1932

Abstract

Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed −1 ribosomal frameshifting (−1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on −1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of −1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo–electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for −1PRF remains a useful way of thinking.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-120646
2023-09-29
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-111821-120646.html?itemId=/content/journals/10.1146/annurev-virology-111821-120646&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. 2016. Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 44:157007–78
    [Google Scholar]
  2. 2.
    Dinman JD. 2019. Slippery ribosomes prefer shapeshifting mRNAs. PNAS 116:3919225–27
    [Google Scholar]
  3. 3.
    Korniy N, Samatova E, Anokhina MM, Peske F, Rodnina MV. 2019. Mechanisms and biomedical implications of −1 programmed ribosome frameshifting on viral and bacterial mRNAs. FEBS Lett. 593:1468–82
    [Google Scholar]
  4. 4.
    Rodnina MV, Korniy N, Klimova M, Karki P, Peng BZ et al. 2020. Translational recoding: canonical translation mechanisms reinterpreted. Nucleic Acids Res. 48:31056–67
    [Google Scholar]
  5. 5.
    Riegger RJ, Caliskan N. 2022. Thinking outside the frame: impacting genomes capacity by programmed ribosomal frameshifting. Front. Mol. Biosci. 9:842261
    [Google Scholar]
  6. 6.
    Jacks T, Varmus HE. 1985. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:47311237–42
    [Google Scholar]
  7. 7.
    Firth AE, Brierley I. 2012. Non-canonical translation in RNA viruses. J. Gen. Virol. 93:71385–409
    [Google Scholar]
  8. 8.
    Dulude D, Berchiche YA, Gendron K, Brakier-Gingras L, Heveker N. 2006. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 345:1127–36
    [Google Scholar]
  9. 9.
    Garcia-Miranda P, Becker JT, Benner BE, Blume A, Sherer NM, Butcher SE. 2016. Stability of HIV frameshift site RNA correlates with frameshift efficiency and decreased virus infectivity. J. Virol. 90:156906–17
    [Google Scholar]
  10. 10.
    Nikolić EIC, King LM, Vidakovic M, Irigoyen N, Brierley I. 2012. Modulation of ribosomal frameshifting frequency and its effect on the replication of Rous sarcoma virus. J. Virol. 86:2111581–94
    [Google Scholar]
  11. 11.
    Dinman JD, Wickner RB. 1992. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 66:63669–76
    [Google Scholar]
  12. 12.
    Plant EP, Rakauskaitė R, Taylor DR, Dinman JD. 2010. Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins. J. Virol. 84:94330–40
    [Google Scholar]
  13. 13.
    Plant EP, Sims AC, Baric RS, Dinman JD, Taylor DR. 2013. Altering SARS coronavirus frameshift efficiency affects genomic and subgenomic RNA production. Viruses 5:1279–94
    [Google Scholar]
  14. 14.
    Kendra JA, de la Fuente C, Brahms A, Woodson C, Bell TM et al. 2017. Ablation of programmed −1 ribosomal frameshifting in Venezuelan equine encephalitis virus results in attenuated neuropathogenicity. J. Virol. 91:3e01766–16
    [Google Scholar]
  15. 15.
    Xu J, Hendrix RW, Duda RL. 2013. A balanced ratio of proteins from gene G and frameshift-extended gene GT is required for phage lambda tail assembly. J. Mol. Biol. 425:183476–87
    [Google Scholar]
  16. 16.
    Irigoyen N, Firth AE, Jones JD, Chung BYW, Siddell SG, Brierley I. 2016. High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLOS Pathog. 12:2e1005473
    [Google Scholar]
  17. 17.
    Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D et al. 2021. The coding capacity of SARS-CoV-2. Nature 589:7840125–30
    [Google Scholar]
  18. 18.
    Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR et al. 2022. The translational landscape of SARS-CoV-2-infected cells reveals suppression of innate immune genes. mBio 13:3e0081522
    [Google Scholar]
  19. 19.
    Jacks T, Madhani HD, Masiarz FR, Varmus HE. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:3447–58
    [Google Scholar]
  20. 20.
