1932

Abstract

Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-120445
2023-09-29
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-111821-120445.html?itemId=/content/journals/10.1146/annurev-virology-111821-120445&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wolf YI, Kazlauskas D, Iranzo J, Lucia-Sanz A, Kuhn JH et al. 2018. Origins and evolution of the global RNA virome. mBio 9:6e02329–18
    [Google Scholar]
  2. 2.
    Kuhn JH, Wolf YI, Krupovic M, Zhang YZ, Maes P et al. 2019. Classify viruses—The gain is worth the pain. Nature 566:318–20
    [Google Scholar]
  3. 3.
    Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R et al. 2018. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391:1285–300
    [Google Scholar]
  4. 4.
    Sah P, Alfaro-Murillo JA, Fitzpatrick MC, Neuzil KM, Meyers LA et al. 2019. Future epidemiological and economic impacts of universal influenza vaccines. PNAS 116:20786–92
    [Google Scholar]
  5. 5.
    Harrington WN, Kackos CM, Webby RJ. 2021. The evolution and future of influenza pandemic preparedness. Exp. Mol. Med. 53:737–49
    [Google Scholar]
  6. 6.
    Barton LL, Mets MB, Beauchamp CL. 2002. Lymphocytic choriomeningitis virus: emerging fetal teratogen. Am. J. Obstet. Gynecol. 187:1715–16
    [Google Scholar]
  7. 7.
    Linthicum KJ, Britch SC, Anyamba A. 2016. Rift Valley fever: an emerging mosquito-borne disease. Annu. Rev. Entomol. 61:395–415
    [Google Scholar]
  8. 8.
    Horimoto T, Kawaoka Y. 2005. Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 3:591–600
    [Google Scholar]
  9. 9.
    Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152–79
    [Google Scholar]
  10. 10.
    Flick R, Neumann G, Hoffmann E, Neumeier E, Hobom G. 1996. Promoter elements in the influenza vRNA terminal structure. RNA 2:1046–57
    [Google Scholar]
  11. 11.
    Parvin JD, Palese P, Honda A, Ishihama A, Krystal M 1989. Promoter analysis of influenza virus RNA polymerase. J. Virol. 63:5142–52
    [Google Scholar]
  12. 12.
    Fujii Y, Goto H, Watanabe T, Yoshida T, Kawaoka Y. 2003. Selective incorporation of influenza virus RNA segments into virions. PNAS 100:2002–7
    [Google Scholar]
  13. 13.
    Londo DR, Davis AR, Nayak DP. 1983. Complete nucleotide sequence of the nucleoprotein gene of influenza B virus. J. Virol. 47:642–48
    [Google Scholar]
  14. 14.
    Inglis SC, Brown CM. 1981. Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus. Nucleic Acids Res. 9:2727–40
    [Google Scholar]
  15. 15.
    Horvath CM, Williams MA, Lamb RA. 1990. Eukaryotic coupled translation of tandem cistrons: identification of the influenza B virus BM2 polypeptide. EMBO J. 9:2639–47
    [Google Scholar]
  16. 16.
    Chen W, Calvo PA, Malide D, Gibbs J, Schubert U et al. 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7:1306–12
    [Google Scholar]
  17. 17.
    Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM et al. 2012. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337:199–204
    [Google Scholar]
  18. 18.
    Shaw MW, Choppin PW, Lamb RA. 1983. A previously unrecognized influenza B virus glycoprotein from a bicistronic mRNA that also encodes the viral neuraminidase. PNAS 80:4879–83
    [Google Scholar]
  19. 19.
    Honda A, Ueda K, Nagata K, Ishihama A. 1987. Identification of the RNA polymerase-binding site on genome RNA of influenza virus. J. Biochem. 102:1241–49
    [Google Scholar]
  20. 20.
    Beaton AR, Krug RM. 1986. Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. PNAS 83:6282–86
    [Google Scholar]
  21. 21.
    Honda A, Mukaigawa J, Yokoiyama A, Kato A, Ueda S et al. 1990. Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J. Biochem. 107:624–28
    [Google Scholar]
  22. 22.
    Plotch SJ, Bouloy M, Ulmanen I, Krug RM. 1981. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–58
    [Google Scholar]
  23. 23.
    Luytjes W, Krystal M, Enami M, Parvin JD, Palese P. 1989. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59:1107–13
    [Google Scholar]
  24. 24.
    Enami M, Luytjes W, Krystal M, Palese P 1990. Introduction of site-specific mutations into the genome of influenza virus. PNAS 87:3802–5
    [Google Scholar]
  25. 25.
    Enami M, Palese P. 1991. High-efficiency formation of influenza virus transfectants. J. Virol. 65:2711–13
    [Google Scholar]
  26. 26.
