1932

Abstract

Actinobacteriophages are viruses that infect bacterial hosts in the phylum . More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-122019-070009
2020-09-29
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-122019-070009.html?itemId=/content/journals/10.1146/annurev-virology-122019-070009&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev 80:1–43
    [Google Scholar]
  2. 2. 
    Durand GA, Raoult D, Dubourg G 2019. Antibiotic discovery: history, methods and perspectives. Int. J. Antimicrob. Agents 53:371–82
    [Google Scholar]
  3. 3. 
    Hatfull GF. 2018. Mycobacteriophages. Microbiol. Spectr. 6: https://doi.org/10.1128/microbiolspec.GPP3-0026-2018
    [Crossref] [Google Scholar]
  4. 4. 
    Froman S, Will DW, Bogen E 1954. Bacteriophage active against Mycobacterium tuberculosis I. Isolation and activity. Am. J. Pub. Health 44:1326–33
    [Google Scholar]
  5. 5. 
    Murohashi T, Tokunaga T, Mizuguchi Y, Maruyama Y 1963. Phage typing of slow-growing mycobacteria. Am. Rev. Respir. Dis. 88:664–69
    [Google Scholar]
  6. 6. 
    Mizuguchi Y. 1984. Mycobacteriophages. In The Mycobacteria: A Sourcebook GP Kubica, LG Wayne 641–62 New York: Marcel Dekker
    [Google Scholar]
  7. 7. 
    Russell DA, Hatfull GF. 2017. PhagesDB: the actinobacteriophage database. Bioinformatics 33:784–86
    [Google Scholar]
  8. 8. 
    Hatfull GF. 2010. Mycobacteriophages: genes and genomes. Annu. Rev. Microbiol. 64:331–56
    [Google Scholar]
  9. 9. 
    Hatfull GF. 2012. The secret lives of mycobacteriophages. Adv. Virus Res. 82:179–288
    [Google Scholar]
  10. 10. 
    Hatfull GF. 2014. Mycobacteriophages: windows into tuberculosis. PLOS Pathog 10:e1003953
    [Google Scholar]
  11. 11. 
    Hatfull GF. 2015. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J. Virol. 89:8107–10
    [Google Scholar]
  12. 12. 
    McNerney R, Traore H. 2005. Mycobacteriophage and their application to disease control. J. Appl. Microbiol. 99:223–33
    [Google Scholar]
  13. 13. 
    Hatfull GF. 2010. Bacteriophage research: gateway to learning science. Microbe 5:243–50
    [Google Scholar]
  14. 14. 
    Hanauer DI, Jacobs-Sera D, Pedulla ML, Cresawn SG, Hendrix RW, Hatfull GF 2006. Teaching scientific inquiry. Science 314:1880–81
    [Google Scholar]
  15. 15. 
    Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K et al. 2014. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. mBio 5:e01051-13
    [Google Scholar]
  16. 16. 
    Hanauer DI, Graham MJ, Sea P, Betancur L, Bobrownicki A et al. 2017. An inclusive Research Education Community (iREC): impact of the SEA-PHAGES program on research outcomes and student learning. PNAS 114:13531–36Presents the SEA-PHAGES program, with evidence for scientific and educational impact.
    [Google Scholar]
  17. 17. 
    Marinelli LJ, Fitz-Gibbon S, Hayes C, Bowman C, Inkeles M et al. 2012. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio 3:e00279-12
    [Google Scholar]
  18. 18. 
    Ybazeta G, Graham J, Trifkovic J, Giroux L, Saleh M et al. 2018. Complete genome sequences of a diverse group of 13 Propionibacterium acnes bacteriophages isolated from urban raw sewage. Genome Announc 6:e00224-18
    [Google Scholar]
  19. 19. 
    Cheng L, Marinelli LJ, Grosset N, Fitz-Gibbon ST, Bowman CA et al. 2018. Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages. BMC Microbiol 18:19
    [Google Scholar]
  20. 20. 
    Dyson ZA, Tucci J, Seviour RJ, Petrovski S 2015. Lysis to kill: evaluation of the lytic abilities, and genomics of nine bacteriophages infective for Gordonia spp. and their potential use in activated sludge foam biocontrol. PLOS ONE 10:e0134512
    [Google Scholar]
  21. 21. 
    Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Guerrero Bustamante C et al. 2012. On the nature of mycobacteriophage diversity and host preference. Virology 434:187–201
    [Google Scholar]
  22. 22. 
