1932

Abstract

Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-111821-123859
2023-09-29
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/10/1/annurev-virology-111821-123859.html?itemId=/content/journals/10.1146/annurev-virology-111821-123859&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Galassi FM, Habicht ME, Rühli FJ. 2017. Poliomyelitis in ancient Egypt?. Neurol. Sci. 38:2375
    [Google Scholar]
  2. 2.
    Li Y, Carroll DS, Gardner SN, Walsh MC, Vitalis EA, Damon IK. 2007. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. PNAS 104:4015787–92
    [Google Scholar]
  3. 3.
    Ghafouri RR, Araj-Khodaei M, Targhi ST, Varshochi M, Parsian Z et al. 2019. First report of a disease by Rhazes 10 centuries ago. Int. J. Prev. Med. 10:6
    [Google Scholar]
  4. 4.
    Tenthorey JL, Emerman M, Malik HS. 2022. Evolutionary landscapes of host-virus arms races. Annu. Rev. Immunol. 40:271–94
    [Google Scholar]
  5. 5.
    Aiewsakun P, Katzourakis A. 2015. Endogenous viruses: connecting recent and ancient viral evolution. Virology 479–480:26–37
    [Google Scholar]
  6. 6.
    Aswad A, Katzourakis A. 2012. Paleovirology and virally derived immunity. Trends Ecol. Evol. 27:11627–36
    [Google Scholar]
  7. 7.
    Frank JA, Feschotte C. 2017. Co-option of endogenous viral sequences for host cell function. Curr. Opin. Virol. 25:81–89
    [Google Scholar]
  8. 8.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921
    [Google Scholar]
  9. 9.
    Dewannieux M, Heidmann T. 2013. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr. Opin. Virol. 3:6646–56
    [Google Scholar]
  10. 10.
    Chuong EB, Elde NC, Feschotte C. 2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:62771083–87
    [Google Scholar]
  11. 11.
    Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O et al. 2013. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. B 368:162620120507
    [Google Scholar]
  12. 12.
    Srinivasachar Badarinarayan S, Sauter D. 2021. Switching sides: how endogenous retroviruses protect us from viral infections. J. Virol. 95:12e02299–20
    [Google Scholar]
  13. 13.
    Magiorkinis G, Blanco-Melo D, Belshaw R. 2015. The decline of human endogenous retroviruses: extinction and survival. Retrovirology 12:18
    [Google Scholar]
  14. 14.
    Agoni L, Golden A, Guha C, Lenz J. 2012. Neandertal and Denisovan retroviruses. Curr. Biol. 22:11R437–38
    [Google Scholar]
  15. 15.
    Lee A, Huntley D, Aiewsakun P, Kanda RK, Lynn C, Tristem M. 2014. Novel Denisovan and Neanderthal retroviruses. J. Virol. 88:2112907–9
    [Google Scholar]
  16. 16.
    Marchi E, Kanapin A, Magiorkinis G, Belshaw R. 2014. Unfixed endogenous retroviral insertions in the human population. J. Virol. 88:179529–37
    [Google Scholar]
  17. 17.
    Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. 2016. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. PNAS 113:16E2326–34
    [Google Scholar]
  18. 18.
    Spyrou MA, Bos KI, Herbig A, Krause J. 2019. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20:6323–40
    [Google Scholar]
  19. 19.
    Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG. 1997. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275:53071793–96
    [Google Scholar]
  20. 20.
    Jonassen TO, Stene-Johansen K, Berg ES, Hungnes O, Lindboe CF et al. 1997. Sequence analysis of HIV-1 group O from Norwegian patients infected in the 1960s. Virology 231:143–47
    [Google Scholar]
  21. 21.
    Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, Ho DD. 1998. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 391:6667594–97
    [Google Scholar]
  22. 22.
    Fornaciari G, Zavaglia K, Giusti L, Vultaggio C, Ciranni R. 2003. Human papillomavirus in a 16th century mummy. Lancet 362:93901160
    [Google Scholar]
  23. 23.
    Gessain A, Pecon-Slattery J, Meertens L, Mahieux R. 2000. Origins of HTLV-1 in South America (letter 1). Nat. Med. 6:3232
    [Google Scholar]
  24. 24.