    Zobel A, Neumann G, Hobom G. 1993. RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Res. 21:3607–14
    [Google Scholar]
  27. 27.
    Neumann G, Zobel A, Hobom G. 1994. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202:477–79
    [Google Scholar]
  28. 28.
    Neumann G, Watanabe T, Ito H, Watanabe S, Goto H et al. 1999. Generation of influenza A viruses entirely from cloned cDNAs. PNAS 96:9345–50
    [Google Scholar]
  29. 29.
    Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A. 1999. Rescue of influenza A virus from recombinant DNA. J. Virol. 73:9679–82
    [Google Scholar]
  30. 30.
    Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka Y. 2000.. “ Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267:310–17
    [Google Scholar]
  31. 31.
    Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. 2000. A DNA transfection system for generation of influenza A virus from eight plasmids. PNAS 97:6108–13
    [Google Scholar]
  32. 32.
    Hoffmann E, Mahmood K, Yang CF, Webster RG, Greenberg HB, Kemble G. 2002. Rescue of influenza B virus from eight plasmids. PNAS 99:11411–16
    [Google Scholar]
  33. 33.
    Jackson D, Cadman A, Zurcher T, Barclay WS. 2002. A reverse genetics approach for recovery of recombinant influenza B viruses entirely from cDNA. J. Virol. 76:11744–47
    [Google Scholar]
  34. 34.
    Neumann G, Fujii K, Kino Y, Kawaoka Y. 2005. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. PNAS 102:16825–29
    [Google Scholar]
  35. 35.
    Zhang X, Kong W, Ashraf S, Curtiss R III. 2009. A one-plasmid system to generate influenza virus in cultured chicken cells for potential use in influenza vaccine. J. Virol. 83:9296–303
    [Google Scholar]
  36. 36.
    Zhang X, Curtiss R III. 2015. Efficient generation of influenza virus with a mouse RNA polymerase I-driven all-in-one plasmid. Virol. J. 12:95
    [Google Scholar]
  37. 37.
    Chen H, Angel M, Li W, Finch C, Gonzalez AS et al. 2014. All-in-one bacmids: an efficient reverse genetics strategy for influenza A virus vaccines. J. Virol. 88:10013–25
    [Google Scholar]
  38. 38.
    Li F, Feng L, Pan W, Dong Z, Li C et al. 2010. Generation of replication-competent recombinant influenza A viruses carrying a reporter gene harbored in the neuraminidase segment. J. Virol. 84:12075–81
    [Google Scholar]
  39. 39.
    Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, García-Sastre A. 2010. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. PNAS 107:11531–36
    [Google Scholar]
  40. 40.
    Gao Q, Lowen AC, Wang TT, Palese P. 2010. A nine-segment influenza A virus carrying subtype H1 and H3 hemagglutinins. J. Virol. 84:8062–71
    [Google Scholar]
  41. 41.
    Martinez-Sobrido L, Cadagan R, Steel J, Basler CF, Palese P et al. 2010. Hemagglutinin-pseudotyped green fluorescent protein-expressing influenza viruses for the detection of influenza virus neutralizing antibodies. J. Virol. 84:2157–63
    [Google Scholar]
  42. 42.
    Froggatt HM, Burke KN, Chaparian RR, Miranda HA, Zhu X et al. 2021. Influenza A virus segments five and six can harbor artificial introns allowing expanded coding capacity. PLOS Pathog. 17:e1009951
    [Google Scholar]
  43. 43.
    Heaton BE, Kennedy EM, Dumm RE, Harding AT, Sacco MT et al. 2017. A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor. Cell Rep. 20:1503–12
    [Google Scholar]
  44. 44.
    Gao P, Ji M, Liu X, Chen X, Liu H et al. 2022. Apolipoprotein E mediates cell resistance to influenza virus infection. Sci. Adv. 8:eabm6668
    [Google Scholar]
  45. 45.
    Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA et al. 2008. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 4547206890–93
    [Google Scholar]
  46. 46.
    König R, Stertz S, Zhou Y, Inoue A, Hoffmann HH et al. 2010. Human host factors required for influenza virus replication. Nature 463:7282813–17
    [Google Scholar]
  47. 47.
    Kim JI, Park S, Lee I, Lee S, Shin S et al. 2012. GFP-expressing influenza A virus for evaluation of the efficacy of antiviral agents. J. Microbiol. 50:359–62
    [Google Scholar]
  48. 48.
    Pan W, Dong Z, Li F, Meng W, Feng L et al. 2013. Visualizing influenza virus infection in living mice. Nat. Commun. 4:2369
    [Google Scholar]
  49. 49.
    Eckert N, Wrensch F, Gartner S, Palanisamy N, Goedecke U et al. 2014. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins. PLOS ONE 9:e97695
    [Google Scholar]
  50. 50.