    Bock LV, Caliskan N, Korniy N, Peske F, Rodnina MV, Grubmüller H. 2019. Thermodynamic control of −1 programmed ribosomal frameshifting. Nat. Commun. 10:14598
    [Google Scholar]
  21. 21.
    Choi J, O'Loughlin S, Atkins JF, Puglisi JD. 2020. The energy landscape of −1 ribosomal frameshifting. Sci. Adv. 6:1eaax6969
    [Google Scholar]
  22. 22.
    Hatfield D, Feng YX, Lee BJ, Rein A, Levin JG, Oroszlan S. 1989. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV. Virology 173:2736–42
    [Google Scholar]
  23. 23.
    Carlson BA, Kwon SY, Chamorro M, Oroszlan S, Hatfield DL, Lee BJ. 1999. Transfer RNA modification status influences retroviral ribosomal frameshifting. Virology 255:12–8
    [Google Scholar]
  24. 24.
    Waas WF, Druzina Z, Hanan M, Schimmel P. 2007. Role of a tRNA base modification and its precursors in frameshifting in eukaryotes. J. Biol. Chem. 282:3626026–34
    [Google Scholar]
  25. 25.
    Marczinke B, Hagervall T, Brierley I. 2000. The Q-base of asparaginyl-tRNA is dispensable for efficient −1 ribosomal frameshifting in eukaryotes. J. Mol. Biol. 295:2179–91
    [Google Scholar]
  26. 26.
    Maynard ND, MacKlin DN, Kirkegaard K, Covert MW. 2012. Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting. Mol. Syst. Biol. 8:567
    [Google Scholar]
  27. 27.
    Levin ME, Hendrix RW, Casjens SR. 1993. A programmed translational frameshift is required for the synthesis of a bacteriophage λ tail assembly protein. J. Mol. Biol. 234:1124–39
    [Google Scholar]
  28. 28.
    Rak R, Polonsky M, Eizenberg-Magar I, Mo Y, Sakaguchi Y et al. 2021. Dynamic changes in tRNA modifications and abundance during T cell activation. PNAS 118:42e2106556118
    [Google Scholar]
  29. 29.
    Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F et al. 2019. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res. 47:105210–24
    [Google Scholar]
  30. 30.
    Brierley I, Digard P, Inglis SC. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:4537–47
    [Google Scholar]
  31. 31.
    Giedroc DP, Cornish PV. 2009. Frameshifting RNA pseudoknots: structure and mechanism. Virus Res. 139:2193–208
    [Google Scholar]
  32. 32.
    Pleij CWA, Rietveld K, Bosch L. 1985. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 13:51717–31
    [Google Scholar]
  33. 33.
    Brierley I, Pennell S, Gilbert RJC. 2007. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat. Rev. Microbiol. 5:8598–610
    [Google Scholar]
  34. 34.
    Butcher SE, Pyle AM. 2011. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc. Chem. Res. 44:121302–11
    [Google Scholar]
  35. 35.
    Takyar S, Hickerson RP, Noller HF. 2005. mRNA helicase activity of the ribosome. Cell 120:149–58
    [Google Scholar]
  36. 36.
    Qu X, Wen J-D, Lancaster L, Noller HF, Bustamante C, Tinoco I. 2011. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:7354118–21
    [Google Scholar]
  37. 37.
    Amiri H, Noller HF. 2019. A tandem active site model for the ribosomal helicase. FEBS Lett. 593:101009–19
    [Google Scholar]
  38. 38.
    Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. 2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:6018730–36
    [Google Scholar]
  39. 39.
    Su L, Chen L, Egli M, Berger JM, Rich A. 1999. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat. Struct. Biol. 6:3285–92
    [Google Scholar]
  40. 40.
    Nixon PL, Cornish PV, Suram SV, Giedroc DP. 2002. Thermodynamic analysis of conserved loop–stem interactions in P1–P2 frameshifting RNA pseudoknots from plant Luteoviridae. Biochemistry 41:3410665–74
    [Google Scholar]
  41. 41.
