1932

Abstract

The mammalian gastrointestinal tract (GIT) hosts a diverse and highly active microbiota composed of bacteria, eukaryotes, archaea, and viruses. Studies of the GIT microbiota date back more than a century, although modern techniques, including mouse models, sequencing technology, and novel therapeutics in humans, have been foundational to our understanding of the roles of commensal microbes in health and disease. Here, we review the impacts of the GIT microbiota on viral infection, both within the GIT and systemically. GIT-associated microbes and their metabolites alter the course of viral infection through a variety of mechanisms, including direct interactions with virions, alteration of the GIT landscape, and extensive regulation of innate and adaptive immunity. Mechanistic understanding of the full breadth of interactions between the GIT microbiota and the host is still lacking in many ways but will be vital for the development of novel therapeutics for viral and nonviral diseases alike.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-115754
2023-09-29
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-111821-115754.html?itemId=/content/journals/10.1146/annurev-virology-111821-115754&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ryu EP, Davenport ER. 2022. Host genetic determinants of the microbiome across animals: from Caenorhabditis elegans to cattle. Annu. Rev. Anim. Biosci. 10:203–26
    [Google Scholar]
  2. 2.
    Integr. HMP Res. Netw. Consort 2019. The Integrative Human Microbiome Project. Nature 569:641–48
    [Google Scholar]
  3. 3.
    Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S et al. 2015. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput. Struct. Biotechnol. J. 13:390–401
    [Google Scholar]
  4. 4.
    Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH et al. 2019. Fecal microbiota transplantation: review and update. J. Formos. Med. Assoc. 118:S23–31
    [Google Scholar]
  5. 5.
    Weingarden AR, Vaughn BP. 2017. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 8:238–52
    [Google Scholar]
  6. 6.
    Chen RY, Mostafa I, Hibberd MC, Das S, Mahfuz M et al. 2021. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384:1517–28
    [Google Scholar]
  7. 7.
    Kortright KE, Chan BK, Koff JL, Turner PE. 2019. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25:219–32
    [Google Scholar]
  8. 8.
    Dinleyici EC, Martinez-Martinez D, Kara A, Karbuz A, Dalgic N et al. 2018. Time series analysis of the microbiota of children suffering from acute infectious diarrhea and their recovery after treatment. Front. Microbiol. 9:1230
    [Google Scholar]
  9. 9.
    Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R et al. 2015. Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome 3:45
    [Google Scholar]
  10. 10.
    Ma C, Wu X, Nawaz M, Li J, Yu P et al. 2011. Molecular characterization of fecal microbiota in patients with viral diarrhea. Curr. Microbiol. 63:259–66
    [Google Scholar]
  11. 11.
    Patin NV, Pena-Gonzalez A, Hatt JK, Moe C, Kirby A, Konstantinidis KT. 2020. The role of the gut microbiome in resisting norovirus infection as revealed by a human challenge study. mBio 11:6e02634–20
    [Google Scholar]
  12. 12.
    Chen SY, Tsai CN, Lee YS, Lin CY, Huang KY et al. 2017. Intestinal microbiome in children with severe and complicated acute viral gastroenteritis. Sci. Rep. 7:46130
    [Google Scholar]
  13. 13.
    Shen C, Xu Y, Ji J, Wei J, Jiang Y et al. 2021. Intestinal microbiota has important effect on severity of hand foot and mouth disease in children. BMC Infect. Dis. 21:1062
    [Google Scholar]
  14. 14.
    Ho SX, Min N, Wong EPY, Chong CY, Chu JJH. 2021. Characterization of oral virome and microbiome revealed distinctive microbiome disruptions in paediatric patients with hand, foot and mouth disease. NPJ Biofilms Microbiomes 7:19
    [Google Scholar]
  15. 15.
    Groves HT, Higham SL, Moffatt MF, Cox MJ, Tregoning JS. 2020. Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio 11:1e03236–19
    [Google Scholar]
  16. 16.
    Wang J, Li F, Wei H, Lian ZX, Sun R, Tian Z. 2014. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J. Exp. Med. 211:2397–410
    [Google Scholar]
  17. 17.
    Xu R, Lu R, Zhang T, Wu Q, Cai W et al. 2021. Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Commun. Biol. 4:240
    [Google Scholar]
  18. 18.