    Vandamme A-M, Hall WW, Lewis MJ, Goubau P, Salemi M. 2000. Origins of HTLV-1 in South America (letter 2). Nat. Med. 6:3232–33
    [Google Scholar]
  25. 25.
    Worobey M. 2008. Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influenza A virus. J. Virol. 82:73769–74
    [Google Scholar]
  26. 26.
    Xiao Y-L, Kash JC, Beres SB, Sheng Z-M, Musser JM, Taubenberger JK. 2013. High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded autopsy lung tissue sample from the 1918 influenza pandemic. J. Pathol. 229:4535–45
    [Google Scholar]
  27. 27.
    Duggan AT, Perdomo MF, Piombino-Mascali D, Marciniak S, Poinar D et al. 2016. 17th century variola virus reveals the recent history of smallpox. Curr. Biol. 26:243407–12
    [Google Scholar]
  28. 28.
    Orlando L, Allaby R, Skoglund P, Der Sarkissian C, Stockhammer PW et al. 2021. Ancient DNA analysis. Nat. Rev. Methods Primers 1:114
    [Google Scholar]
  29. 29.
    Guzmán-Solís AA, Villa-Islas V, Bravo-López MJ, Sandoval-Velasco M, Wesp JK et al. 2021. Ancient viral genomes reveal introduction of human pathogenic viruses into Mexico during the transatlantic slave trade. eLife 10:e68612
    [Google Scholar]
  30. 30.
    Barquera R, Lamnidis TC, Lankapalli AK, Kocher A, Hernández-Zaragoza DI et al. 2020. Origin and health status of first-generation Africans from early colonial Mexico. Curr. Biol. 30:112078–91
    [Google Scholar]
  31. 31.
    Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS et al. 2012. Tracing hepatitis B virus to the 16th century in a Korean mummy. Hepatology 56:51671–80
    [Google Scholar]
  32. 32.
    Kocher A, Papac L, Barquera R, Key FM, Spyrou MA et al. 2021. Ten millennia of hepatitis B virus evolution. Science 374:6564182–88
    [Google Scholar]
  33. 33.
    Krause-Kyora B, Susat J, Key FM, Kühnert D, Bosse E et al. 2018. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. eLife 7:e36666
    [Google Scholar]
  34. 34.
    Mühlemann B, Jones TC, de Barros Damgaard P, Allentoft ME, Shevnina I et al. 2018. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature 557:7705418–23
    [Google Scholar]
  35. 35.
    Neukamm J, Pfrengle S, Molak M, Seitz A, Francken M et al. 2020. 2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biol. 18:1108
    [Google Scholar]
  36. 36.
    Patterson Ross Z, Klunk J, Fornaciari G, Giuffra V, Duchêne S et al. 2018. The paradox of HBV evolution as revealed from a 16th century mummy. PLOS Pathog 14:1e1006750
    [Google Scholar]
  37. 37.
    Mühlemann B, Margaryan A, de Barros Damgaard P, Allentoft ME, Vinner L et al. 2018. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. PNAS 115:297557–62
    [Google Scholar]
  38. 38.
    Cruz Dávalos DI, Arizmendi Cárdenas YO, Bravo-Lopez MJ, Neuenschwander S, Reis S et al. 2022. Indigenous peoples in eastern Brazil: insights from 19th century genomes and metagenomes. bioRxiv 2022.01.27.477466. https://doi.org/10.1101/2022.01.27.477466
    [Crossref]
  39. 39.
    Düx A, Lequime S, Patrono LV, Vrancken B, Boral S et al. 2020. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 368:64971367–70
    [Google Scholar]
  40. 40.
    Pajer P, Dresler J, Kabíckova H, Písa L, Aganov P et al. 2017. Characterization of two historic smallpox specimens from a Czech museum. Viruses 9:8200
    [Google Scholar]
  41. 41.
    Mühlemann B, Vinner L, Margaryan A, Wilhelmson H, de la Fuente Castro C et al. 2020. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 369:6502eaaw8977
    [Google Scholar]
  42. 42.
    Duggan AT, Klunk J, Porter AF, Dhody AN, Hicks R et al. 2020. The origins and genomic diversity of American Civil War Era smallpox vaccine strains. Genome Biol. 21:1175
    [Google Scholar]
  43. 43.