    Sutton TC, Obadan A, Lavigne J, Chen H, Li W, Perez DR 2014. Genome rearrangement of influenza virus for anti-viral drug screening. Virus Res. 189:14–23
    [Google Scholar]
  51. 51.
    De Baets S, Verhelst J, Van den Hoecke S, Smet A, Schotsaert M et al. 2015. A GFP expressing influenza A virus to report in vivo tropism and protection by a matrix protein 2 ectodomain-specific monoclonal antibody. PLOS ONE 10:e0121491
    [Google Scholar]
  52. 52.
    Nogales A, Rodriguez-Sanchez I, Monte K, Lenschow DJ, Perez DR, Martinez-Sobrido L 2016. Replication-competent fluorescent-expressing influenza B virus. Virus Res. 213:69–81
    [Google Scholar]
  53. 53.
    Nogales A, Avila-Perez G, Rangel-Moreno J, Chiem K, DeDiego ML, Martinez-Sobrido L. 2019. A novel fluorescent and bioluminescent bireporter influenza A virus to evaluate viral infections. J. Virol. 93:10e00032–19
    [Google Scholar]
  54. 54.
    Wang L, Cui Q, Zhao X, Li P, Wang Y et al. 2019. Generation of a reassortant influenza A subtype H3N2 virus expressing Gaussia luciferase. Viruses 11:7665
    [Google Scholar]
  55. 55.
    Spieler EE, Moritz E, Stertz S, Hale BG. 2020. Application of a biologically contained reporter system to study gain-of-function H5N1 influenza A viruses with pandemic potential. mSphere 5:4e00423–20
    [Google Scholar]
  56. 56.
    Bu L, Chen B, Xing L, Cai X, Liang S et al. 2021. Generation of a pdmH1N1 2018 influenza A reporter virus carrying a mCherry fluorescent protein in the PA segment. Front. Cell. Infect. Microbiol. 11:827790
    [Google Scholar]
  57. 57.
    Ozawa M, Victor ST, Taft AS, Yamada S, Li C et al. 2011. Replication-incompetent influenza A viruses that stably express a foreign gene. J. Gen. Virol. 92:2879–88
    [Google Scholar]
  58. 58.
    Heaton NS, Leyva-Grado VH, Tan GS, Eggink D, Hai R, Palese P. 2013. In vivo bioluminescent imaging of influenza A virus infection and characterization of novel cross-protective monoclonal antibodies. J. Virol. 87:8272–81
    [Google Scholar]
  59. 59.
    Czako R, Vogel L, Lamirande EW, Bock KW, Moore IN et al. 2017. In vivo imaging of influenza virus infection in immunized mice. mBio 8:3e00714–17
    [Google Scholar]
  60. 60.
    Nogales A, Piepenbrink MS, Wang J, Ortega S, Basu M et al. 2018. A highly potent and broadly neutralizing H1 influenza-specific human monoclonal antibody. Sci. Rep. 8:4374
    [Google Scholar]
  61. 61.
    Creanga A, Gillespie RA, Fisher BE, Andrews SF, Lederhofer J et al. 2021. A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nat. Commun. 12:1722
    [Google Scholar]
  62. 62.
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. 2004. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. PNAS 101:4620–24
    [Google Scholar]
  63. 63.
    van Riel D, den Bakker MA, Leijten LM, Chutinimitkul S, Munster VJ et al. 2010. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am. J. Pathol. 176:1614–18
    [Google Scholar]
  64. 64.
    Mansfield KG. 2007. Viral tropism and the pathogenesis of influenza in the mammalian host. Am. J. Pathol. 171:1089–92
    [Google Scholar]
  65. 65.
    Dumm RE, Fiege JK, Waring BM, Kuo CT, Langlois RA, Heaton NS. 2019. Non-lytic clearance of influenza B virus from infected cells preserves epithelial barrier function. Nat. Commun. 10:779
    [Google Scholar]
  66. 66.
    Hamele CE, Russell AB, Heaton NS. 2022. In vivo profiling of individual multiciliated cells during acute influenza A virus infection. J. Virol. 96:e0050522
    [Google Scholar]
  67. 67.
    Reuther P, Gopfert K, Dudek AH, Heiner M, Herold S, Schwemmle M 2015. Generation of a variety of stable Influenza A reporter viruses by genetic engineering of the NS gene segment. Sci. Rep. 5:11346
    [Google Scholar]
  68. 68.
    Dumm RE, Wellford SA, Moseman EA, Heaton NS. 2020. Heterogeneity of antiviral responses in the upper respiratory tract mediates differential non-lytic clearance of influenza viruses. Cell Rep. 32:108103
    [Google Scholar]
  69. 69.
    Sjaastad LE, Fay EJ, Fiege JK, Macchietto MG, Stone IA et al. 2018. Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo. PNAS 115:9610–15
    [Google Scholar]
  70. 70.