    Lee KH, Gordon A, Shedden K, Kuan G, Ng S et al. 2019. The respiratory microbiome and susceptibility to influenza virus infection. PLOS ONE 14:e0207898
    [Google Scholar]
  19. 19.
    Aguilera ER, Nguyen Y, Sasaki J, Pfeiffer JK. 2019. Bacterial stabilization of a panel of picornaviruses. mSphere 4:2e00183–19
    [Google Scholar]
  20. 20.
    Robinson CM, Woods Acevedo MA, McCune BT, Pfeiffer JK. 2019. Related enteric viruses have different requirements for host microbiota in mice. J. Virol. 93:23e01339–19
    [Google Scholar]
  21. 21.
    Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM et al. 2011. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334:249–52
    [Google Scholar]
  22. 22.
    Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A et al. 2015. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 347:266–69
    [Google Scholar]
  23. 23.
    Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR et al. 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346:755–59
    [Google Scholar]
  24. 24.
    Robinson CM, Jesudhasan PR, Pfeiffer JK. 2014. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 15:36–46
    [Google Scholar]
  25. 25.
    Dhalech AH, Fuller TD, Robinson CM. 2021. Specific bacterial cell wall components influence the stability of coxsackievirus B3. J. Virol. 95:e0142421
    [Google Scholar]
  26. 26.
    Berger AK, Yi H, Kearns DB, Mainou BA. 2017. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLOS Pathog. 13:e1006768
    [Google Scholar]
  27. 27.
    Aguilera ER, Pfeiffer JK. 2019. Strength in numbers: mechanisms of viral co-infection. Virus Res. 265:43–46
    [Google Scholar]
  28. 28.
    Erickson AK, Jesudhasan PR, Mayer MJ, Narbad A, Winter SE, Pfeiffer JK. 2018. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 23:77–88.e5
    [Google Scholar]
  29. 29.
    Dahourou G, Guillot S, Le Gall O, Crainic R 2002. Genetic recombination in wild-type poliovirus. J. Gen. Virol. 83:3103–10
    [Google Scholar]
  30. 30.
    Furione M, Guillot S, Otelea D, Balanant J, Candrea A, Crainic R. 1993. Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis. Virology 196:199–208
    [Google Scholar]
  31. 31.
    Holmblat B, Jegouic S, Muslin C, Blondel B, Joffret ML, Delpeyroux F. 2014. Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses. mBio 5:e01119–14
    [Google Scholar]
  32. 32.
    Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M et al. 2013. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol. 87:9441–51
    [Google Scholar]
  33. 33.
    Monedero V, Buesa J, Rodriguez-Diaz J. 2018. The interactions between host glycobiology, bacterial microbiota, and viruses in the gut. Viruses 10:96
    [Google Scholar]
  34. 34.
    Li D, Breiman A, le Pendu J, Uyttendaele M. 2015. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress. Front. Microbiol. 6:659
    [Google Scholar]
  35. 35.
    Budicini MR, Pfeiffer JK. 2022. Stabilization of murine norovirus by bacteria. mSphere 7:e0004622
    [Google Scholar]
  36. 36.
    Ang LY, Too HK, Tan EL, Chow TK, Shek LP et al. 2016. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines. Virol. J. 13:111
    [Google Scholar]
  37. 37.
    Shi Z, Zou J, Zhang Z, Zhao X, Noriega J et al. 2019. Segmented filamentous bacteria prevent and cure rotavirus infection. Cell 179:644–58.e13
    [Google Scholar]
  38. 38.
    Perez-Rodriguez FJ, Vieille G, Turin L, Yildiz S, Tapparel C, Kaiser L. 2019. Fecal components modulate human astrovirus infectivity in cells and reconstituted intestinal tissues. mSphere 4:6e00568–19
    [Google Scholar]
  39. 39.
    Ingle H, Lee S, Ai T, Orvedahl A, Rodgers R et al. 2019. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat. Microbiol. 4:1120–28
    [Google Scholar]
  40. 40.
    Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL et al. 2020. Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut. Microbes 11:1324–47
    [Google Scholar]
  41. 41.
    Yang W, Yu T, Huang X, Bilotta AJ, Xu L et al. 2020. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11:4457
    [Google Scholar]
  42. 42.