    Dedrick R, Guerrero-Bustamante C, Garlena RA, Russell DA, Ford K et al. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. . Med 25:730–33Describes the first therapeutic use of bacteriophages for a mycobacterial infection.
    [Google Scholar]
  23. 23. 
    Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ et al. 2015. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4:e06416Shows evidence supporting an underlying continuum of viral diversity.
    [Google Scholar]
  24. 24. 
    Klyczek KK, Bonilla JA, Jacobs-Sera D, Adair TL, Afram P et al. 2017. Tales of diversity: genomic and morphological characteristics of forty-six Arthrobacter phages. PLOS ONE 12:e0180517
    [Google Scholar]
  25. 25. 
    Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D et al. 2017. Bacteriophages of Gordonia spp. display a spectrum of diversity and genetic relationships. mBio 8:e01069-17Shows comparative genomics of Gordonia phages and revisits cluster definitions.
    [Google Scholar]
  26. 26. 
    Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H 2008. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. PNAS 105:3963–67
    [Google Scholar]
  27. 27. 
    Pope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z et al. 2011. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLOS ONE 6:e16329
    [Google Scholar]
  28. 28. 
    Gill JJ, Wang B, Sestak E, Young R, Chu KH 2018. Characterization of a novel Tectivirus phage toil and its potential as an agent for biolipid extraction. Sci. Rep. 8:1062
    [Google Scholar]
  29. 29. 
    Caruso SM, deCarvalho TN, Huynh AB, Morcos G, Kuo N et al. 2019. A novel genus of actinobacterial Tectiviridae. . Viruses 11:1134
    [Google Scholar]
  30. 30. 
    Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C et al. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–82
    [Google Scholar]
  31. 31. 
    Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF 1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. PNAS 96:2192–97
    [Google Scholar]
  32. 32. 
    Hatfull GF, Sarkis GJ. 1993. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7:395–405
    [Google Scholar]
  33. 33. 
    Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A et al. 2006. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLOS Genet 2:e92
    [Google Scholar]
  34. 34. 
    Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA et al. 2010. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J. Mol. Biol. 397:119–43
    [Google Scholar]
  35. 35. 
    Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinform 12:395
    [Google Scholar]
  36. 36. 
    Ptashne M. 1987. A Genetic Switch Oxford/Cambridge: Blackwell Science/Cell Press
    [Google Scholar]
  37. 37. 
    Dedrick RM, Mavrich TN, Ng WL, Hatfull GF 2017. Expression and evolutionary patterns of mycobacteriophage D29 and its temperate close relatives. BMC Microbiol 17:225
    [Google Scholar]
  38. 38. 
    Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF 2013. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol. Cell 49:237–48Describes a new model for the regulation and mechanism of lysogenic establishment.
    [Google Scholar]
  39. 39. 
    Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR et al. 2016. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol. Microbiol. 101:625–44
    [Google Scholar]
  40. 40. 
    Mavrich TN, Casey E, Oliveira J, Bottacini F, James K et al. 2018. Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Sci. Rep. 8:12772
    [Google Scholar]
  41. 41. 
    Martinsohn JT, Radman M, Petit MA 2008. The λ red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLOS Genet 4:e1000065
    [Google Scholar]
  42. 42. 
    van Kessel JC, Hatfull GF 2007. Recombineering in Mycobacterium tuberculosis. Nat. Methods 4:147–52
    [Google Scholar]
  43. 43. 
    van Kessel JC, Hatfull GF 2008. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol. Microbiol. 67:1094–107
    [Google Scholar]
  44. 44. 
    Pitcher RS, Brissett NC, Doherty AJ 2007. Nonhomologous end-joining in bacteria: a microbial perspective. Annu. Rev. Microbiol. 61:259–82
    [Google Scholar]
  45. 45. 
    Pope WH, Jacobs-Sera D, Russell DA, Rubin DH, Kajee A et al. 2014. Genomics and proteomics of mycobacteriophage patience, an accidental tourist in the Mycobacterium neighborhood. mBio 5:e02145
    [Google Scholar]
  46. 46. 
    Mavrich TN, Hatfull GF. 2017. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2:17112
    [Google Scholar]
  47. 47. 
    Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A et al. 2016. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genom 17:930
    [Google Scholar]
  48. 48. 
    Russell DA. 2018. Sequencing, assembling, and finishing complete bacteriophage genomes. Methods Mol. Biol. 1681:109–25
    [Google Scholar]
  49. 49. 
