1932

Abstract

Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-122019-070025
2020-09-29
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-122019-070025.html?itemId=/content/journals/10.1146/annurev-virology-122019-070025&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Marsh M, Helenius A. 2006. Virus entry: open sesame. Cell 124:729–40
    [Google Scholar]
  2. 2. 
    Pöhlmann S, Simmons G. 2013. Viral Entry into Host Cells New York: Springer
    [Google Scholar]
  3. 3. 
    Ströh LJ, Stehle T. 2014. Glycan engagement by viruses: receptor switches and specificity. Annu. Rev. Virol. 1:285–306
    [Google Scholar]
  4. 4. 
    Air GM. 2011. The role of carbohydrates in viral infections. Carbohydrate Recognition: Biological Problems, Methods, and Applications B Wang, G-J Boons 65–91 Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  5. 5. 
    Suenaga T, Arase H. 2015. Viral interactions with glycans. Glycoscience: Biology and Medicine N Taniguchi, T Endo, GW Hart, PH Seeberger, C-H Wong 785–94 Tokyo: Springer Japan
    [Google Scholar]
  6. 6. 
    Olofsson S, Bergström T. 2005. Glycoconjugate glycans as viral receptors. Ann. Med. 37:154–72
    [Google Scholar]
  7. 7. 
    Thompson AJ, de Vries RP, Paulson JC 2019. Virus recognition of glycan receptors. Curr. Opin. Virol. 34:117–29
    [Google Scholar]
  8. 8. 
    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P et al. 2009. Essentials of Glycobiology New York: Cold Spring Harbor Lab.
    [Google Scholar]
  9. 9. 
    Weerapana E, Imperiali B. 2006. Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16:91R–101R
    [Google Scholar]
  10. 10. 
    Peter‐Katalinić J. 2005. Methods in enzymology: O‐glycosylation of proteins. Methods Enzymol 405:139–71
    [Google Scholar]
  11. 11. 
    Taylor ME, Drickamer K. 2011. Introduction to Glycobiology Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  12. 12. 
    Matrosovich M, Herrler G, Klenk HD 2013. Sialic acid receptors of viruses. SialoGlyco Chemistry and Biology II R Gerardy-Schahn, P Delannoy, M von Itzstein 1–28 Cham, Switz: SpringerOverview of sialic acid receptors of different virus families and their influence on viral tropism.
    [Google Scholar]
  13. 13. 
    Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V, Sasisekharan R 2010. Glycans as receptors for influenza pathogenesis. Glycoconj. J. 27:561–70
    [Google Scholar]
  14. 14. 
    Varki A. 2008. Sialic acids in human health and disease. Trends Mol. Med. 14:351–60
    [Google Scholar]
  15. 15. 
    Rogers GN, Herrler G, Paulson J, Klenk H 1986. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261:5947–51
    [Google Scholar]
  16. 16. 
    Dietrich MH, Harprecht C, Stehle T 2017. The bulky and the sweet: how neutralizing antibodies and glycan receptors compete for virus binding. Protein Sci 26:2342–54
    [Google Scholar]
  17. 17. 
    Neu U, Bauer J, Stehle T 2011. Viruses and sialic acids: rules of engagement. Curr. Opin. Struct. Biol. 21:610–18
    [Google Scholar]
  18. 18. 
    Byrd-Leotis L, Jia N, Dutta S, Trost JF, Gao C et al. 2019. Influenza binds phosphorylated glycans from human lung. Sci. Adv. 5:eaav2554
    [Google Scholar]
  19. 19. 
    Byrd-Leotis L, Liu R, Bradley KC, Lasanajak Y, Cummings SF et al. 2014. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. PNAS 111:E2241–2241
    [Google Scholar]
  20. 20. 
    Broszeit F, Tzarum N, Zhu X, Nemanichvili N, Eggink D et al. 2019. N-glycolylneuraminic acid as a receptor for influenza A viruses. Cell Rep 27:3284–94.e6
    [Google Scholar]
  21. 21. 
    Reiss K, Stencel JE, Liu Y, Blaum BS, Reiter DM et al. 2012. The GM2 glycan serves as a functional coreceptor for serotype 1 reovirus. PLOS Pathog 8:e1003078
    [Google Scholar]
  22. 22. 
