinal tract. mBio 12:e03474–20
    [Google Scholar]
  35. 35.
    de Freitas Almeida GM, Hoikkala V, Ravantti J, Rantanen N, Sundberg LR. 2022. Mucin induces CRISPR-Cas defense in an opportunistic pathogen. Nat. Commun. 13:3653
    [Google Scholar]
  36. 36.
    Sundberg LR, Rantanen N, de Freitas Almeida GM. 2022. Mucosal environment induces phage susceptibility in Streptococcus mutans. . PHAGE 3:128–35
    [Google Scholar]
  37. 37.
    Chin WH, Kett C, Cooper O, Müseler D, Zhang Y et al. 2022. Bacteriophages evolve enhanced persistence to a mucosal surface. PNAS 119:e2116197119
    [Google Scholar]
  38. 38.
    Górski A, Borysowski J, Midzybrodzki R. 2021. Bacteriophage interactions with epithelial cells: therapeutic implications. Front. Microbiol. 11:631161
    [Google Scholar]
  39. 39.
    Dąbrowska K, Skaradziński G, Jończyk P, Kurzępa A, Wietrzyk J et al. 2009. The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration. BMC Microbiol. 9:13
    [Google Scholar]
  40. 40.
    Dąbrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Boratynski J et al. 2004. Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of beta3 integrin signaling pathway. Acta Virol. 48:241–48
    [Google Scholar]
  41. 41.
    Lehti TA, Pajunen MI, Skog MS, Finne J. 2017. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat. Commun. 8:1915
    [Google Scholar]
  42. 42.
    Sanmukh SG, Santos NJ, Barquilha CN, dos Santos SAA, Duran BOS et al. 2021. Exposure to bacteriophages T4 and M13 increases integrin gene expression and impairs migration of human PC-3 prostate cancer cells. Antibiotics 10:1202
    [Google Scholar]
  43. 43.
    Meng L, Yang F, Pang Y, Cao Z, Wu F et al. 2022. Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. Sci. Adv. 8:eabq2005
    [Google Scholar]
  44. 44.
    Lin YW, Chang RY, Rao GG, Jermain B, Han ML et al. 2020. Pharmacokinetics/pharmacodynamics of antipseudomonal bacteriophage therapy in rats: a proof-of-concept study. Clin. Microbiol. Infect. 26:1229–35
    [Google Scholar]
  45. 45.
    Ju Y, Guo H, Edman M, Hamm-Alvarez SF. 2020. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv. Drug Deliv. Rev. 157:118–41
    [Google Scholar]
  46. 46.
    Tian Y, Wu M, Liu X, Liu Z, Zhou Q et al. 2015. Probing the endocytic pathways of the filamentous bacteriophage in live cells using ratiometric pH fluorescent indicator. Adv. Healthcare Mater. 4:413–19
    [Google Scholar]
  47. 47.
    King JS, Kay RR. 2019. The origins and evolution of macropinocytosis. Philos. Trans. R. Soc. B 374:20180158
    [Google Scholar]
  48. 48.
    Uribe-Querol E, Rosales C. 2020. Phagocytosis: our current understanding of a universal biological process. Front. Immunol. 11:1066
    [Google Scholar]
  49. 49.
    Aronow R, Danon D, Shahar A, Aronson M. 1964. Electron microscopy of in vitro endocytosis of T2 phage by cells from rabbit peritoneal exudate. . J. Exp. Med. 120:943–54
    [Google Scholar]
  50. 50.
    Dedrick RM, Freeman KG, Nguyen JA, Bahadirli-Talbott A, Smith BE et al. 2021. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 27:1357–61
    [Google Scholar]
  51. 51.
    Majewska J, Beta W, Lecion D, Hodyra-Stefaniak K, Kłopot A et al. 2015. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7:4783–99
    [Google Scholar]
  52. 52.
    Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E, Weber-Dąbrowska B, Międzybrodzki R et al. 2016. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front. Microbiol. 7:1681
    [Google Scholar]
  53. 53.