    Pallan PS, Marshall WS, Harp J, Jewett FC, Wawrzak Z et al. 2005. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif. Biochemistry 44:3411315–22
    [Google Scholar]
  42. 42.
    Cornish PV, Hennig M, Giedroc DP. 2005. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated −1 ribosomal frameshifting. PNAS 102:3612694–99
    [Google Scholar]
  43. 43.
    Michiels PJA, Versleijen AAM, Verlaan PW, Pleij CWA, Hilbers CW, Heus HA. 2001. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J. Mol. Biol. 310:51109–23
    [Google Scholar]
  44. 44.
    Cornish PV, Stammler SN, Giedroc DP. 2006. The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical. RNA 12:111959–69
    [Google Scholar]
  45. 45.
    Giedroc DP, Theimer CA, Nixon PL. 2000. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J. Mol. Biol. 298:2167–85
    [Google Scholar]
  46. 46.
    Shen LX, Tinoco I. 1995. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J. Mol. Biol. 247:5963–78
    [Google Scholar]
  47. 47.
    Chen X, Chamorro M, Lee SI, Shen LX, Hines JV et al. 1995. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: Nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J. 14:4842–52
    [Google Scholar]
  48. 48.
    Wang Y, Wills NM, Du Z, Rangan A, Atkins JF et al. 2002. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. RNA 8:8981–96
    [Google Scholar]
  49. 49.
    Hansen TM, Reihani SNS, Oddershede LB, Sørensen MA. 2007. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. PNAS 104:145830–35
    [Google Scholar]
  50. 50.
    Zhang K, Zheludev IN, Hagey RJ, Haslecker R, Hou YJ et al. 2021. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 28:9747–54
    [Google Scholar]
  51. 51.
    Jones CP, Ferré-D'Amaré AR 2022. Crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshifting pseudoknot. RNA 28:2239–49
    [Google Scholar]
  52. 52.
    Roman C, Lewicka A, Koirala D, Li NS, Piccirilli JA. 2021. The SARS-CoV-2 programmed −1 ribosomal frameshifting element crystal structure solved to 2.09 Å using chaperone-assisted RNA crystallography. ACS Chem. Biol. 16:81469–81
    [Google Scholar]
  53. 53.
    Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A et al. 2021. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372:65481306–13
    [Google Scholar]
  54. 54.
    Brierley I, Rolley NJ, Jenner AJ, Inglis SC. 1991. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 220:4889–902
    [Google Scholar]
  55. 55.
    Brierley I, Jenner AJ, Inglis SC. 1992. Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 227:2463–79
    [Google Scholar]
  56. 56.
    Napthine S, Liphardt J, Bloys A, Routledge S, Brierley I. 1999. The role of RNA pseudoknot stem 1 length in the promotion of efficient −1 ribosomal frameshifting. J. Mol. Biol. 288:3305–20
    [Google Scholar]
  57. 57.
    Liphardt J, Napthine S, Kontos H, Brierley I. 1999. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient −1 ribosomal frameshifting. J. Mol. Biol. 288:3321–35
    [Google Scholar]
  58. 58.
    Brierley I, Pennell S. 2001. Structure and function of the stimulatory RNAs involved in programmed eukaryotic −1 ribosomal frameshifting. Cold Spring Harb. Symp. Quant. Biol. 66:233–48
    [Google Scholar]
  59. 59.
    Plant EP, Pérez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD. 2005. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLOS Biol. 3:6e172
    [Google Scholar]
  60. 60.
    Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. 2005. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332:2498–510
    [Google Scholar]
  61. 61.
    Yan S, Zhu Q, Jain S, Schlick T. 2022. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression. Nat. Commun. 13:14284
    [Google Scholar]
  62. 62.
    Firth AE, Chung BYW, Fleeton MN, Atkins JF. 2008. Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virol. J. 5:108
    [Google Scholar]
  63. 63.