    Khan ZM, Liu Y, Neu U, Gilbert M, Ehlers B et al. 2014. Crystallographic and glycan microarray analysis of human polyomavirus 9 VP1 identifies N-glycolyl neuraminic acid as a receptor candidate. J. Virol. 88:6100–11
    [Google Scholar]
  23. 23. 
    Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ 2008. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. PNAS 105:9065–69
    [Google Scholar]
  24. 24. 
    Ravn V, Dabelsteen E. 2000. Tissue distribution of histo‐blood group antigens. APMIS 108:1–28
    [Google Scholar]
  25. 25. 
    Ruvoën‐Clouet N, Belliot G, Le Pendu J 2013. Noroviruses and histo‐blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Rev. Med. Virol. 23:355–66
    [Google Scholar]
  26. 26. 
    Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF et al. 2012. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485:256–59
    [Google Scholar]
  27. 27. 
    Engel S, Heger T, Mancini R, Herzog F, Kartenbeck J et al. 2011. Role of endosomes in simian virus 40 entry and infection. J. Virol. 85:4198–211
    [Google Scholar]
  28. 28. 
    Esko JD, Kimata K, Lindahl U 2009. Proteoglycans and sulfated glycosaminoglycans. Essentials of Glycobiology New York: Cold Spring Harbor Lab, 2nd ed..
    [Google Scholar]
  29. 29. 
    Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U 2002. Roles of heparan-sulphate glycosaminoglycans in cancer. Nat. Rev. Cancer 2:521–28
    [Google Scholar]
  30. 30. 
    Uyama T, Ishida M, Izumikawa T, Trybala E, Tufaro F et al. 2006. Chondroitin 4-O-sulfotransferase-1 regulates E disaccharide expression of chondroitin sulfate required for herpes simplex virus infectivity. J. Biol. Chem. 281:38668–74
    [Google Scholar]
  31. 31. 
    Peerboom N, Block S, Altgärde N, Wahlsten O, Möller S et al. 2017. Binding kinetics and lateral mobility of HSV-1 on end-grafted sulfated glycosaminoglycans. Biophys. J. 113:1223–34
    [Google Scholar]
  32. 32. 
    Iozzo RV, Schaefer L. 2015. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55Classification of proteoglycan gene families based on cellular location, protein homology, and protein cores.
    [Google Scholar]
  33. 33. 
    Couchman JR. 2010. Transmembrane signaling proteoglycans. Annu. Rev. Cell Dev. Biol. 26:89–114
    [Google Scholar]
  34. 34. 
    Christianson HC, Belting M. 2014. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 35:51–55
    [Google Scholar]
  35. 35. 
    Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M et al. 1994. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. PNAS 91:1839–42
    [Google Scholar]
  36. 36. 
    Gama CI, Hsieh-Wilson LC. 2005. Chemical approaches to deciphering the glycosaminoglycan code. Curr. Opin. Chem. Biol. 9:609–19
    [Google Scholar]
  37. 37. 
    Mondor I, Ugolini S, Sattentau QJ 1998. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J. Virol. 72:3623–34
    [Google Scholar]
  38. 38. 
    Cheshenko N, Liu W, Satlin LM, Herold BC 2007. Multiple receptor interactions trigger release of membrane and intracellular calcium stores critical for herpes simplex virus entry. Mol. Biol. Cell 18:3119–30
    [Google Scholar]
  39. 39. 
    Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R 2003. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J. Virol. 77:13125–35
    [Google Scholar]
  40. 40. 
    Vigerust DJ, Shepherd VL. 2007. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15:211–18
    [Google Scholar]
  41. 41. 
    Roberts PC, Garten W, Klenk H-D 1993. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. J. Virol. 67:3048–60
    [Google Scholar]
  42. 42. 
    Ohuchi R, Ohuchi M, Garten W, Klenk H-D 1997. Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. J. Virol. 71:3719–25
    [Google Scholar]
  43. 43. 
    Ohuchi M, Ohuchi R, Feldmann A, Klenk H-D 1997. Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J. Virol. 71:8377–84
    [Google Scholar]
  44. 44. 
    Parsons LM, Bouwman KM, Azurmendi H, de Vries RP, Cipollo JF, Verheije MH 2019. Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding. J. Biol. Chem. 294:7797–809
    [Google Scholar]
  45. 45. 
    Saphire AC, Bobardt MD, Zhang Z, David G, Gallay PA 2001. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J. Virol. 75:9187–200
    [Google Scholar]
  46. 46. 