    Gorres KL, Daigle D, Mohanram S, Miller G. 2014. Activation and repression of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J. Virol. 88:8028–44
    [Google Scholar]
  43. 43.
    van der Hee B, Wells JM. 2021. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29:700–12
    [Google Scholar]
  44. 44.
    Kuster K, Grotzinger C, Koschel A, Fischer A, Wiedenmann B, Anders M. 2010. Sodium butyrate increases expression of the coxsackie and adenovirus receptor in colon cancer cells. Cancer Investig 28:268–74
    [Google Scholar]
  45. 45.
    Guo X, Lan Z, Wen Y, Zheng C, Rong Z et al. 2021. Synbiotics supplements lower the risk of hand, foot, and mouth disease in children, potentially by providing resistance to gut microbiota dysbiosis. Front. Cell Infect. Microbiol. 11:729756
    [Google Scholar]
  46. 46.
    Nagao-Kitamoto H, Shreiner AB, Gillilland MG III, Kitamoto S, Ishii C et al. 2016. Functional characterization of inflammatory bowel disease–associated gut dysbiosis in gnotobiotic mice. Cell. Mol. Gastroenterol. Hepatol. 2:468–81
    [Google Scholar]
  47. 47.
    Schneider C, O'Leary CE, von Moltke J, Liang HE, Ang QY et al. 2018. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271–84.e14
    [Google Scholar]
  48. 48.
    Lei W, Ren W, Ohmoto M, Urban JF Jr., Matsumoto I et al. 2018. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. PNAS 115:5552–57
    [Google Scholar]
  49. 49.
    Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C et al. 2018. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360:204–8
    [Google Scholar]
  50. 50.
    Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. 2021. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. PNAS 118:45e2112814118
    [Google Scholar]
  51. 51.
    Lee DK, Park JE, Kim MJ, Seo JG, Lee JH, Ha NJ. 2015. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin. Res. Hepatol. Gastroenterol. 39:237–44
    [Google Scholar]
  52. 52.
    Duffy LC, Zielezny MA, Riepenhoff-Talty M, Dryja D, Sayahtaheri-Altaie S et al. 1994. Effectiveness of Bifidobacterium bifidum in mediating the clinical course of murine rotavirus diarrhea. Pediatr. Res. 35:690–95
    [Google Scholar]
  53. 53.
    Munoz JA, Chenoll E, Casinos B, Bataller E, Ramon D et al. 2011. Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl. Environ. Microbiol. 77:8775–83
    [Google Scholar]
  54. 54.
    Chenoll E, Casinos B, Bataller E, Buesa J, Ramon D et al. 2016. Identification of a peptide produced by Bifidobacterium longum CECT 7210 with antirotaviral activity. Front. Microbiol. 7:655
    [Google Scholar]
  55. 55.
    Chen CC, Baylor M, Bass DM. 1993. Murine intestinal mucins inhibit rotavirus infection. Gastroenterology 105:84–92
    [Google Scholar]
  56. 56.
    Kawahara T, Makizaki Y, Oikawa Y, Tanaka Y, Maeda A et al. 2017. Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PLOS ONE 12:e0173979
    [Google Scholar]
  57. 57.
    Ho RH, Chan JCY, Fan H, Kioh DYQ, Lee BW, Chan ECY. 2017. In silico and in vitro interactions between short chain fatty acids and human histone deacetylases. Biochemistry 56:4871–78
    [Google Scholar]
  58. 58.
    Kim CH. 2018. Immune regulation by microbiome metabolites. Immunology 154:220–29
    [Google Scholar]
  59. 59.
    Zhang Q, Hu J, Feng JW, Hu XT, Wang T et al. 2020. Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biol. 21:99
    [Google Scholar]
  60. 60.
    Nelson CA, Wilen CB, Dai YN, Orchard RC, Kim AS et al. 2018. Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. PNAS 115:E9201–10
    [Google Scholar]
  61. 61.
    Shivanna V, Kim Y, Chang KO. 2014. The crucial role of bile acids in the entry of porcine enteric calicivirus. Virology 456–457:268–78
    [Google Scholar]
  62. 62.