    Chen C, Zhang H, Broitman SL, Reiche M, Farrell I et al. 2013. Dynamics of translation by single ribosomes through mRNA secondary structures. Nat. Struct. Mol. Biol. 20:5582–88
    [Google Scholar]
  64. 64.
    Gaudin C, Mazauric MH, Traïkia M, Guittet E, Yoshizawa S, Fourmy D. 2005. Structure of the RNA signal essential for translational frameshifting in HIV-1. J. Mol. Biol. 349:51024–35
    [Google Scholar]
  65. 65.
    Staple DW, Butcher SE. 2005. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J. Mol. Biol. 349:51011–23
    [Google Scholar]
  66. 66.
    Marcheschi RJ, Tonelli M, Kumar A, Butcher SE. 2011. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication. ACS Chem. Biol. 6:8857–64
    [Google Scholar]
  67. 67.
    Bao C, Loerch S, Ling C, Korostelev AA, Grigorieff N, Ermolenko DN. 2020. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. eLife 9:e55799
    [Google Scholar]
  68. 68.
    Mouzakis KD, Lang AL, vander Meulen KA, Easterday PD, Butcher SE. 2013. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res. 41:31901–13
    [Google Scholar]
  69. 69.
    Yu CH, Noteborn MH, Pleij CWA, Olsthoorn RCL. 2011. Stem-loop structures can effectively substitute for an RNA pseudoknot in −1 ribosomal frameshifting. Nucleic Acids Res. 39:208952–59
    [Google Scholar]
  70. 70.
    Bao C, Zhu M, Nykonchuk I, Wakabayashi H, Mathews DH, Ermolenko DN. 2022. Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation. Nat. Commun. 13:1988
    [Google Scholar]
  71. 71.
    Green L, Kim CH, Bustamante C, Tinoco I. 2008. Characterization of the mechanical unfolding of RNA pseudoknots. J. Mol. Biol. 375:2511–28
    [Google Scholar]
  72. 72.
    Ritchie DB, Foster DAN, Woodside MT. 2012. Programmed −1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. PNAS 109:4016167–72
    [Google Scholar]
  73. 73.
    Zhong Z, Yang L, Zhang H, Shi J, Vandana JJ et al. 2016. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for −1 ribosomal frameshifting stimulation. Sci. Rep. 6:39549
    [Google Scholar]
  74. 74.
    Hill CH, Pekarek L, Napthine S, Kibe A, Firth AE et al. 2021. Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch. Nat. Commun. 12:17166
    [Google Scholar]
  75. 75.
    Wu B, Zhang H, Sun R, Peng S, Cooperman BS et al. 2018. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Nucleic Acids Res. 46:189736–48
    [Google Scholar]
  76. 76.
    Moomau C, Musalgaonkar S, Khan YA, Jones JE, Dinman JD. 2016. Structural and functional characterization of programmed ribosomal frameshift signals in West Nile virus strains reveals high structural plasticity among cis-acting RNA elements. J. Biol. Chem. 291:3015788–95
    [Google Scholar]
  77. 77.
    Ritchie DB, Cappellano TR, Tittle C, Rezajooei N, Rouleau L et al. 2017. Conformational dynamics of the frameshift stimulatory structure in HIV-1. RNA 23:91376–84
    [Google Scholar]
  78. 78.
    Chang KC, Wen J-D. 2021. Programmed −1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Comput. Struct. Biotechnol. 19:3580–88
    [Google Scholar]
  79. 79.
    Halma MTJ, Ritchie DB, Woodside MT. 2021. Conformational Shannon entropy of mRNA structures from force spectroscopy measurements predicts the efficiency of −1 programmed ribosomal frameshift stimulation. Phys. Rev. Lett. 126:3038102
    [Google Scholar]
  80. 80.
    Hsu CF, Chang KC, Chen YL, Hsieh PS, Lee AI et al. 2021. Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates. Nucleic Acids Res. 49:126941–57
    [Google Scholar]
  81. 81.
    Halma MTJ, Ritchie DB, Cappellano TR, Neupane K, Woodside MT. 2019. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure. PNAS 116:3919500–5
    [Google Scholar]
  82. 82.