    Schrick L, Tausch SH, Dabrowski PW, Damaso CR, Esparza J, Nitsche A. 2017. An early American smallpox vaccine based on horsepox. N. Engl. J. Med. 377:151491–92
    [Google Scholar]
  44. 44.
    Guellil M, van Dorp L, Inskip SA, Dittmar JM, Saag L et al. 2022. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia. Sci. Adv. 8:30eabo4435
    [Google Scholar]
  45. 45.
    Patrono LV, Vrancken B, Budt M, Düx A, Lequime S et al. 2022. Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic. Nat. Commun. 13:12314
    [Google Scholar]
  46. 46.
    Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG 2005. Characterization of the 1918 influenza virus polymerase genes. Nature 437:7060889–93
    [Google Scholar]
  47. 47.
    Gilbert MTP, Rambaut A, Wlasiuk G, Spira TJ, Pitchenik AE, Worobey M. 2007. The emergence of HIV/AIDS in the Americas and beyond. PNAS 104:4718566–70
    [Google Scholar]
  48. 48.
    Gryseels S, Watts TD, Kabongo Mpolesha J-M, Larsen BB, Lemey P et al. 2020. A near full-length HIV-1 genome from 1966 recovered from formalin-fixed paraffin-embedded tissue. PNAS 117:2212222–29
    [Google Scholar]
  49. 49.
    Nishimura L, Fujito N, Sugimoto R, Inoue I. 2022. Detection of ancient viruses and long-term viral evolution. Viruses 14:61336
    [Google Scholar]
  50. 50.
    Hagelberg E, Sykes B, Hedges R. 1989. Ancient bone DNA amplified. Nature 342:6249485
    [Google Scholar]
  51. 51.
    van der Kuyl AC 2022. Historic and prehistoric epidemics: an overview of sources available for the study of ancient pathogens. Epidemiologia 3:4443–64
    [Google Scholar]
  52. 52.
    Toppinen M, Perdomo MF, Palo JU, Simmonds P, Lycett SJ et al. 2015. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. 5:117226
    [Google Scholar]
  53. 53.
    Biagini P, Thèves C, Balaresque P, Géraut A, Cannet C et al. 2012. Variola virus in a 300-year-old Siberian mummy. N. Engl. J. Med. 367:212057–59
    [Google Scholar]
  54. 54.
    Reid AH, Fanning TG, Hultin JV, Taubenberger JK. 1999. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. PNAS 96:41651–56
    [Google Scholar]
  55. 55.
    Ferrari G, Neukamm J, Baalsrud HT, Breidenstein AM, Ravinet M et al. 2020. Variola virus genome sequenced from an eighteenth-century museum specimen supports the recent origin of smallpox. Philos. Trans. R. Soc. B 375:181220190572
    [Google Scholar]
  56. 56.
    Sudlow C, Gallacher J, Allen N, Beral V, Burton P et al. 2015. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med. 12:3e1001779
    [Google Scholar]
  57. 57.
    Xiao Y, Sheng Z, Taubenberger JK. 2015. Isolating viral and host RNA sequences from archival material and production of cDNA libraries for high-throughput DNA sequencing. Curr. Protoc. Microbiol. 37:1E.8.1–16
    [Google Scholar]
  58. 58.
    Duchêne S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. 2020. The recovery, interpretation and use of ancient pathogen genomes. Curr. Biol. 30:19R1215–31
    [Google Scholar]
  59. 59.
    Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:6422709–15
    [Google Scholar]
  60. 60.
    Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. 2013. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29:131682–84
    [Google Scholar]
  61. 61.
    Ho SYW, Duchêne S. 2020. Dating the emergence of human pathogens. Science 368:64971310–11
    [Google Scholar]
  62. 62.
    Rieux A, Balloux F. 2016. Inferences from tip-calibrated phylogenies: a review and a practical guide. Mol. Ecol. 25:91911–24
    [Google Scholar]
  63. 63.
    Rambaut A, Lam TT, Max Carvalho L, Pybus OG 2016. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2:1vew007
    [Google Scholar]
  64. 64.
    Duchêne S, Duchêne D, Holmes EC, Ho SYW. 2015. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32:71895–906
    [Google Scholar]
  65. 65.