    Resa-Infante P, Thieme R, Ernst T, Arck PC, Ittrich H et al. 2014. Importin-α7 is required for enhanced influenza A virus replication in the alveolar epithelium and severe lung damage in mice. J. Virol. 88:8166–79
    [Google Scholar]
  71. 71.
    Fukuyama S, Katsura H, Zhao D, Ozawa M, Ando T et al. 2015. Multi-spectral fluorescent reporter influenza viruses (Color-flu) as powerful tools for in vivo studies. Nat. Commun. 6:6600
    [Google Scholar]
  72. 72.
    Spronken MI, Short KR, Herfst S, Bestebroer TM, Vaes VP et al. 2015. Optimisations and challenges involved in the creation of various bioluminescent and fluorescent influenza A virus strains for in vitro and in vivo applications. PLOS ONE 10:e0133888
    [Google Scholar]
  73. 73.
    Tran V, Poole DS, Jeffery JJ, Sheahan TP, Creech D et al. 2015. Multi-modal imaging with a toolbox of influenza A reporter viruses. Viruses 7:5319–27
    [Google Scholar]
  74. 74.
    Breen M, Nogales A, Baker SF, Perez DR, Martinez-Sobrido L. 2016. Replication-competent influenza A and B viruses expressing a fluorescent dynamic timer protein for in vitro and in vivo studies. PLOS ONE 11:e0147723
    [Google Scholar]
  75. 75.
    Chiem K, Rangel-Moreno J, Nogales A, Martinez-Sobrido L. 2019. A luciferase-fluorescent reporter influenza virus for live imaging and quantification of viral infection. J. Vis. Exp. 14:150e59890
    [Google Scholar]
  76. 76.
    Tran V, Moser LA, Poole DS, Mehle A. 2013. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J. Virol. 87:13321–29
    [Google Scholar]
  77. 77.
    Karlsson EA, Meliopoulos VA, Savage C, Livingston B, Mehle A, Schultz-Cherry S. 2015. Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nat. Commun. 6:6378
    [Google Scholar]
  78. 78.
    Lao G, Ma K, Qiu Z, Qi W, Liao M, Li H. 2022. Real-time visualization of the infection and replication of a mouse-lethal recombinant H9N2 avian influenza virus. Front. Vet. Sci. 9:849178
    [Google Scholar]
  79. 79.
    Kim JH, Bryant H, Fiedler E, Cao T, Rayner JO. 2022. Real-time tracking of bioluminescent influenza A virus infection in mice. Sci. Rep. 12:3152
    [Google Scholar]
  80. 80.
    Hufford MM, Richardson G, Zhou H, Manicassamy B, Garcia-Sastre A et al. 2012. Influenza-infected neutrophils within the infected lungs act as antigen presenting cells for anti-viral CD8+ T cells. PLOS ONE 7:e46581
    [Google Scholar]
  81. 81.
    Helft J, Manicassamy B, Guermonprez P, Hashimoto D, Silvin A et al. 2012. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Investig. 122:4037–47
    [Google Scholar]
  82. 82.
    Langlois RA, Varble A, Chua MA, García-Sastre A, tenOever BR. 2012. Hematopoietic-specific targeting of influenza A virus reveals replication requirements for induction of antiviral immune responses. PNAS 109:12117–22
    [Google Scholar]
  83. 83.
    Fay EJ, Aron SL, Macchietto MG, Markman MW, Esser-Nobis K et al. 2020. Cell type- and replication stage-specific influenza virus responses in vivo. PLOS Pathog. 16:e1008760
    [Google Scholar]
  84. 84.
    Heaton NS, Langlois RA, Sachs D, Lim JK, Palese P, tenOever BR. 2014. Long-term survival of influenza virus infected club cells drives immunopathology. J. Exp. Med. 211:1707–14
    [Google Scholar]
  85. 85.
    Hamilton JR, Sachs D, Lim JK, Langlois RA, Palese P, Heaton NS. 2016. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity. PNAS 113:3861–66
    [Google Scholar]
  86. 86.
    Fiege JK, Stone IA, Dumm RE, Waring BM, Fife BT et al. 2019. Long-term surviving influenza infected cells evade CD8+ T cell mediated clearance. PLOS Pathog. 15:e1008077
    [Google Scholar]
  87. 87.
    Vilibic-Cavlek T, Savic V, Ferenc T, Mrzljak A, Barbic L et al. 2021. Lymphocytic choriomeningitis—emerging trends of a neglected virus: a narrative review. Trop. Med. Infect. Dis. 6:288
    [Google Scholar]
  88. 88.