    Salvador B, Sexton NR, Carrion R, Nunneley J, Patterson JL et al. 2013. Filoviruses utilize glycosaminoglycans for their attachment to target cells. J. Virol. 87:3295–304
    [Google Scholar]
  47. 47. 
    Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M 2001. Human papillomavirus infection requires cell surface heparan sulfate. J. Virol. 75:1565–70
    [Google Scholar]
  48. 48. 
    Gillet L, May JS, Stevenson PG 2009. In vivo importance of heparan sulfate-binding glycoproteins for murid herpesvirus-4 infection. J. Gen. Virol. 90:602–13
    [Google Scholar]
  49. 49. 
    Martín J, Wharton SA, Lin YP, Takemoto DK, Skehel JJ et al. 1998. Studies of the binding properties of influenza hemagglutinin receptor-site mutants. Virology 241:101–11
    [Google Scholar]
  50. 50. 
    Trybala E, Olofsson S, Mårdberg K, Svennerholm B, Umemoto K et al. 2004. Structural and functional features of the polycationic peptide required for inhibition of herpes simplex virus invasion of cells. Antivir. Res. 62:125–34
    [Google Scholar]
  51. 51. 
    Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N 2004. Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J. Virol. 78:7727–36
    [Google Scholar]
  52. 52. 
    Neu U, Woellner K, Gauglitz G, Stehle T 2008. Structural basis of GM1 ganglioside recognition by simian virus 40. PNAS 105:5219–24
    [Google Scholar]
  53. 53. 
    Stehle T, Harrison SC. 1996. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4:183–94
    [Google Scholar]
  54. 54. 
    Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M et al. 2006. Influenza virus pleiomorphy characterized by cryoelectron tomography. PNAS 103:19123–27
    [Google Scholar]
  55. 55. 
    Mammen M, Choi SK, Whitesides GM 1998. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37:2754–94Description of inherent characteristics of polyvalent interactions mainly regarding their strength compared to monovalent interactions.
    [Google Scholar]
  56. 56. 
    Baram‐Pinto D, Shukla S, Gedanken A, Sarid R 2010. Inhibition of HSV‐1 attachment, entry, and cell‐to‐cell spread by functionalized multivalent gold nanoparticles. Small 6:1044–50
    [Google Scholar]
  57. 57. 
    Nilsson EC, Storm RJ, Bauer J, Johansson SM, Lookene A et al. 2011. The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat. Med. 17:105–9
    [Google Scholar]
  58. 58. 
    Nemanichvili N, Tomris I, Turner HL, McBride R, Grant OC et al. 2019. Fluorescent trimeric hemagglutinins reveal multivalent receptor binding properties. J. Mol. Biol. 431:842–56
    [Google Scholar]
  59. 59. 
    Sieben C, Sezgin E, Eggeling C, Manley S 2018. Influenza A viruses use multivalent sialic acid clusters for cell binding and receptor activation. bioRxiv 264713. https://doi.org/10.1101/264713
    [Crossref]
  60. 60. 
    Boulant S, Stanifer M, Lozach P-Y 2015. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses 7:2794–815Review of the first virus-binding events to cell surfaces and subsequent diffusion and uptake.
    [Google Scholar]
  61. 61. 
    Cureton DK, Harbison CE, Cocucci E, Parrish CR, Kirchhausen T 2012. Limited transferrin receptor clustering allows rapid diffusion of canine parvovirus into clathrin endocytic structures. J. Virol. 86:5330–40
    [Google Scholar]
  62. 62. 
    Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W 2005. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170:317–25
    [Google Scholar]
  63. 63. 
    Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, Helenius A 2005. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. PNAS 102:15110–15
    [Google Scholar]
  64. 64. 
    Kukura P, Ewers H, Müller C, Renn A, Helenius A, Sandoghdar V 2009. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6:923–27
    [Google Scholar]
  65. 65. 
    Rust MJ, Lakadamyali M, Zhang F, Zhuang X 2004. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat. Struct. Mol. Biol. 11:567–73
    [Google Scholar]
  66. 66. 
    Szklarczyk OM, González-Segredo N, Kukura P, Oppenheim A, Choquet D et al. 2013. Receptor concentration and diffusivity control multivalent binding of Sv40 to membrane bilayers. PLOS Comput. Biol. 9:e1003310
    [Google Scholar]
  67. 67. 