    Aiewsakun P, Katzourakis A. 2016. Time-dependent rate phenomenon in viruses. J. Virol. 90:167184–95
    [Google Scholar]
  66. 66.
    Barrett R, Kuzawa CW, McDade T, Armelagos GJ. 1998. Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu. Rev. Anthropol. 27:247–71
    [Google Scholar]
  67. 67.
    Key FM, Posth C, Esquivel-Gomez LR, Hübler R, Spyrou MA et al. 2020. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 4:324–33
    [Google Scholar]
  68. 68.
    Szpara ML, Gatherer D, Ochoa A, Greenbaum B, Dolan A et al. 2014. Evolution and diversity in human herpes simplex virus genomes. J. Virol. 88:21209–27
    [Google Scholar]
  69. 69.
    World Health Organ. (WHO) 2022. Herpes simplex virus. World Health Organization https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus
    [Google Scholar]
  70. 70.
    Baringer JR, Swoveland P. 1973. Recovery of herpes-simplex virus from human trigeminal ganglions. N. Engl. J. Med. 288:13648–50
    [Google Scholar]
  71. 71.
    Forni D, Pontremoli C, Clerici M, Pozzoli U, Cagliani R, Sironi M. 2020. Recent out-of-Africa migration of human herpes simplex viruses. Mol. Biol. Evol. 37:51259–71
    [Google Scholar]
  72. 72.
    World Health Organ. (WHO) 2022. Hepatitis B virus. World Health Organization https://www.who.int/news-room/fact-sheets/detail/hepatitis-b
    [Google Scholar]
  73. 73.
    Chang MS, Nguyen MH. 2017. Epidemiology of hepatitis B and the role of vaccination. Best Pract. Res. Clin. Gastroenterol. 31:3239–47
    [Google Scholar]
  74. 74.
    Kostaki E-G, Karamitros T, Stefanou G, Mamais I, Angelis K et al. 2018. Unravelling the history of hepatitis B virus genotypes A and D infection using a full-genome phylogenetic and phylogeographic approach. eLife 7:e36709
    [Google Scholar]
  75. 75.
    Kramvis A, Paraskevis D. 2013. Subgenotype A1 of HBV—tracing human migrations in and out of Africa. Antivir. Ther. 18:3_part_2513–21
    [Google Scholar]
  76. 76.
    Quintero A, Martínez D, Alarcón De Noya B, Costagliola A, Urbina L et al. 2002. Molecular epidemiology of hepatitis B virus in Afro-Venezuelan populations. Arch. Virol. 147:91829–36
    [Google Scholar]
  77. 77.
    Andernach IE, Nolte C, Pape JW, Muller CP. 2009. Slave trade and hepatitis B virus genotypes and subgenotypes in Haiti and Africa. Emerg. Infect. Dis. 15:81222–28
    [Google Scholar]
  78. 78.
    Brichler S, Lagathu G, Chekaraou MA, Le Gal F, Edouard A et al. 2013. African, Amerindian and European hepatitis B virus strains circulate on the Caribbean Island of Martinique. J. Gen. Virol. 94:102318–29
    [Google Scholar]
  79. 79.
    Alvarado-Mora MV, Romano CM, Gomes-Gouvêa MS, Gutierrez MF, Carrilho FJ, Pinho JRR. 2012. Phylogenetic analysis of complete genome sequences of hepatitis B virus from an Afro-Colombian community: presence of HBV F3/A1 recombinant strain. Virol. J. 9:244
    [Google Scholar]
  80. 80.
    Heegaard ED, Brown KE. 2002. Human parvovirus B19. Clin. Microbiol. Rev. 15:3485–505
    [Google Scholar]
  81. 81.
    del Mar Mosquera M, de Ory F, Moreno M, Echevarría JE. 2002. Simultaneous detection of measles virus, rubella virus, and parvovirus B19 by using multiplex PCR. J. Clin. Microbiol. 40:1111–16
    [Google Scholar]
  82. 82.
    Moss WJ. 2017. Measles. Lancet 390:101112490–502
    [Google Scholar]
  83. 83.