    Shivanna V, Kim Y, Chang KO. 2015. Ceramide formation mediated by acid sphingomyelinase facilitates endosomal escape of caliciviruses. Virology 483:218–28
    [Google Scholar]
  63. 63.
    Chang KO, Sosnovtsev SV, Belliot G, Kim Y, Saif LJ, Green KY. 2004. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. PNAS 101:8733–38
    [Google Scholar]
  64. 64.
    Kim Y, Chang KO. 2011. Inhibitory effects of bile acids and synthetic farnesoid X receptor agonists on rotavirus replication. J. Virol. 85:12570–77
    [Google Scholar]
  65. 65.
    Scholtes C, Diaz O, Icard V, Kaul A, Bartenschlager R et al. 2008. Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. J. Hepatol. 48:192–99
    [Google Scholar]
  66. 66.
    Wu ZY, Li H, Li JR, Lv XQ, Jiang JD, Peng ZG. 2019. Farnesoid X receptor agonist GW4064 indirectly inhibits HCV entry into cells via down-regulating scavenger receptor class B type I. Eur. J. Pharmacol. 853:111–20
    [Google Scholar]
  67. 67.
    Shrivastava AK, Kumar S, Mohakud NK, Suar M, Sahu PS. 2017. Multiple etiologies of infectious diarrhea and concurrent infections in a pediatric outpatient-based screening study in Odisha, India. Gut Pathog. 9:16
    [Google Scholar]
  68. 68.
    Mathew S, Smatti MK, Al Ansari K, Nasrallah GK, Al Thani AA, Yassine HM 2019. Mixed viral-bacterial infections and their effects on gut microbiota and clinical illnesses in children. Sci. Rep. 9:865
    [Google Scholar]
  69. 69.
    Agnihothram SS, Basco MD, Mullis L, Foley SL, Hart ME et al. 2015. Infection of murine macrophages by Salmonella enterica serovar Heidelberg blocks murine norovirus infectivity and virus-induced apoptosis. PLOS ONE 10:e0144911
    [Google Scholar]
  70. 70.
    Higgins PD, Johnson LA, Sauder K, Moons D, Blanco L et al. 2011. Transient or persistent norovirus infection does not alter the pathology of Salmonella typhimurium induced intestinal inflammation and fibrosis in mice. Comp. Immunol. Microbiol. Infect. Dis. 34:247–57
    [Google Scholar]
  71. 71.
    Rowe HM, Meliopoulos VA, Iverson A, Bomme P, Schultz-Cherry S, Rosch JW. 2019. Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat. Microbiol. 4:1328–36
    [Google Scholar]
  72. 72.
    Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S et al. 2014. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am. J. Respir. Crit. Care Med. 190:196–207
    [Google Scholar]
  73. 73.
    Kruglikov IL, Shah M, Scherer PE. 2020. Obesity and diabetes as comorbidities for COVID-19: underlying mechanisms and the role of viral–bacterial interactions. eLife 9:e61330
    [Google Scholar]
  74. 74.
    Superti F, Petrone G, Pisani S, Morelli R, Ammendolia MG, Seganti L. 1996. . Superinfection by Listeria monocytogenes of cultured human enterocyte-like cells infected with poliovirus or rotavirus. Med. Microbiol. Immunol. 185:131–37
    [Google Scholar]
  75. 75.
    Di Biase AM, Petrone G, Conte MP, Seganti L, Ammendolia MG et al. 2000. Infection of human enterocyte-like cells with rotavirus enhances invasiveness of Yersinia enterocolitica and Y. pseudotuberculosis. J. Med. Microbiol. 49:897–904
    [Google Scholar]
  76. 76.
    Bukholm G. 1988. Human rotavirus infection enhances invasiveness of enterobacteria in MA-104 cells. APMIS 96:1118–24
    [Google Scholar]
  77. 77.
    Xia L, Dai L, Yu Q, Yang Q. 2017. Persistent transmissible gastroenteritis virus infection enhances enterotoxigenic Escherichia coli K88 adhesion by promoting epithelial-mesenchymal transition in intestinal epithelial cells. J. Virol. 91:21e01256–17
    [Google Scholar]
  78. 78.
    Desai P, Diamond MS, Thackray LB. 2021. Helminth-virus interactions: determinants of coinfection outcomes. Gut Microbes 13:1961202
    [Google Scholar]
  79. 79.