    Mageeney C, Pope WH, Harrison M, Moran D, Cross T et al. 2012. Mycobacteriophage Marvin: a new singleton phage with an unusual genome organization. J. Virol. 86:4762–75
    [Google Scholar]
  50. 50. 
    Pope WH, Jacobs-Sera D, Best AA, Broussard GW, Connerly PL et al. 2013. Cluster J mycobacteriophages: intron splicing in capsid and tail genes. PLOS ONE 8:e69273
    [Google Scholar]
  51. 51. 
    Halleran A, Clamons S, Saha M 2015. Transcriptomic characterization of an infection of Mycobacterium smegmatis by the cluster A4 mycobacteriophage Kampy. PLOS ONE 10:e0141100
    [Google Scholar]
  52. 52. 
    Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Pinches RS, Cornely K, Hatfull GF 2019. Mycobacteriophage ZoeJ: a broad host-range close relative of mycobacteriophage TM4. Tuberculosis 115:14–23
    [Google Scholar]
  53. 53. 
    Dedrick RM, Jacobs-Sera D, Bustamante CA, Garlena RA, Mavrich TN et al. 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2:16251Reports a variety of prophage-encoded systems for defense against heterotypic vial attack.
    [Google Scholar]
  54. 54. 
    Dedrick RM, Marinelli LJ, Newton GL, Pogliano K, Pogliano J, Hatfull GF 2013. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol. Microbiol. 88:577–89
    [Google Scholar]
  55. 55. 
    Mavrich TN, Hatfull GF. 2019. Evolution of superinfection immunity in cluster A mycobacteriophages. mBio 10:e00971-19
    [Google Scholar]
  56. 56. 
    Villanueva VM, Oldfield LM, Hatfull GF 2015. An unusual phage repressor encoded by mycobacteriophage BPs. PLOS ONE 10:e0137187
    [Google Scholar]
  57. 57. 
    Nesbit CE, Levin ME, Donnelly-Wu MK, Hatfull GF 1995. Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol. Microbiol. 17:1045–56
    [Google Scholar]
  58. 58. 
    Oldfield LM, Hatfull GF. 2014. Mutational analysis of the mycobacteriophage BPs promoter PR reveals context-dependent sequences for mycobacterial gene expression. J. Bacteriol. 196:3589–97
    [Google Scholar]
  59. 59. 
    Brown KL, Sarkis GJ, Wadsworth C, Hatfull GF 1997. Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J 16:5914–21
    [Google Scholar]
  60. 60. 
    Ganguly T, Bandhu A, Chattoraj P, Chanda PK, Das M et al. 2007. Repressor of temperate mycobacteriophage L1 harbors a stable C-terminal domain and binds to different asymmetric operator DNAs with variable affinity. Virol. J. 4:64
    [Google Scholar]
  61. 61. 
    Smith MC, Hendrix RW, Dedrick R, Mitchell K, Ko CC et al. 2013. Evolutionary relationships among actinophages and a putative adaptation for growth in Streptomyces spp. J. Bacteriol. 195:4924–35
    [Google Scholar]
  62. 62. 
    He L, Fan X, Xie J 2012. Comparative genomic structures of Mycobacterium CRISPR-Cas. J. Cell Biochem. 113:2464–73
    [Google Scholar]
  63. 63. 
    Sola C. 2015. Clustured regularly interspersed short palindromic repeats (CRISPR) genetic diversity studies as a mean to reconstruct the evolution of the Mycobacterium tuberculosis complex. Tuberculosis 95:Suppl. 1S159–159
    [Google Scholar]
  64. 64. 
    Rado TA, Bates JH, Fitzhugh JK 1976. Evidence for host-dependent modification and restriction of bacteriophage DNA in Mycobacterium tuberculosis. . J. Gen. Virol 30:91–97
    [Google Scholar]
  65. 65. 
    Jones WD Jr, Greenberg J. 1977. Host modification and restriction with a mycobacteriophage isolated from a pseudolysogenic Mycobacterium chelonei. J. Gen. Microbiol 99:389–95
    [Google Scholar]
  66. 66. 
    Crawford JT, Cave MD, Bates JH 1981. Evidence for plasmid-mediated restriction-modification in Mycobacterium avium intracellulare. J. Gen. . Microbiol 127:333–38
    [Google Scholar]
  67. 67. 