    Ribas M, Tejero Y, Cordero Y, Pérez D, Sausy A et al. 2019. Identification of human parvovirus B19 among measles and rubella suspected patients from Cuba. J. Med. Virol. 91:71351–54
    [Google Scholar]
  84. 84.
    Pyöriä L, Toppinen M, Mäntylä E, Hedman L, Aaltonen L-M et al. 2017. Extinct type of human parvovirus B19 persists in tonsillar B cells. Nat. Commun. 8:114930
    [Google Scholar]
  85. 85.
    Candotti D, Etiz N, Parsyan A, Allain J-P. 2004. Identification and characterization of persistent human erythrovirus infection in blood donor samples. J. Virol. 78:2212169–78
    [Google Scholar]
  86. 86.
    Hübschen JM, Mihneva Z, Mentis AF, Schneider F, Aboudy Y et al. 2009. Phylogenetic analysis of human parvovirus B19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b. J. Clin. Microbiol. 47:113735–38
    [Google Scholar]
  87. 87.
    Rinckel LA, Buno BR, Gierman TM, Lee DC. 2009. Discovery and analysis of a novel parvovirus B19 genotype 3 isolate in the United States. Transfusion 49:71488–92
    [Google Scholar]
  88. 88.
    Nguyen QT, Wong S, Heegaard ED, Brown KE. 2002. Identification and characterization of a second novel human erythrovirus variant, A6. Virology 301:2374–80
    [Google Scholar]
  89. 89.
    Servant A, Laperche S, Lallemand F, Marinho V, De Saint Maur G et al. 2002. Genetic diversity within human erythroviruses: identification of three genotypes. J. Virol. 76:189124–34
    [Google Scholar]
  90. 90.
    Freitas RB, Melo FL, Oliveira DS, Romano CM, Freitas MRC et al. 2008. Molecular characterization of human erythrovirus B19 strains obtained from patients with several clinical presentations in the Amazon region of Brazil. J. Clin. Virol. 43:160–65
    [Google Scholar]
  91. 91.
    Sanabani S, Neto WK, Pereira J, Sabino EC. 2006. Sequence variability of human erythroviruses present in bone marrow of Brazilian patients with various parvovirus B19-related hematological symptoms. J. Clin. Microbiol. 44:2604–6
    [Google Scholar]
  92. 92.
    Jain P, Jain A, Prakash S, Khan DN, Singh DD et al. 2015. Prevalence and genotypic characterization of human parvovirus B19 in children with hemato-oncological disorders in North India. J. Med. Virol. 87:2303–9
    [Google Scholar]
  93. 93.
    Geddes AM. 2006. The history of smallpox. Clin. Dermatol. 24:3152–57
    [Google Scholar]
  94. 94.
    Esposito JJ, Sammons SA, Frace AM, Osborne JD, Olsen-Rasmussen M et al. 2006. Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science 313:5788807–12
    [Google Scholar]
  95. 95.
    Berche P. 2022. Life and death of smallpox. Presse Méd. 51:3104117
    [Google Scholar]
  96. 96.
    Mandujano-Sánchez A, Solache LC, Mandujano MA 1982. Historia de las epidemias en el México antiguo: algunos aspectos biológicos y sociales. Ensayos sobre la historia de las epidemias en México E Florescano, E Malvido 9–21. Mexico: Inst. Mex. Seguro Soc.
    [Google Scholar]
  97. 97.
    Wesp JK 2017. Caring for bodies or simply saving souls: the emergence of institutional care in Spanish colonial America. New Developments in the Bioarchaeology of Care: Further Case Studies and Expanded Theory L Tilley, AA Schrenk 253–76. Cham, Switz.: Springer
    [Google Scholar]
  98. 98.
    Marr JS, Kiracofe JB. 2000. Was the Huey Cocoliztli a haemorrhagic fever?. Med. Hist. 44:3341–62
    [Google Scholar]
  99. 99.
    Fenner F 1988. Smallpox and Its Eradication Geneva: World Health Organ.
    [Google Scholar]
  100. 100.
    Jenner E. 1801. On the origin of the vaccine inoculation. Med. Phys. J. 5:28505–8
    [Google Scholar]
  101. 101.