    Nakada-Tsukui K, Nozaki T. 2016. Immune response of amebiasis and immune evasion by Entamoeba histolytica. Front. Immunol. 7:175
    [Google Scholar]
  80. 80.
    Desai P, Janova H, White JP, Reynoso GV, Hickman HD et al. 2021. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell 184:1214–31.e16
    [Google Scholar]
  81. 81.
    von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature 529:221–25
    [Google Scholar]
  82. 82.
    Ingle H, Hassan E, Gawron J, Mihi B, Li Y et al. 2021. Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunol. 14:751–61
    [Google Scholar]
  83. 83.
    Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC et al. 2014. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345:578–82
    [Google Scholar]
  84. 84.
    Edwards MJ, Buchatska O, Ashton M, Montoya M, Bickle QD, Borrow P. 2005. Reciprocal immunomodulation in a schistosome and hepatotropic virus coinfection model. J. Immunol. 175:6275–85
    [Google Scholar]
  85. 85.
    Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L et al. 2019. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25:803–14.e5
    [Google Scholar]
  86. 86.
    Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. 2020. Infection with bacteroides phage BV01 alters the host transcriptome and bile acid metabolism in a common human gut microbe. Cell Rep. 32:108142
    [Google Scholar]
  87. 87.
    Carroll-Portillo A, Lin HC. 2019. Bacteriophage and the innate immune system: access and signaling. Microorganisms 7:625
    [Google Scholar]
  88. 88.
    Zhang L, Ma C, Liu J, Shahin K, Hou X et al. 2021. Antiviral effect of a bacteriophage on murine norovirus replication via modulation of the innate immune response. Virus Res. 305:198572
    [Google Scholar]
  89. 89.
    Peterson LW, Artis D. 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14:141–53
    [Google Scholar]
  90. 90.
    Ingle H, Peterson ST, Baldridge MT. 2018. Distinct effects of type I and III interferons on enteric viruses. Viruses 10:46
    [Google Scholar]
  91. 91.
    Schoggins JW. 2019. Interferon-stimulated genes: What do they all do?. Annu. Rev. Virol. 6:567–84
    [Google Scholar]
  92. 92.
    Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C et al. 2012. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37:171–86
    [Google Scholar]
  93. 93.
    Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T et al. 2012. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37:158–70
    [Google Scholar]
  94. 94.
    Schaupp L, Muth S, Rogell L, Kofoed-Branzk M, Melchior F et al. 2020. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181:1080–96.e19
    [Google Scholar]
  95. 95.
    Yang XL, Wang G, Xie JY, Li H, Chen SX et al. 2021. The intestinal microbiome primes host innate immunity against enteric virus systemic infection through type I interferon. mBio 12:3e00366–21
    [Google Scholar]
  96. 96.
    Stefan KL, Kim MV, Iwasaki A, Kasper DL. 2020. Commensal microbiota modulation of natural resistance to virus infection. Cell 183:1312–24.e10
    [Google Scholar]
  97. 97.
    Lee W, Kim M, Lee SH, Jung HG, Oh JW. 2018. Prophylactic efficacy of orally administered Bacillus poly-γ-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice. Sci. Rep. 8:8667
    [Google Scholar]
  98. 98.
    Gutierrez-Merino J, Isla B, Combes T, Martinez-Estrada F, Maluquer De Motes C. 2020. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS. Gut Microbes 11:771–88
    [Google Scholar]
  99. 99.
    Erttmann SF, Swacha P, Aung KM, Brindefalk B, Jiang H et al. 2022. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55:847–61.e10
    [Google Scholar]
  100. 100.
    Winkler ES, Shrihari S, Hykes BL Jr., Handley SA, Andhey PS et al. 2020. The intestinal microbiome restricts alphavirus infection and dissemination through a bile acid-type I IFN signaling axis. Cell 182:901–18.e18
    [Google Scholar]
  101. 101.
    Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM et al. 2017. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357:498–502
    [Google Scholar]
  102. 102.
    Chemudupati M, Kenney AD, Smith AC, Fillinger RJ, Zhang L et al. 2020. Butyrate reprograms expression of specific interferon-stimulated genes. J. Virol. 94:16e00326–20
    [Google Scholar]
  103. 103.