    Pekarek L, Zimmer MM, Gribling-Burrer A-S, Buck S, Smyth R, Caliskan N. 2023. Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function. Nucleic Acids Res. 51:2728–43
    [Google Scholar]
  83. 83.
    Schlick T, Zhu Q, Jain S, Yan S. 2021. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element. Biophys. J. 120:61040–53
    [Google Scholar]
  84. 84.
    Neupane K, Zhao M, Lyons A, Munshi S, Ileperuma SM et al. 2021. Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nat. Commun. 12:14749
    [Google Scholar]
  85. 85.
    Omar SI, Zhao M, Sekar RV, Moghadam SA, Tuszynski JA, Woodside MT. 2021. Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers. PLOS Comput. Biol. 17:1e1008603
    [Google Scholar]
  86. 86.
    Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. 2021. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol. Cell 81:3584–98
    [Google Scholar]
  87. 87.
    Brault V, Miller WA. 1992. Translational frameshifting mediated by a viral sequence in plant cells. PNAS 89:62262–66
    [Google Scholar]
  88. 88.
    Paul CP, Barry JK, Dinesh-Kumar SP, Brault V, Miller WA. 2001. A sequence required for −1 ribosomal frameshifting located four kilobases downstream of the frameshift site. J. Mol. Biol. 310:5987–99
    [Google Scholar]
  89. 89.
    Barry JK, Miller WA. 2002. A −1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. PNAS 99:1711133–38
    [Google Scholar]
  90. 90.
    Lan TCT, Allan MF, Malsick LE, Woo JZ, Zhu C et al. 2022. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 13:11128
    [Google Scholar]
  91. 91.
    Zhang Y, Huang K, Xie D, Lau JY, Shen W et al. 2021. In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nat. Commun. 12:15695
    [Google Scholar]
  92. 92.
    Ziv O, Price J, Shalamova L, Kamenova T, Goodfellow I et al. 2020. The short- and long-range RNA-RNA interactome of SARS-CoV-2. Mol. Cell 80:61067–77
    [Google Scholar]
  93. 93.
    Fang Y, Treffers EE, Li Y, Tas A, Sun Z et al. 2012. Efficient −2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. PNAS 109:43E2920–28
    [Google Scholar]
  94. 94.
    Li Y, Treffers EE, Napthine S, Tas A, Zhu L et al. 2014. Transactivation of programmed ribosomal frameshifting by a viral protein. PNAS 111:21E2172–81
    [Google Scholar]
  95. 95.
    Napthine S, Treffers EE, Bell S, Goodfellow I, Fang Y et al. 2016. A novel role for poly(C) binding proteins in programmed ribosomal frameshifting. Nucleic Acids Res. 44:125491–503
    [Google Scholar]
  96. 96.
    Patel A, Treffers EE, Meier M, Patel TR, Stetefeld J et al. 2020. Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression. J. Biol. Chem. 295:5217904–21
    [Google Scholar]
  97. 97.
    Loughran G, Firth AE, Atkins JF. 2011. Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. PNAS 108:46E1111–19
    [Google Scholar]
  98. 98.
    Napthine S, Ling R, Finch LK, Jones JD, Bell S et al. 2017. Protein-directed ribosomal frameshifting temporally regulates gene expression. Nat. Commun. 8:15582
    [Google Scholar]
  99. 99.
    Caliskan N, Hill CH. 2022. Insights from structural studies of the cardiovirus 2A protein. Biosci. Rep. 42:1BSR20210406
    [Google Scholar]
  100. 100.
    Hill CH, Cook GM, Napthine S, Kibe A, Brown K et al. 2021. Investigating molecular mechanisms of 2A-stimulated ribosomal pausing and frameshifting in Theilovirus. Nucleic Acids Res. 49:2011938–58
    [Google Scholar]
  101. 101.
    Wang X, Xuan Y, Han Y, Ding X, Ye K et al. 2019. Regulation of HIV-1 gag-pol expression by Shiftless, an inhibitor of programmed −1 ribosomal frameshifting. Cell 176:3625–35
    [Google Scholar]
  102. 102.