    Shankar S, Tyagi AK. 1993. MchAI and MchAII, two class-II restriction endonucleases from Mycobacterium chelonei. . Gene 132:119–23
    [Google Scholar]
  68. 68. 
    Shankar S, Tyagi AK. 1993. Purification and characterization of restriction endonuclease MgoI from Mycobacterium gordonae. . Gene 131:153–54
    [Google Scholar]
  69. 69. 
    Striebel HM, Schmitz GG, Kaluza K, Jarsch M, Kessler C 1990. MamI, a novel class-II restriction endonuclease from Microbacterium ammoniaphilum recognizing 5′-GATNN↓NNATC-3. ′. Gene 91:95–100
    [Google Scholar]
  70. 70. 
    Striebel HM, Seeber S, Jarsch M, Kessler C 1996. Cloning and characterization of the MamI restriction-modification system from Microbacterium ammoniaphilum in Escherichia coli. . Gene 172:41–46
    [Google Scholar]
  71. 71. 
    Rexer BU, Jarsch M, Sagmeister C, Gluck B, Berger G, Kessler C 1988. AsnI: a novel class II restriction endonuclease from Arthrobacter sp., strain N-CM, recognizing 5′-AT/TAAT-3′. FEBS Lett 235:241–46
    [Google Scholar]
  72. 72. 
    Polisson C, Morgan RD. 1990. AciI, a unique restriction endonuclease from Arthrobacter citreus which recognizes 5′ CCGC 3′. Nucleic Acids Res 18:5911
    [Google Scholar]
  73. 73. 
    Polisson C, Robinson D. 1992. ApoI, a unique restriction endonuclease from Arthrobacter protophormiae which recognizes 5′ RAATTY 3′. Nucleic Acids Res 20:2888
    [Google Scholar]
  74. 74. 
    Degtyarev S, Kolyhalov AA, Rechkunova NI, Abdurashitov MA 1992. AcsI, a new restriction endonuclease from Arthrobacter citreus 310 recognizing 5′-Pu decreases AATTPy-3′. Nucleic Acids Res 20:3789
    [Google Scholar]
  75. 75. 
    Grigaite R, Maneliene Z, Janulaitis A 2002. AarI, a restriction endonuclease from Arthrobacter aurescens SS2-322, which recognizes the novel non-palindromic sequence 5′-CACCTGC(N)4/8–3′. Nucleic Acids Res 30:e123
    [Google Scholar]
  76. 76. 
    Arrand JR, Myers PA, Roberts RJ 1978. A new restriction endonuclease from Streptomyces albus G. J. Mol. Biol. 118:127–35
    [Google Scholar]
  77. 77. 
    Yu H, Liu G, Zhao G, Hu W, Wu G et al. 2018. Identification of a conserved DNA sulfur recognition domain by characterizing the phosphorothioate-specific endonuclease SprMcrA from Streptomyces pristinaespiralis. Mol. . Microbiol 110:484–97
    [Google Scholar]
  78. 78. 
    Siranosian B, Perera S, Williams E, Ye C, de Graffenried C, Shank P 2015. Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages. F1000Res 4:36
    [Google Scholar]
  79. 79. 
    Chopin MC, Chopin A, Bidnenko E 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8:473–79
    [Google Scholar]
  80. 80. 
    Salmond GP, Fineran PC. 2015. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13:777–86
    [Google Scholar]
  81. 81. 
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:eaar4120
    [Google Scholar]
  82. 82. 
    Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S et al. 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3:90–98
    [Google Scholar]
  83. 83. 
    Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y et al. 2019. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574:691–95
    [Google Scholar]
  84. 84. 
    Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP 2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. PNAS 106:894–99
    [Google Scholar]
  85. 85. 
    Unterholzner SJ, Poppenberger B, Rozhon W 2013. Toxin-antitoxin systems: biology, identification, and application. Mob. Genet. Elements 3:e26219
    [Google Scholar]
  86. 86. 
    Ramage HR, Connolly LE, Cox JS 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLOS Genet 5:e1000767
    [Google Scholar]
  87. 87. 
    Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS et al. 2016. Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–66
    [Google Scholar]
  88. 88. 
    Gentile GM, Wetzel KS, Dedrick RM, Montgomery MT, Garlena RA et al. 2019. More evidence of collusion: a new prophage-mediated viral defense system encoded by mycobacteriophage Sbash. mBio 10:e00196-19
    [Google Scholar]
  89. 89. 