    Kaźmierczak Z, Piotrowicz A, Owczarek B, Hodyra K, Miernikiewicz P et al. 2014. Molecular imaging of T4 phage in mammalian tissues and cells. Bacteriophage 4:e28364
    [Google Scholar]
  54. 54.
    Popescu MC, Pennetzdorfer N, Hargil A, Kaber G, Bollyky PL. 2022. Pf bacteriophage inhibits neutrophil migration in the lung. bioRxiv 2022.10.12.511980. https://doi.org/10.1101/2022.10.12.511980
  55. 55.
    Hay ID, Lithgow T. 2019. Filamentous phages: masters of a microbial sharing economy. EMBO Rep. 20:e47427
    [Google Scholar]
  56. 56.
    Kawai T, Akira S. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–50
    [Google Scholar]
  57. 57.
    Trivedi S, Greidinger EL. 2009. Endosomal Toll-like receptors in autoimmunity: mechanisms for clinical diversity. Therapy 6:433–42
    [Google Scholar]
  58. 58.
    Eriksson F, Tsagozis P, Lundberg K, Parsa R, Mangsbo SM et al. 2009. Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J. Immunol. 182:3105–11
    [Google Scholar]
  59. 59.
    Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. 2018. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci. Rep. 8:17559
    [Google Scholar]
  60. 60.
    Volcy K, Dewhurst S. 2009. Proteasome inhibitors enhance bacteriophage lambda (λ) mediated gene transfer in mammalian cells. Virology 384:77–87
    [Google Scholar]
  61. 61.
    Cullen PJ, Steinberg F. 2018. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19:679–96
    [Google Scholar]
  62. 62.
    Gu F, Crump CM, Thomas G. 2001. Trans-Golgi network sorting. Cell. Mol. Life Sci. 58:1067–84
    [Google Scholar]
  63. 63.
    Zhang L, Sun L, Wei R, Gao Q, He T et al. 2017. Intracellular Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells. Antimicrob. Agents Chemother. 61:e01990–16
    [Google Scholar]
  64. 64.
    Merril CR, Geier MR, Petricciani JC. 1971. Bacterial virus gene expression in human cells. Nature 233:398–400
    [Google Scholar]
  65. 65.
    Larocca D, Witte A, Johnson W, Pierce GF, Baird A. 1998. Targeting bacteriophage to mammalian cell surface receptors for gene delivery. Hum. Gene Ther. 9:2393–99
    [Google Scholar]
  66. 66.
    Poul MA, Marks JD. 1999. Targeted gene delivery to mammalian cells by filamentous bacteriophage. J. Mol. Biol. 288:203–11
    [Google Scholar]
  67. 67.
    Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. 2001. Site-specific genomic integration in mammalian cells mediated by phage ϕC31 integrase. Mol. Cell. Biol. 21:3926–34
    [Google Scholar]
  68. 68.
    Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. 2012. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. PNAS 109:18482–87
    [Google Scholar]
  69. 69.
    Heller H, Kämmer C, Wilgenbus P, Doerfler W. 1995. Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. PNAS 92:5515–19
    [Google Scholar]
  70. 70.
    Zhang L, Ma C, Liu J, Shahin K, Hou X et al. 2021. Antiviral effect of a bacteriophage on murine norovirus replication via modulation of the innate immune response. Virus Res. 305:198572
    [Google Scholar]
  71. 71.
    Ngo CC, Man SM. 2017. Mechanisms and functions of guanylate-binding proteins and related interferon-inducible GTPases: roles in intracellular lysis of pathogens. Cell. Microbiol. 19:e12791
    [Google Scholar]
  72. 72.
    Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M. 2017. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 7:8004
    [Google Scholar]
  73. 73.
    Tisza MJ, Buck CB. 2021. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. PNAS 118:e2023202118
    [Google Scholar]
  74. 74.
    Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ. 2016. Healthy human gut phageome. PNAS 113:10400–5
    [Google Scholar]
  75. 75.
    Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V et al. 2020. Pf bacteriophage and their impact on pseudomonas virulence, mammalian immunity, and chronic infections. Front. Immunol. 11:244
    [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-111322
Loading
/content/journals/10.1146/annurev-virology-111821-111322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error