    Napthine S, Hill CH, Nugent HCM, Brierley I. 2021. Modulation of viral programmed ribosomal frameshifting and stop codon readthrough by the host restriction factor Shiftless. Viruses 13:71230
    [Google Scholar]
  103. 103.
    Rodriguez W, Muller M. 2022. Shiftless, a critical piece of the innate immune response to viral infection. Viruses 14:61338
    [Google Scholar]
  104. 104.
    Zimmer MM, Kibe A, Rand U, Pekarek L, Ye L et al. 2021. The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting. Nat. Commun. 12:17193
    [Google Scholar]
  105. 105.
    Harrington HR, Zimmer MH, Chamness LM, Nash V, Penn WD et al. 2020. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. J. Biol. Chem. 295:206798–808
    [Google Scholar]
  106. 106.
    Carmody PJ, Zimmer MH, Kuntz CP, Harrington HR, Duckworth KE et al. 2021. Coordination of −1 programmed ribosomal frameshifting by transcript and nascent chain features revealed by deep mutational scanning. Nucleic Acids Res. 49:2212943–54
    [Google Scholar]
  107. 107.
    Somogyi P, Jenner AJ, Brierley I, Inglis SC. 1993. Ribosomal pausing during translation of an RNA pseudoknot. Mol. Cell. Biol. 13:116931–40
    [Google Scholar]
  108. 108.
    Tu C, Tzeng TH, Bruenn JA. 1992. Ribosomal movement impeded at a pseudoknot required for frameshifting. PNAS 89:188636–40
    [Google Scholar]
  109. 109.
    Lopinski JD, Dinman JD, Bruenn JA. 2000. Kinetics of ribosomal pausing during programmed −1 translational frameshifting. Mol. Cell. Biol. 20:41095–103
    [Google Scholar]
  110. 110.
    Kontos H, Napthine S, Brierley I. 2001. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency. Mol. Cell. Biol. 21:248657–70
    [Google Scholar]
  111. 111.
    Wolin SL, Walter P. 1988. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 7:113559–69
    [Google Scholar]
  112. 112.
    Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina M. 2014. Programmed −1 frameshifting by kinetic partitioning during impeded translocation. Cell 157:71619–31
    [Google Scholar]
  113. 113.
    Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:5924218–23
    [Google Scholar]
  114. 114.
    Cook GM, Brown K, Shang P, Li Y, Soday L et al. 2022. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 11:e75668
    [Google Scholar]
  115. 115.
    Chen J, Petrov A, Johansson M, Tsai A, O'Leary SE, Puglisi JD 2014. Dynamic pathways of −1 translational frameshifting. Nature 512:7514328–32
    [Google Scholar]
  116. 116.
    Kim HK, Liua F, Fei J, Bustamante C, Gonzalez RL, Tinoco I. 2014. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. PNAS 111:155538–43
    [Google Scholar]
  117. 117.
    Kim HK, Tinoco I. 2017. EF-G catalyzed translocation dynamics in the presence of ribosomal frameshifting stimulatory signals. Nucleic Acids Res. 45:52865–74
    [Google Scholar]
  118. 118.
    Yan S, Wen J-D, Bustamante C, Tinoco I. 2015. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 160:5870–81
    [Google Scholar]
  119. 119.
    Niblett D, Nelson C, Leung CS, Rexroad G, Cozy J et al. 2021. Mutations in domain IV of elongation factor EF-G confer −1 frameshifting. RNA 27:140–53
    [Google Scholar]
  120. 120.
    Desai VP, Frank F, Lee A, Righini M, Lancaster L et al. 2019. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs. Mol. Cell 75:51007–19
    [Google Scholar]
  121. 121.
    Peng B-Z, Bock LV, Belardinelli R, Peske F, Grubmüller H, Rodnina MV. 2019. Active role of elongation factor G in maintaining the mRNA reading frame during translation. Sci. Adv. 5:12eaax8030
    [Google Scholar]
  122. 122.