    Zhou X, Ramachandran S, Mann M, Popkin DL. 2012. Role of lymphocytic choriomeningitis virus (LCMV) in understanding viral immunology: past, present and future. Viruses 4:2650–69
    [Google Scholar]
  89. 89.
    Abdel-Hakeem MS. 2019. Viruses teaching immunology: role of LCMV model and human viral infections in immunological discoveries. Viruses 11:2106
    [Google Scholar]
  90. 90.
    Perez M, Craven RC, de la Torre JC. 2003. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. PNAS 100:12978–83
    [Google Scholar]
  91. 91.
    Buchmeier MJ. 2002. Arenaviruses: protein structure and function. Curr. Top. Microbiol. Immunol. 262:159–73
    [Google Scholar]
  92. 92.
    Pinschewer DD, Perez M, Sanchez AB, de la Torre JC. 2003. Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. PNAS 100:7895–900
    [Google Scholar]
  93. 93.
    Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S. 2008. Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J. Virol. 82:7677–87
    [Google Scholar]
  94. 94.
    Lee KJ, Novella IS, Teng MN, Oldstone MB, de la Torre JC. 2000. NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J. Virol. 74:3470–77
    [Google Scholar]
  95. 95.
    Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L. 2012. D471G mutation in LCMV-NP affects its ability to self-associate and results in a dominant negative effect in viral RNA synthesis. Viruses 4:2137–61
    [Google Scholar]
  96. 96.
    Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L. 2011. The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J. Virol. 85:13038–48
    [Google Scholar]
  97. 97.
    Hass M, Golnitz U, Muller S, Becker-Ziaja B, Gunther S 2004. Replicon system for Lassa virus. J. Virol. 78:13793–803
    [Google Scholar]
  98. 98.
    Lan S, McLay Schelde L, Wang J, Kumar N, Ly H, Liang Y 2009. Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers. J. Virol. 83:6357–62
    [Google Scholar]
  99. 99.
    Lopez N, Jacamo R, Franze-Fernandez MT. 2001. Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J. Virol. 75:12241–51
    [Google Scholar]
  100. 100.
    Albarino CG, Bergeron E, Erickson BR, Khristova ML, Rollin PE, Nichol ST 2009. Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J. Virol. 83:5606–14
    [Google Scholar]
  101. 101.
    Flatz L, Bergthaler A, de la Torre JC, Pinschewer DD. 2006. Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. PNAS 103:4663–68
    [Google Scholar]
  102. 102.
    Sanchez AB, de la Torre JC. 2006. Rescue of the prototypic Arenavirus LCMV entirely from plasmid. Virology 350:370–80
    [Google Scholar]
  103. 103.
    Martinez-Sobrido L, Emonet S, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC. 2009. Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 83:11330–40
    [Google Scholar]
  104. 104.
    Emonet SF, Garidou L, McGavern DB, de la Torre JC. 2009. Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. PNAS 106:3473–78
    [Google Scholar]
  105. 105.
    Emonet SF, Seregin AV, Yun NE, Poussard AL, Walker AG et al. 2011. Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J. Virol. 85:1473–83
    [Google Scholar]
  106. 106.
    Popkin DL, Teijaro JR, Lee AM, Lewicki H, Emonet S et al. 2011. Expanded potential for recombinant trisegmented lymphocytic choriomeningitis viruses: protein production, antibody production, and in vivo assessment of biological function of genes of interest. J. Virol. 85:7928–32
    [Google Scholar]
  107. 107.
    Cheng BY, Ortiz-Riano E, de la Torre JC, Martinez-Sobrido L. 2015. Arenavirus genome rearrangement for the development of live attenuated vaccines. J. Virol. 89:7373–84
    [Google Scholar]
  108. 108.
    Dhanwani R, Zhou Y, Huang Q, Verma V, Dileepan M et al. 2015. A novel live pichinde virus-based vaccine vector induces enhanced humoral and cellular immunity after a booster dose. J. Virol. 90:2551–60
    [Google Scholar]
  109. 109.
    Kallert SM, Darbre S, Bonilla WV, Kreutzfeldt M, Page N et al. 2017. Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-mediated tumour immunotherapy. Nat. Commun. 8:15327
    [Google Scholar]
  110. 110.
    Schmidt S, Bonilla WV, Reiter A, Stemeseder F, Kleissner T et al. 2020. Live-attenuated lymphocytic choriomeningitis virus-based vaccines for active immunotherapy of HPV16-positive cancer. Oncoimmunology 9:1809960
    [Google Scholar]
  111. 111.
    Flatz L, Hegazy AN, Bergthaler A, Verschoor A, Claus C et al. 2010. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity. Nat. Med. 16:339–45
    [Google Scholar]
  112. 112.
    Krolik M, Csepregi L, Hartmann F, Engetschwiler C, Flatz L. 2021. Recombinant lymphocytic choriomeningitis virus-based vaccine vector protects type I interferon receptor deficient mice from viral challenge. Vaccine 39:1257–64
    [Google Scholar]
  113. 113.