    Antunes KH, Fachi JL, de Paula R, da Silva EF, Pral LP et al. 2019. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 10:3273
    [Google Scholar]
  104. 104.
    Pott J, Mahlakoiv T, Mordstein M, Duerr CU, Michiels T et al. 2011. IFN-λ determines the intestinal epithelial antiviral host defense. PNAS 108:7944–49
    [Google Scholar]
  105. 105.
    Dai J, Zhou P, Li S, Qiu HJ. 2022. New insights into the crosstalk among the interferon and inflammatory signaling pathways in response to viral infections: defense or homeostasis. Viruses 14:122798
    [Google Scholar]
  106. 106.
    Van Winkle JA, Peterson ST, Kennedy EA, Wheadon MJ, Ingle H et al. 2022. A homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium. eLife 11:e74072
    [Google Scholar]
  107. 107.
    Grau KR, Zhu S, Peterson ST, Helm EW, Philip D et al. 2020. The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nat. Microbiol. 5:84–92
    [Google Scholar]
  108. 108.
    Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. PNAS 108:5354–59
    [Google Scholar]
  109. 109.
    Zhang Z, Zou J, Shi Z, Zhang B, Etienne-Mesmin L et al. 2020. IL-22-induced cell extrusion and IL-18-induced cell death prevent and cure rotavirus infection. Sci. Immunol. 5:52eabd2876
    [Google Scholar]
  110. 110.
    Schnepf D, Hernandez P, Mahlakoiv T, Crotta S, Sullender ME et al. 2021. Rotavirus susceptibility of antibiotic-treated mice ascribed to diminished expression of interleukin-22. PLOS ONE 16:e0247738
    [Google Scholar]
  111. 111.
    Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C et al. 2011. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334:245–49
    [Google Scholar]
  112. 112.
    Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM. 2019. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat. Commun. 10:2153
    [Google Scholar]
  113. 113.
    Ansaldo E, Farley TK, Belkaid Y. 2021. Control of immunity by the microbiota. Annu. Rev. Immunol. 39:449–79
    [Google Scholar]
  114. 114.
    Alexander KL, Targan SR, Elson CO III. 2014. Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev. 260:206–20
    [Google Scholar]
  115. 115.
    Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, Farache J, Victora GD, Mucida D. 2017. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171:783–94.e13
    [Google Scholar]
  116. 116.
    Swamy M, Abeler-Dorner L, Chettle J, Mahlakoiv T, Goubau D et al. 2015. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat. Commun. 6:7090
    [Google Scholar]
  117. 117.
    Dharakul T, Labbe M, Cohen J, Bellamy AR, Street JE et al. 1991. Immunization with baculovirus-expressed recombinant rotavirus proteins VP1, VP4, VP6, and VP7 induces CD8+ T lymphocytes that mediate clearance of chronic rotavirus infection in SCID mice. J. Virol. 65:5928–32
    [Google Scholar]
  118. 118.
    Salazar-Mather TP, Hokeness KL. 2006. Cytokine and chemokine networks: pathways to antiviral defense. Curr. Top. Microbiol. Immunol. 303:29–46
    [Google Scholar]
  119. 119.
    Imaoka A, Matsumoto S, Setoyama H, Okada Y, Umesaki Y. 1996. Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur. J. Immunol. 26:945–48
    [Google Scholar]
  120. 120.
    Jiang W, Wang X, Zeng B, Liu L, Tardivel A et al. 2013. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med. 210:2465–76
    [Google Scholar]
  121. 121.
    Jung J, Surh CD, Lee YJ. 2019. Microbial colonization at early life promotes the development of diet-induced CD8αβ intraepithelial T cells. Mol. Cells 42:313–20
    [Google Scholar]
  122. 122.
    Kawaguchi-Miyashita M, Shimizu K, Nanno M, Shimada S, Watanabe T et al. 1996. Development and cytolytic function of intestinal intraepithelial T lymphocytes in antigen-minimized mice. Immunology 89:268–73
    [Google Scholar]
  123. 123.
    Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP et al. 2017. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357:806–10
    [Google Scholar]
  124. 124.
    Sujino T, London M, Hoytema van Konijnenburg DP, Rendon T, Buch T et al. 2016. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352:1581–86
    [Google Scholar]
  125. 125.