    Lin Z, Gilbert RJC, Brierley I. 2012. Spacer-length dependence of programmed −1 or −2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. Nucleic Acids Res. 40:178674–89
    [Google Scholar]
  123. 123.
    Buskirk AR, Green R. 2017. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos. Trans. R. Soc. B 372:171620160183
    [Google Scholar]
  124. 124.
    Namy O, Moran SJ, Stuart DI, Gilbert RJC, Brierley I. 2006. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441:7090244–47
    [Google Scholar]
  125. 125.
    Brown A, Baird MR, Yip MC, Murray J, Shao S. 2018. Structures of translationally inactive mammalian ribosomes. eLife 7:e40486
    [Google Scholar]
  126. 126.
    Zhang Y, Hong S, Ruangprasert A, Skiniotis G, Dunham CM. 2018. Alternative mode of E-site tRNA binding in the presence of a downstream mRNA stem loop at the entrance channel. Structure 26:3437–45
    [Google Scholar]
  127. 127.
    Dinman JD, Ruiz-Echevarria MJ, Peltz SW. 1998. Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents. Trends Biotechnol. 16:4190–96
    [Google Scholar]
  128. 128.
    Varricchio C, Mathez G, Pillonel T, Bertelli C, Kaiser L et al. 2022. Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed −1 ribosomal frameshifting. Antiviral Res. 208:105452
    [Google Scholar]
  129. 129.
    Hung M, Patel P, Davis S, Green SR. 1998. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J. Virol. 72:64819–24
    [Google Scholar]
  130. 130.
    Brierley I, dos Ramos FJ. 2006. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 119:129–42
    [Google Scholar]
  131. 131.
    Thulson E, Hartwick EW, Cooper-Sansone A, Williams MAC, Soliman ME et al. 2020. An RNA pseudoknot stimulates HTLV-1 pro-pol programmed −1 ribosomal frameshifting. RNA 26:4512–28
    [Google Scholar]
  132. 132.
    Staple DW, Venditti V, Niccolai N, Elson-Schwab L, Tor Y, Butcher SE. 2008. Guanidinoneomycin B recognition of an HIV-1 RNA helix. Chembiochemistry 9:193–102
    [Google Scholar]
  133. 133.
    Baker TJ, Luedtke NW, Tor Y, Goodman M. 2000. Synthesis and anti-HIV activity of guanidinoglycosides. J. Org. Chem. 65:269054–58
    [Google Scholar]
  134. 134.
    Marcheschi RJ, Mouzakis KD, Butcher SE. 2009. Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA. ACS Chem. Biol. 4:10844–54
    [Google Scholar]
  135. 135.
    Ofori LO, Hilimire TA, Bennett RP, Brown NW, Smith HC, Miller BL. 2014. High-affinity recognition of HIV-1 frameshift-stimulating RNA alters frameshifting in vitro and interferes with HIV-1 infectivity. J. Med. Chem. 57:3723–32
    [Google Scholar]
  136. 136.
    Hilimire TA, Chamberlain JM, Anokhina V, Bennett RP, Swart O et al. 2017. HIV-1 frameshift RNA-targeted triazoles inhibit propagation of replication-competent and multi-drug-resistant HIV in human cells. ACS Chem. Biol. 12:61674–82
    [Google Scholar]
  137. 137.
    Brakier-Gingras L, Charbonneau J, Butcher SE. 2012. Targeting frameshifting in the human immunodeficiency virus. Expert Opin. Ther. Targets 16:3249–58
    [Google Scholar]
  138. 138.
    Anokhina VS, Miller BL. 2021. Targeting ribosomal frameshifting as an antiviral strategy: from HIV-1 to SARS-CoV-2. Acc. Chem. Res. 54:173349–61
    [Google Scholar]
  139. 139.
    Hegde S, Tang Z, Zhao J, Wang J. 2021. Inhibition of SARS-CoV-2 by targeting conserved viral RNA structures and sequences. Front. Chem. 9:802766
    [Google Scholar]
  140. 140.