    Iwasaki M, Minder P, Cai Y, Kuhn JH, Yates JR III et al. 2018. Interactome analysis of the lymphocytic choriomeningitis virus nucleoprotein in infected cells reveals ATPase Na+/K+ transporting subunit Alpha 1 and prohibitin as host-cell factors involved in the life cycle of mammarenaviruses. PLOS Pathog. 14:e1006892
    [Google Scholar]
  114. 114.
    Ngo N, Henthorn KS, Cisneros MI, Cubitt B, Iwasaki M et al. 2015. Identification and mechanism of action of a novel small-molecule inhibitor of arenavirus multiplication. J. Virol. 89:10924–33
    [Google Scholar]
  115. 115.
    Ortiz-Riano E, Ngo N, Devito S, Eggink D, Munger J et al. 2014. Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor. J. Virol. 88:878–89
    [Google Scholar]
  116. 116.
    Iwasaki M, Ngo N, de la Torre JC. 2014. Sodium hydrogen exchangers contribute to arenavirus cell entry. J. Virol. 88:643–54
    [Google Scholar]
  117. 117.
    Cheng BY, Ortiz-Riano E, de la Torre JC, Martinez-Sobrido L. 2013. Generation of recombinant arenavirus for vaccine development in FDA-approved Vero cells. J. Vis. Exp. 78:50662
    [Google Scholar]
  118. 118.
    Vazquez-Calvo A, Martin-Acebes MA, Saiz JC, Ngo N, Sobrino F, de la Torre JC. 2013. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Res. 99:172–79
    [Google Scholar]
  119. 119.
    Rodrigo WW, de la Torre JC, Martinez-Sobrido L. 2011. Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J. Virol. 85:1684–95
    [Google Scholar]
  120. 120.
    Ortiz-Riano E, Cheng BYH, de la Torre JC, Martinez-Sobrido L. 2013. Arenavirus reverse genetics for vaccine development. J. Gen. Virol. 94:1175–88
    [Google Scholar]
  121. 121.
    Trapecar M, Khan S, Cohn BL, Wu F, Sanjabi S. 2018. B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection. Mucosal Immunol. 11:1158–67
    [Google Scholar]
  122. 122.
    Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G et al. 2020. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 181:1475–88
    [Google Scholar]
  123. 123.
    West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–57
    [Google Scholar]
  124. 124.
    Wan W, Zhu S, Li S, Shang W, Zhang R et al. 2021. High-throughput screening of an FDA-approved drug library identifies inhibitors against arenaviruses and SARS-CoV-2. ACS Infect. Dis. 7:1409–22
    [Google Scholar]
  125. 125.
    Rua R, Lee JY, Silva AB, Swafford IS, Maric D et al. 2019. Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity. Nat. Immunol. 20:407–19
    [Google Scholar]
  126. 126.
    Liu J, Knopp KA, Rackaityte E, Wang CY, Laurie MT et al. 2022. Genome-wide knockout screen identifies human sialomucin CD164 as an essential entry factor for lymphocytic choriomeningitis virus. mBio 13:e0020522
    [Google Scholar]
  127. 127.
    Urata S, Weyer J, Storm N, Miyazaki Y, van Vuren PJ et al. 2015. Analysis of assembly and budding of lujo virus. J. Virol. 90:3257–61
    [Google Scholar]
  128. 128.
    Hashizume M, Takashima A, Iwasaki M. 2022. A small stem-loop-forming region within the 3′-UTR of a nonpolyadenylated LCMV mRNA promotes translation. J. Biol. Chem. 298:101576
    [Google Scholar]
  129. 129.
    Low JS, Farsakoglu Y, Vesely MCA, Sefik E, Kelly JB et al. 2020. Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses. J. Exp. Med. 217:8e20192291
    [Google Scholar]
  130. 130.
    Kim YJ, Witwit H, Cubitt B, de la Torre JC. 2021. Inhibitors of anti-apoptotic Bcl-2 family proteins exhibit potent and broad-spectrum anti-mammarenavirus activity via cell cycle arrest at G0/G1 phase. J. Virol. 95:e0139921
    [Google Scholar]
  131. 131.
    Miranda PO, Cubitt B, Jacob NT, Janda KD, de la Torre JC. 2018. Mining a krohnke pyridine library for anti-arenavirus activity. ACS Infect. Dis. 4:815–24
    [Google Scholar]
  132. 132.
    Wen Y, Xu H, Wan W, Shang W, Jin R et al. 2022. Visualizing lymphocytic choriomeningitis virus infection in cells and living mice. iScience 25:105090
    [Google Scholar]
  133. 133.