    Montgomery MT, Guerrero-Bustamante CA, Dedrick RM, Jacobs-Sera D, Hatfull GF 2019. Yet more evidence of collusion: a new viral defense system encoded by Gordonia phage CarolAnn. mBio 10:e02417-18
    [Google Scholar]
  90. 90. 
    Cumby N, Edwards AM, Davidson AR, Maxwell KL 2012. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J. Bacteriol. 194:5012-19
    [Google Scholar]
  91. 91. 
    Ko CC, Hatfull GF. 2018. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. Mol. Microbiol. 108:443–60Describes how gp52 of phage Fruitloop confers exclusion by inactivation of the host DivIVA protein.
    [Google Scholar]
  92. 92. 
    Rifat D, Wright NT, Varney KM, Weber DJ, Black LW 2008. Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J. Mol. Biol. 375:720–34
    [Google Scholar]
  93. 93. 
    Roberts GA, Stephanou AS, Kanwar N, Dawson A, Cooper LP et al. 2012. Exploring the DNA mimicry of the Ocr protein of phage T7. Nucleic Acids Res 40:8129–43
    [Google Scholar]
  94. 94. 
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–32
    [Google Scholar]
  95. 95. 
    Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF 2007. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology 153:2711–23
    [Google Scholar]
  96. 96. 
    Weigele P, Raleigh EA. 2016. Biosynthesis and function of modified bases in bacteria and their viruses. Chem. Rev. 116:12655–87
    [Google Scholar]
  97. 97. 
    Khudyakov IY, Kirnos MD, Alexandrushkina NI, Vanyushin BF 1978. Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine. Virology 88:8–18
    [Google Scholar]
  98. 98. 
    Hutinet G, Kot W, Cui L, Hillebrand R, Balamkundu S et al. 2019. 7-Deazaguanine modifications protect phage DNA from host restriction systems. Nat. Commun. 10:5442
    [Google Scholar]
  99. 99. 
    Hatfull GF. 1994. Mycobacteriophage L5: a toolbox for tuberculosis. ASM News 60:255–60
    [Google Scholar]
  100. 100. 
    Lee MH, Pascopella L, Jacobs WR Jr, Hatfull GF 1991. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. PNAS 88:3111–15
    [Google Scholar]
  101. 101. 
    Morris P, Marinelli LJ, Jacobs-Sera D, Hendrix RW, Hatfull GF 2008. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J. Bacteriol. 190:2172–82
    [Google Scholar]
  102. 102. 
    Pope WH, Ferreira CM, Jacobs-Sera D, Benjamin RC, Davis AJ et al. 2011. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PLOS ONE 6:e26750
    [Google Scholar]
  103. 103. 
    van Kessel JC, Hatfull GF 2008. Mycobacterial recombineering. Methods Mol. Biol. 435:203–15
    [Google Scholar]
  104. 104. 
    van Kessel JC, Marinelli LJ, Hatfull GF 2008. Recombineering mycobacteria and their phages. Nat. Rev. Microbiol. 6:851–57
    [Google Scholar]
  105. 105. 
    Marinelli LJ, Hatfull GF, Piuri M 2012. Recombineering: a powerful tool for modification of bacteriophage genomes. Bacteriophage 2:5–14
    [Google Scholar]
  106. 106. 
    Marinelli LJ, Piuri M, Hatfull GF 2019. Genetic manipulation of lytic bacteriophages with BRED: bacteriophage recombineering of electroporated DNA. Methods Mol. Biol. 1898:69–80Describes how recombineering can be applied for efficient genetic manipulation of phage genomes.
    [Google Scholar]
  107. 107. 
    Donnelly-Wu MK, Jacobs WR Jr, Hatfull GF 1993. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol. Microbiol. 7:407–17
    [Google Scholar]
  108. 108. 
    Petrova ZO, Broussard GW, Hatfull GF 2015. Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection. Microbiology 161:1539–51
    [Google Scholar]
  109. 109. 
    Jacobs WR Jr, Tuckman M, Bloom BR. 1987. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–35
    [Google Scholar]
  110. 110. 
    Jacobs WR Jr, Snapper SB, Tuckman M, Bloom BR. 1989. Mycobacteriophage vector systems. Rev. Infect. Dis. 11:Suppl. 2S404–404
    [Google Scholar]
  111. 111. 
    Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C et al. 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. . PNAS 94:10961–66
    [Google Scholar]
  112. 112. 