    Müller M, Lauster D, Wildenauer HH, Herrmann A, Block S 2019. Mobility-based quantification of multivalent virus-receptor interactions: new insights into influenza A virus binding mode. Nano Lett 19:1875–82
    [Google Scholar]
  68. 68. 
    Sakai T, Nishimura SI, Naito T, Saito M 2017. Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery. Sci. Rep. 7:45043
    [Google Scholar]
  69. 69. 
    Vahey MD, Fletcher DA. 2019. Influenza A virus surface proteins are organized to help penetrate host mucus. eLife 8:e43764
    [Google Scholar]
  70. 70. 
    Lander AD. 1998. Proteoglycans: master regulators of molecular encounter. ? Maxtrix Biol 17:465–72
    [Google Scholar]
  71. 71. 
    Schlessinger J, Lax I, Lemmon M 1995. Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors. ? Cell 83:357–60
    [Google Scholar]
  72. 72. 
    Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ 2014. Bitter-sweet symphony: glycan–lectin interactions in virus biology. FEMS Microbiol. Rev. 38:598–632
    [Google Scholar]
  73. 73. 
    Gillet L, Stevenson PG. 2007. Antibody evasion by the N terminus of murid herpesvirus‐4 glycoprotein B. EMBO J 26:5131–42
    [Google Scholar]
  74. 74. 
    Choi S-K, Mammen M, Whitesides GM 1997. Generation and in situ evaluation of libraries of poly (acrylic acid) presenting sialosides as side chains as polyvalent inhibitors of influenza-mediated hemagglutination. J. Am. Chem. Soc. 119:4103–11
    [Google Scholar]
  75. 75. 
    Yeh H-W, Lin T-S, Wang H-W, Cheng H-W, Liu D-Z, Liang P-H 2015. S-linked sialyloligosaccharides bearing liposomes and micelles as influenza virus inhibitors. Org. Biomol. Chem. 13:11518–28
    [Google Scholar]
  76. 76. 
    Papp I, Sieben C, Sisson AL, Kostka J, Böttcher C et al. 2011. Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes. ChemBioChem 12:887–95
    [Google Scholar]
  77. 77. 
    Ewers H, Schelhaas M. 2012. Analysis of virus entry and cellular membrane dynamics by single particle tracking. Methods Enzymol 506:63–80
    [Google Scholar]
  78. 78. 
    Klimyte EM, Smith SE, Oreste P, Lembo D, Dutch RE 2016. Inhibition of human metapneumovirus binding to heparan sulfate blocks infection in human lung cells and airway tissues. J. Virol. 90:9237–50
    [Google Scholar]
  79. 79. 
    Lembo D, Donalisio M, Laine C, Cagno V, Civra A et al. 2014. Auto-associative heparin nanoassemblies: a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. Eur. J. Pharm. Biopharm. 88:275–82
    [Google Scholar]
  80. 80. 
    Cagno V, Andreozzi P, D'Alicarnasso M, Silva PJ, Mueller M et al. 2018. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 17:195–203Presentation of heparan sulfate–mimicking antiviral nanoparticles capable of irreversibly altering the structure of virions.
    [Google Scholar]
  81. 81. 
    Muñoz A, Sigwalt D, Illescas BM, Luczkowiak J, Rodríguez-Pérez L et al. 2016. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 8:50–57
    [Google Scholar]
  82. 82. 
    McCormack S, Ramjee G, Kamali A, Rees H, Crook AM et al. 2010. PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet 376:1329–37
    [Google Scholar]
  83. 83. 
    Pirrone V, Wigdahl B, Krebs FC 2011. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antivir. Res. 90:168–82
    [Google Scholar]
  84. 84. 
    Bhatia S, Lauster D, Bardua M, Ludwig K, Angioletti-Uberti S et al. 2017. Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection in vitro and in vivo. . Biomaterials 138:22–34
    [Google Scholar]
  85. 85. 
    Hao C, Yu G, He Y, Xu C, Zhang L, Wang W 2019. Marine glycan-based antiviral agents in clinical or preclinical trials. Rev. Med. Virol. 29:e2043
    [Google Scholar]
  86. 86. 
    Killian ML. 2014. Hemagglutination assay for influenza virus. Animal Influenza Virus E Spackman 3–9 New York: Springer
    [Google Scholar]
  87. 87. 