    Brennan B, Welch SR, Elliott RM. 2014. The consequences of reconfiguring the ambisense S genome segment of Rift Valley fever virus on viral replication in mammalian and mosquito cells and for genome packaging. PLOS Pathog. 10:e1003922
    [Google Scholar]
  134. 134.
    Ikegami T, Peters CJ, Makino S. 2005. Rift Valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J. Virol. 79:5606–15
    [Google Scholar]
  135. 135.
    Lopez N, Muller R, Prehaud C, Bouloy M. 1995. The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J. Virol. 69:3972–79
    [Google Scholar]
  136. 136.
    Bouloy M, Weber F. 2010. Molecular biology of Rift Valley fever virus. Open Virol. J. 4:8–14
    [Google Scholar]
  137. 137.
    Bouloy M, Flick R. 2009. Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antiviral Res. 84:101–18
    [Google Scholar]
  138. 138.
    Dunn EF, Pritlove DC, Jin H, Elliott RM 1995. Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211:133–43
    [Google Scholar]
  139. 139.
    Flick R, Pettersson RF. 2001. Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J. Virol. 75:1643–55
    [Google Scholar]
  140. 140.
    Flick K, Hooper JW, Schmaljohn CS, Pettersson RF, Feldmann H, Flick R. 2003. Rescue of Hantaan virus minigenomes. Virology 306:219–24
    [Google Scholar]
  141. 141.
    Flick R, Flick K, Feldmann H, Elgh F. 2003. Reverse genetics for Crimean-Congo hemorrhagic fever virus. J. Virol. 77:5997–6006
    [Google Scholar]
  142. 142.
    Bridgen A, Elliott RM. 1996. Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. PNAS 93:15400–4
    [Google Scholar]
  143. 143.
    Gauliard N, Billecocq A, Flick R, Bouloy M. 2006. Rift Valley fever virus noncoding regions of L, M and S segments regulate RNA synthesis. Virology 351:170–79
    [Google Scholar]
  144. 144.
    Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F et al. 2004. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J. Virol. 78:9798–806
    [Google Scholar]
  145. 145.
    Jerome H, Rudolf M, Lelke M, Pahlmann M, Busch C et al. 2019. Rift Valley fever virus minigenome system for investigating the role of L protein residues in viral transcription and replication. J. Gen. Virol. 100:1093–98
    [Google Scholar]
  146. 146.
    Flick K, Katz A, Overby A, Feldmann H, Pettersson RF, Flick R. 2004. Functional analysis of the noncoding regions of the Uukuniemi virus (Bunyaviridae) RNA segments. J. Virol. 78:11726–38
    [Google Scholar]
  147. 147.
    Albarino CG, Bird BH, Nichol ST 2007. A shared transcription termination signal on negative and ambisense RNA genome segments of Rift Valley fever, sandfly fever Sicilian, and Toscana viruses. J. Virol. 81:5246–56
    [Google Scholar]
  148. 148.
    Barr JN, Wertz GW. 2005. Role of the conserved nucleotide mismatch within 3′- and 5′-terminal regions of Bunyamwera virus in signaling transcription. J. Virol. 79:3586–94
    [Google Scholar]
  149. 149.
    Barr JN, Rodgers JW, Wertz GW. 2005. The Bunyamwera virus mRNA transcription signal resides within both the 3′ and the 5′ terminal regions and allows ambisense transcription from a model RNA segment. J. Virol. 79:12602–7
    [Google Scholar]
  150. 150.
    Haferkamp S, Fernando L, Schwarz TF, Feldmann H, Flick R. 2005. Intracellular localization of Crimean-Congo hemorrhagic fever (CCHF) virus glycoproteins. Virol. J. 2:42
    [Google Scholar]
  151. 151.
    Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H, Flick R. 2004. Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321:23–28
    [Google Scholar]
  152. 152.
    Walpita P, Flick R. 2005. Reverse genetics of negative-stranded RNA viruses: a global perspective. FEMS Microbiol. Lett. 244:9–18
    [Google Scholar]
  153. 153.
    Freiberg A, Dolores LK, Enterlein S, Flick R. 2008. Establishment and characterization of plasmid-driven minigenome rescue systems for Nipah virus: RNA polymerase I- and T7-catalyzed generation of functional paramyxoviral RNA. Virology 370:33–44
    [Google Scholar]
  154. 154.
    Feng J, Wickenhagen A, Turnbull ML, Rezelj VV, Kreher F et al. 2018. Interferon-stimulated gene (ISG)-expression screening reveals the specific antibunyaviral activity of ISG20. J. Virol. 92:13e02140–17
    [Google Scholar]
  155. 155.
    Yamada H, Taniguchi S, Shimojima M, Tan L, Kimura M et al. 2021. M segment-based minigenome system of severe fever with thrombocytopenia syndrome virus as a tool for antiviral drug screening. Viruses 13:61061
    [Google Scholar]
  156. 156.