    Kelly JA, Woodside MT, Dinman JD. 2021. Programmed −1 ribosomal frameshifting in coronaviruses: a therapeutic target. Virology 554:75–82
    [Google Scholar]
  141. 141.
    Park SJ, Kim YG, Park HJ. 2011. Identification of RNA pseudoknot-binding ligand that inhibits the −1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. J. Am. Chem. Soc. 133:2610094–100
    [Google Scholar]
  142. 142.
    Kelly JA, Olson AN, Neupane K, Munshi S, Emeterio JS et al. 2020. Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). J. Biol. Chem. 295:3110741–48
    [Google Scholar]
  143. 143.
    Neupane K, Munshi S, Zhao M, Ritchie DB, Ileperuma SM, Woodside MT. 2020. Anti-frameshifting ligand active against SARS coronavirus-2 is resistant to natural mutations of the frameshift-stimulatory pseudoknot. J. Mol. Biol. 432:215843–47
    [Google Scholar]
  144. 144.
    Ritchie DB, Soong J, Sikkema WKA, Woodside MT. 2014. Anti-frameshifting ligand reduces the conformational plasticity of the SARS virus pseudoknot. J. Am. Chem. Soc. 136:62196–99
    [Google Scholar]
  145. 145.
    Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM et al. 2021. Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting. PNAS 118:26e2023051118
    [Google Scholar]
  146. 146.
    Ahn DG, Yoon GY, Lee S, Ku KB, Kim C et al. 2021. A novel frameshifting inhibitor having antiviral activity against zoonotic coronaviruses. Viruses 13:81639
    [Google Scholar]
  147. 147.
    Munshi S, Neupane K, Ileperuma SM, Halma MTJ, Kelly JA et al. 2022. Identifying inhibitors of −1 programmed ribosomal frameshifting in a broad spectrum of coronaviruses. Viruses 14:2177
    [Google Scholar]
  148. 148.
    Neuman BW, Stein DA, Kroeker AD, Churchill MJ, Kim AM et al. 2005. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol. 79:159665–76
    [Google Scholar]
  149. 149.
    Hatfield D, Oroszlan S. 1990. The where, what and how of ribosomal frameshifting in retroviral protein synthesis. Trends Biochem. Sci. 15:5186–90
    [Google Scholar]
  150. 150.
    Licznar P, Mejlhede N, Prère M-F, Wills N, Gesteland RF et al. 2003. Programmed translational −1 frameshifting on hexanucleotide motifs and the wobble properties of tRNAs. EMBO J. 22:184770–78
    [Google Scholar]
  151. 151.
    Napthine S, Vidakovic M, Girnary R, Namy O, Brierley I. 2003. Prokaryotic-style frameshifting in a plant translation system: conservation of an unusual single-tRNA slippage event. EMBO J. 22:153941–50
    [Google Scholar]
  152. 152.
    Penn WD, Mukhopadhyay S. 2022. Abracadabra, one becomes two: the importance of context in viral −1 programmed ribosomal frameshifting. mBio 13:4e0246821
    [Google Scholar]
  153. 153.
    Poulis P, Patel A, Rodnina MV, Adio S. 2022. Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting. Nat. Commun. 13:14231
    [Google Scholar]
  154. 154.
    Mikl M, Pilpel Y, Segal E. 2020. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat. Commun. 11:13061
    [Google Scholar]
  155. 155.
    Smith AM, Costello MS, Kettring AH, Wingo RJ, Moore SD. 2019. Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs. PNAS 116:4321769–79
    [Google Scholar]
  156. 156.
    Lyon K, Aguilera LU, Morisaki T, Munsky B, Stasevich TJ. 2019. Live-cell single RNA imaging reveals bursts of translational frameshifting. Mol. Cell 75:1172–83
    [Google Scholar]
  157. 157.
    Poulis P, Peske F, Rodnina MV 2023. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing. Biol. Chem https://doi.org/10.1515/hsz-2023-0142
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-120646
Loading
/content/journals/10.1146/annurev-virology-111821-120646
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error