    Bardarov S, Bardarov S Jr, Pavelka MS Jr, Sambandamurthy V, Larsen M et al. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis. M. bovis BCG and M. smegmatis. Microbiology 148:3007–17
    [Google Scholar]
  113. 113. 
    Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G et al. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–22
    [Google Scholar]
  114. 114. 
    Piuri M, Jacobs WR Jr, Hatfull GF 2009. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. . PLOS ONE 4:e4870
    [Google Scholar]
  115. 115. 
    Wilson SM, al-Suwaidi Z, McNerney R, Porter J, Drobniewski F 1997. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat. . Med 3:465–68
    [Google Scholar]
  116. 116. 
    Albay A, Kisa O, Baylan O, Doganci L 2003. The evaluation of FASTPlaqueTB™ test for the rapid diagnosis of tuberculosis. Diagn. Microbiol. Infect. Dis. 46:211–15
    [Google Scholar]
  117. 117. 
    Sarkis GJ, Jacobs WR Jr, Hatfull GF 1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 15:1055–67
    [Google Scholar]
  118. 118. 
    Jain P, Hartman TE, Eisenberg N, O'Donnell MR, Kriakov J et al. 2012. ϕ2GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples. J. Clin. Microbiol. 50:1362–69
    [Google Scholar]
  119. 119. 
    O'Donnell MR, Pym A, Jain P, Munsamy V, Wolf A et al. 2015. A novel reporter phage to detect tuberculosis and rifampin resistance in a high-HIV-burden population. J. Clin. Microbiol. 53:2188–94
    [Google Scholar]
  120. 120. 
    Rondon L, Urdaniz E, Latini C, Payaslian F, Matteo M et al. 2018. Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3–5 days from sputum collection. Front. Microbiol. 9:1471
    [Google Scholar]
  121. 121. 
    Banaiee N, Bobadilla-Del-Valle M, Bardarov S Jr, Riska PF, Small PM et al. 2001. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J. Clin. Microbiol. 39:3883–88
    [Google Scholar]
  122. 122. 
    Jain P, Weinrick BC, Kalivoda EJ, Yang H, Munsamy V et al. 2016. Dual-reporter mycobacteriophages (ϕ2DRMs) reveal preexisting Mycobacterium tuberculosis persistent cells in human sputum. mBio 7:e01023-16
    [Google Scholar]
  123. 123. 
    Hatfull GF, Vehring R. 2016. Respirable bacteriophage aerosols for the prevention and treatment of tuberculosis. Drug Delivery Systems for Tuberculosis Prevention and Treatment AJ Hickey, A Misra, PB Fourie 277–92 Chichester, UK: Wiley & Sons
    [Google Scholar]
  124. 124. 
    Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A 2019. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect. Drug Resist. 12:2943–59
    [Google Scholar]
  125. 125. 
    Marinelli LJ, Piuri M, Swigonova Z, Balachandran A, Oldfield LM et al. 2008. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLOS ONE 3:e3957
    [Google Scholar]
  126. 126. 
    Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J et al. 2017. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61:e00954-17Shows use of personalized phage cocktails for treatment of an Acinetobacter infection.
    [Google Scholar]
  127. 127. 
    Sula L, Sulova J, Stolcpartova M 1981. Therapy of experimental tuberculosis in guinea pigs with mycobacterial phages DS-6A, GR-21 T, My-327. Czech Med 4:209–14
    [Google Scholar]
  128. 128. 
    Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG et al. 2013. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLOS Negl. Trop. Dis. 7:e2183
    [Google Scholar]
  129. 129. 
    Koz'min-Sokolov BN 1975. [Effect of mycobacteriophages on the course of experimental tuberculosis in albino mice]. Probl. Tuberk. 4:75–79 In Russian )
    [Google Scholar]
  130. 130. 
    Carrigy NB, Larsen SE, Reese V, Pecor T, Harrison M et al. 2019. Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29. Antimicrob. Agents Chemother. 63:e00871-19
    [Google Scholar]
  131. 131. 
    Carrigy NB, Chang RY, Leung SSY, Harrison M, Petrova Z et al. 2017. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm. Res. 34:2084–96
    [Google Scholar]
  132. 132. 
    Huson DH. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73
    [Google Scholar]
/content/journals/10.1146/annurev-virology-122019-070009
Loading
/content/journals/10.1146/annurev-virology-122019-070009
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error