    Liu L, Gong T, Tao W, Lin B, Li C et al. 2019. Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling. Nat. Immunol. 20:1681–91
    [Google Scholar]
  126. 126.
    Neil JA, Matsuzawa-Ishimoto Y, Kernbauer-Holzl E, Schuster SL, Sota S et al. 2019. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat. Microbiol. 4:1737–49
    [Google Scholar]
  127. 127.
    Dallari S, Heaney T, Rosas-Villegas A, Neil JA, Wong SY et al. 2021. Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host Microbe 29:1014–29.e8
    [Google Scholar]
  128. 128.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–18
    [Google Scholar]
  129. 129.
    Fonseca W, Malinczak CA, Fujimura K, Li D, McCauley K et al. 2021. Maternal gut microbiome regulates immunity to RSV infection in offspring. J. Exp. Med. 218:11e20210235
    [Google Scholar]
  130. 130.
    Sun M, Wu W, Chen L, Yang W, Huang X et al. 2018. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9:3555
    [Google Scholar]
  131. 131.
    Maynard CL, Elson CO, Hatton RD, Weaver CT. 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–41
    [Google Scholar]
  132. 132.
    Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y et al. 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:367–80
    [Google Scholar]
  133. 133.
    Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K et al. 2014. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–65
    [Google Scholar]
  134. 134.
    Kim M, Galan C, Hill AA, Wu WJ, Fehlner-Peach H et al. 2018. Critical role for the microbiota in CX3CR1+ intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity 49:151–63.e5
    [Google Scholar]
  135. 135.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–36
    [Google Scholar]
  136. 136.
    Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C et al. 2015. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39+Foxp3+ T cells and Treg function. Gut Microbes 6:234–42
    [Google Scholar]
  137. 137.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73
    [Google Scholar]
  138. 138.
    Smith K, McCoy KD, Macpherson AJ. 2007. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19:59–69
    [Google Scholar]
  139. 139.
    Moon C, Baldridge MT, Wallace MA, Burnham CA, Virgin HW, Stappenbeck TS. 2015. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521:90–93
    [Google Scholar]
  140. 140.
    Franco MA, Greenberg HB. 1995. Role of B cells and cytotoxic T lymphocytes in clearance of and immunity to rotavirus infection in mice. J. Virol. 69:7800–6
    [Google Scholar]
  141. 141.
    Chachu KA, LoBue AD, Strong DW, Baric RS, Virgin HW. 2008. Immune mechanisms responsible for vaccination against and clearance of mucosal and lymphatic norovirus infection. PLOS Pathog. 4:e1000236
    [Google Scholar]
  142. 142.
    Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. 2014. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J. Infect. Dis. 210:171–82
    [Google Scholar]
  143. 143.
    Thackray LB, Handley SA, Gorman MJ, Poddar S, Bagadia P et al. 2018. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep. 22:3440–53.e6
    [Google Scholar]
  144. 144.
    Goncalves P, El Daker S, Vasseur F, Serafini N, Lim A et al. 2020. Microbiota stimulation generates LCMV-specific memory CD8+ T cells in SPF mice and determines their TCR repertoire during LCMV infection. Mol. Immunol. 124:125–41
    [Google Scholar]
  145. 145.
    Sonnenberg GF, Artis D. 2015. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21:698–708
    [Google Scholar]
  146. 146.
    Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y et al. 2017. ILC1 confer early host protection at initial sites of viral infection. Cell 171:795–808.e12
    [Google Scholar]
  147. 147.
    Hernandez PP, Mahlakoiv T, Yang I, Schwierzeck V, Nguyen N et al. 2015. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat. Immunol. 16:698–707
    [Google Scholar]
  148. 148.
    Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y et al. 2016. The maternal microbiota drives early postnatal innate immune development. Science 351:1296–302
    [Google Scholar]
  149. 149.
    Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K et al. 2015. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43:146–60
    [Google Scholar]
  150. 150.
    Pal S, Perrien DS, Yumoto T, Faccio R, Stoica A et al. 2022. The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone. J. Clin. Investig. 132:12e157340
    [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-115754
Loading
/content/journals/10.1146/annurev-virology-111821-115754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error