    Rekand T, Male R, Myking AO, Nygaard SJT, Aarli JA et al. 2003. Detection of viral sequences in archival spinal cords from fatal cases of poliomyelitis in 1951–1952. J. Virol. Methods 114:191–96
    [Google Scholar]
  102. 102.
    Gray RR, Tanaka Y, Takebe Y, Magiorkinis G, Buskell Z et al. 2013. Evolutionary analysis of hepatitis C virus gene sequences from 1953. Philos. Trans. R. Soc. B 368:162620130168
    [Google Scholar]
  103. 103.
    Kendrick DB. 1964. Blood Program in World War II Washington, DC: Dept. Army
    [Google Scholar]
  104. 104.
    Magiorkinis G, Magiorkinis E, Paraskevis D, Ho SYW, Shapiro B et al. 2009. The global spread of hepatitis C virus 1a and 1b: a phylodynamic and phylogeographic analysis. PLOS Med. 6:12e1000198
    [Google Scholar]
  105. 105.
    Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG. 2015. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. 4:14003
    [Google Scholar]
  106. 106.
    Carroll TW. 1980. Barley stripe mosaic virus: its economic importance and control. Plant Dis. 64:2136–40
    [Google Scholar]
  107. 107.
    Peyambari M, Warner S, Stoler N, Rainer D, Roossinck MJ. 2018. A 1,000-year-old RNA virus. J. Virol. 93:1e01188–18
    [Google Scholar]
  108. 108.
    Smith O, Dunshea G, Sinding M-HS, Fedorov S, Germonpre M et al. 2019. Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival. PLOS Biol. 17:7e3000166
    [Google Scholar]
  109. 109.
    Malmstrom CM, Shu R, Linton EW, Newton LA, Cook MA. 2007. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. 95:61153–66
    [Google Scholar]
  110. 110.
    Rieux A, Campos P, Duvermy A, Scussel S, Martin D et al. 2021. Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history. Sci. Rep. 11:121280
    [Google Scholar]
  111. 111.
    World Health Organ. (WHO) 2022. HIV. World Health Organization https://www.who.int/news-room/fact-sheets/detail/hiv-aids
    [Google Scholar]
  112. 112.
    Beyrer C. 2021. A pandemic anniversary: 40 years of HIV/AIDS. Lancet 397:102902142–43
    [Google Scholar]
  113. 113.
    Sharp PM, Hahn BH. 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1:1a006841
    [Google Scholar]
  114. 114.
    Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K et al. 2008. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455:7213661–64
    [Google Scholar]
  115. 115.
    Korber B, Muldoon M, Theiler J, Gao F, Gupta R et al. 2000. Timing the ancestor of the HIV-1 pandemic strains. Science 288:54721789–96
    [Google Scholar]
  116. 116.
    Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J et al. 2006. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313:5786523–26
    [Google Scholar]
  117. 117.
    Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T et al. 2014. The early spread and epidemic ignition of HIV-1 in human populations. Science 346:620556–61
    [Google Scholar]
  118. 118.
    Worobey M, Watts TD, McKay RA, Suchard MA, Granade T et al. 2016. 1970s and ‘Patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature 539:762798–101
    [Google Scholar]
  119. 119.
    Johnson NPAS, Mueller J. 2002. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76:1105–15
    [Google Scholar]
  120. 120.
    Tsangaras K, Greenwood AD. 2018. Paleovirology: viral sequences from historical and ancient DNA. Paleogenomics C Lindqvist, OP Rajora 139–62. Cham, Switz.: Springer
    [Google Scholar]
  121. 121.
    Basler CF, Reid AH, Dybing JK, Janczewski TA, Fanning TG et al. 2001. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. PNAS 98:52746–51
    [Google Scholar]
  122. 122.
    Reid AH, Fanning TG, Janczewski TA, Taubenberger JK. 2000. Characterization of the 1918 “Spanish” influenza virus neuraminidase gene. PNAS 97:126785–90
    [Google Scholar]
  123. 123.
    Reid AH, Fanning TG, Janczewski TA, McCall S, Taubenberger JK. 2002. Characterization of the 1918 “Spanish” influenza virus matrix gene segment. J. Virol. 76:2110717–23
    [Google Scholar]
  124. 124.