    Bridgen A, Weber F, Fazakerley JK, Elliott RM. 2001. Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. PNAS 98:664–69
    [Google Scholar]
  157. 157.
    Lowen AC, Noonan C, McLees A, Elliott RM. 2004. Efficient bunyavirus rescue from cloned cDNA. Virology 330:493–500
    [Google Scholar]
  158. 158.
    Bird BH, Albarino CG, Hartman AL, Erickson BR, Ksiazek TG, Nichol ST 2008. Rift Valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J. Virol. 82:2681–91
    [Google Scholar]
  159. 159.
    Blakqori G, Weber F. 2005. Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J. Virol. 79:10420–28
    [Google Scholar]
  160. 160.
    Bird BH, Maartens LH, Campbell S, Erasmus BJ, Erickson BR et al. 2011. Rift Valley fever virus vaccine lacking the NSs and NSm genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep. J. Virol. 85:12901–9
    [Google Scholar]
  161. 161.
    Ikegami T, Won S, Peters CJ, Makino S. 2006. Rescue of infectious Rift Valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J. Virol. 80:2933–40
    [Google Scholar]
  162. 162.
    Gerrard SR, Bird BH, Albarino CG, Nichol ST 2007. The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology 359:459–65
    [Google Scholar]
  163. 163.
    Bird BH, Albarino CG, Nichol ST 2007. Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology 362:10–15
    [Google Scholar]
  164. 164.
    Billecocq A, Gauliard N, Le May N, Elliott RM, Flick R, Bouloy M 2008. RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology 378:377–84
    [Google Scholar]
  165. 165.
    Habjan M, Penski N, Spiegel M, Weber F. 2008. T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J. Gen. Virol. 89:2157–66
    [Google Scholar]
  166. 166.
    Islam MK, Baudin M, Eriksson J, Oberg C, Habjan M et al. 2016. High-throughput screening using a whole-cell virus replication reporter gene assay to identify inhibitory compounds against Rift Valley fever virus infection. J. Biomol. Screen. 21:354–62
    [Google Scholar]
  167. 167.
    Gommet C, Billecocq A, Jouvion G, Hasan M, Zaverucha do Valle T et al. 2011. Tissue tropism and target cells of NSs-deleted Rift Valley fever virus in live immunodeficient mice. PLOS Negl. Trop. Dis. 5:e1421
    [Google Scholar]
  168. 168.
    Wichgers Schreur PJ, Paweska JT, Kant J, Kortekaas J 2017. A novel highly sensitive, rapid and safe Rift Valley fever virus neutralization test. J. Virol. Methods 248:26–30
    [Google Scholar]
  169. 169.
    Lang Y, Li Y, Jasperson D, Henningson J, Lee J et al. 2019. Identification and evaluation of antivirals for Rift Valley fever virus. Vet. Microbiol. 230:110–16
    [Google Scholar]
  170. 170.
    Kuri T, Habjan M, Penski N, Weber F. 2010. Species-independent bioassay for sensitive quantification of antiviral type I interferons. Virol. J. 7:50
    [Google Scholar]
  171. 171.
    Le May N, Dubaele S, Proietti De Santis L, Billecocq A, Bouloy M, Egly JM 2004. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116:541–50
    [Google Scholar]
  172. 172.
    Copeland AM, Van Deusen NM, Schmaljohn CS. 2015. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export. Virology 486:88–93
    [Google Scholar]
  173. 173.
    Harmon B, Schudel BR, Maar D, Kozina C, Ikegami T et al. 2012. Rift Valley fever virus strain MP-12 enters mammalian host cells via caveola-mediated endocytosis. J. Virol. 86:12954–70
    [Google Scholar]
  174. 174.
    Copeland AM, Altamura LA, Van Deusen NM, Schmaljohn CS. 2013. Nuclear relocalization of polyadenylate binding protein during Rift Valley fever virus infection involves expression of the NSs gene. J. Virol. 87:11659–69
    [Google Scholar]
  175. 175.
    Kortekaas J, Oreshkova N, Cobos-Jimenez V, Vloet RP, Potgieter CA, Moormann RJ. 2011. Creation of a nonspreading Rift Valley fever virus. J. Virol. 85:12622–30
    [Google Scholar]
  176. 176.
    Murakami S, Terasaki K, Makino S. 2016. Generation of a single-cycle replicable Rift Valley fever vaccine. Methods Mol. Biol. 1403:187–206
    [Google Scholar]
  177. 177.
    Piper ME, Gerrard SR. 2010. A novel system for identification of inhibitors of Rift Valley fever virus replication. Viruses 2:731–47
    [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-120445
Loading
/content/journals/10.1146/annurev-virology-111821-120445
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error