    Reid AH, Fanning TG, Janczewski TA, Lourens RM, Taubenberger JK. 2004. Novel origin of the 1918 pandemic influenza virus nucleoprotein gene. J. Virol. 78:2212462–70
    [Google Scholar]
  125. 125.
    Worobey M, Han G-Z, Rambaut A. 2014. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. PNAS 111:228107–12
    [Google Scholar]
  126. 126.
    Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solórzano A et al. 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:574577–80
    [Google Scholar]
  127. 127.
    Pappas C, Aguilar PV, Basler CF, Solórzano A, Zeng H et al. 2008. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. PNAS 105:3064–69
    [Google Scholar]
  128. 128.
    Gilbertson B, Subbarao K. 2023. What have we learned by resurrecting the 1918 flu virus?. Annu. Rev. Virol. 10:25–47
    [Google Scholar]
  129. 129.
    Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J et al. 2004. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38:645–79
    [Google Scholar]
  130. 130.
    Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. PNAS 110:3915758–63
    [Google Scholar]
  131. 131.
    Rohland N, Hofreiter M. 2007. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2:71756–62
    [Google Scholar]
  132. 132.
    Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA et al. 2016. Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol. Lett. 363:1fnv219
    [Google Scholar]
  133. 133.
    Smith O, Gilbert MTP 2019. Ancient RNA. Paleogenomics: Genome-Scale Analysis of Ancient DNA C Lindqvist, OP Rajora 53–74. Cham, Switz.: Springer
    [Google Scholar]
  134. 134.
    Warinner C, Korzow Richter K, Collins MJ 2022. Paleoproteomics. Chem. Rev. 122:1613401–46
    [Google Scholar]
  135. 135.
    Hassell JM, Begon M, Ward MJ, Fèvre EM. 2017. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32:155–67
    [Google Scholar]
  136. 136.
    Taubenberger JK, Baltimore D, Doherty PC, Markel H, Morens DM et al. 2012. Reconstruction of the 1918 influenza virus: unexpected rewards from the past. mBio 3:5e00201–12
    [Google Scholar]
  137. 137.
    Bardill J, Bader AC, Garrison NA, Bolnick DA, Raff JA et al. 2018. Advancing the ethics of paleogenomics. Science 360:6387384–85
    [Google Scholar]
  138. 138.
    Ávila-Arcos MC, de la Fuente Castro C, Nieves-Colón MA, Raghavan M 2022. Recommendations for sustainable ancient DNA research in the Global South: voices from a new generation of paleogenomicists. Front. Genet. 13:880170
    [Google Scholar]
  139. 139.
    Wagner JK, Colwell C, Claw KG, Stone AC, Bolnick DA et al. 2020. Fostering responsible research on ancient DNA. Am. J. Hum. Genet. 107:2183–95
    [Google Scholar]
  140. 140.
    Argüelles JM, Fuentes A, Yáñez B. 2022. Analyzing asymmetries and praxis in aDNA research: a bioanthropological critique. Am. Anthropol. 124:1130–40
    [Google Scholar]
  141. 141.
    Tsosie KS, Bader AC, Fox K, Bolnick DA, Garrison NA, Smith RWA. 2021. Ancient-DNA researchers write their own rules. Nature 600:788737
    [Google Scholar]
  142. 142.
    World Health Organ. (WHO) 2022. The top 10 causes of death. World Health Organization https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
    [Google Scholar]
  143. 143.
    Emerman M, Malik HS. 2010. Paleovirology—modern consequences of ancient viruses. PLOS Biol. 8:2e1000301
    [Google Scholar]
  144. 144.
    Calvignac-Spencer S, Düx A, Gogarten JF, Patrono LV 2021. Molecular archeology of human viruses. Advances in Virus Research, Vol. 111 M Kielian, TC Mettenleiter, MJ Roossinck 31–61. London: Elsevier
    [Google Scholar]
  145. 145.
    Lederberg J. 1997. Infectious disease as an evolutionary paradigm. Emerg. Infect. Dis. 3:4417–23
    [Google Scholar]
  146. 146.
    Lipkin WI. 2010. Microbe hunting. Microbiol. Mol. Biol. Rev. 74:3363–77
    [Google Scholar]
/content/journals/10.1146/annurev-virology-111821-123859
Loading
/content/journals/10.1146/annurev-virology-111821-123859
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error