    Matrosovich MN, Gambaryan AS. 2012. Solid-phase assays of receptor-binding specificity. Influenza Virus Y Kawaoka, G Neumann 71–94 New York: Springer
    [Google Scholar]
  88. 88. 
    Liu Y, Palma AS, Feizi T 2009. Carbohydrate microarrays: key developments in glycobiology. Biol. Chem. 390:647–56
    [Google Scholar]
  89. 89. 
    Liang P-H, Wu C-Y, Greenberg WA, Wong C-H 2008. Glycan arrays: biological and medical applications. Curr. Opin. Chem. Biol. 12:86–92
    [Google Scholar]
  90. 90. 
    Gulati S, Lasanajak Y, Smith DF, Cummings RD, Air GM 2014. Glycan array analysis of influenza H1N1 binding and release. Cancer Biomarkers 14:43–53
    [Google Scholar]
  91. 91. 
    Fukui S, Feizi T, Galustian C, Lawson AM, Chai W 2002. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20:1011–17
    [Google Scholar]
  92. 92. 
    Wang L, Cummings RD, Smith DF, Huflejt M, Campbell CT et al. 2014. Cross-platform comparison of glycan microarray formats. Glycobiology 24:507–17Comparison of different glycan microarray formats.
    [Google Scholar]
  93. 93. 
    Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y et al. 2009. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat. Biotechnol. 27:797–99
    [Google Scholar]
  94. 94. 
    Neu U, Maginnis MS, Palma AS, Ströh LJ, Nelson CD et al. 2010. Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8:309–19
    [Google Scholar]
  95. 95. 
    Song X, Heimburg-Molinaro J, Cummings RD, Smith DF 2014. Chemistry of natural glycan microarrays. Curr. Opin. Chem. Biol. 18:70–77
    [Google Scholar]
  96. 96. 
    Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M et al. 2017. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12:177–83
    [Google Scholar]
  97. 97. 
    Montelaro R, Rueckert R. 1975. Radiolabeling of proteins and viruses in vitro by acetylation with radioactive acetic anhydride. J. Biol. Chem. 250:1413–21
    [Google Scholar]
  98. 98. 
    Gotoh T, Ando N, Kikuchi KI 2006. A novel method for in vitro radiolabeling and testing enveloped viruses by phosphatidylethanolamine N‐methyltransferase and host cell‐specific binding. Biotechnol. Bioeng. 94:1017–24
    [Google Scholar]
  99. 99. 
    Müller TG, Sakin V, Müller B 2019. A spotlight on viruses—application of click chemistry to visualize virus-cell interactions. Molecules 24:481
    [Google Scholar]
  100. 100. 
    Von Borries B, Ruska E, Ruska H 1938. Bakterien und Virus in übermikroskopischer Aufnahme [Bacteria and virus in microscopic picture]. Klin. Wochenschr. [Clin. Wkly.] 17:921–25
    [Google Scholar]
  101. 101. 
    Lee KK, Gui L. 2016. Dissecting virus infectious cycles by cryo-electron microscopy. PLOS Pathog 12:e1005625
    [Google Scholar]
  102. 102. 
    Xie Q, Spear JM, Noble AJ, Sousa DR, Meyer NL et al. 2017. The 2.8 Å electron microscopy structure of adeno-associated virus-DJ bound by a heparinoid pentasaccharide. Mol. Ther.-Methods Clin. Dev. 5:1–12
    [Google Scholar]
  103. 103. 
    Walls AC, Tortorici MA, Frenz B, Snijder J, Li W et al. 2016. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 23:899–905
    [Google Scholar]
  104. 104. 
    Tortorici MA, Walls AC, Lang Y, Wang C, Li Z et al. 2019. Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 26:481–89
    [Google Scholar]
  105. 105. 
    Cheng Y, Grigorieff N, Penczek PA, Walz T 2015. A primer to single-particle cryo-electron microscopy. Cell 161:438–49
    [Google Scholar]
  106. 106. 
    Fu C-y, Johnson JE 2011. Viral life cycles captured in three-dimensions with electron microscopy tomography. Curr. Opin. Virol. 1:125–33
    [Google Scholar]
  107. 107. 
    Merk A, Subramaniam S. 2013. HIV-1 envelope glycoprotein structure. Curr. Opin. Struct. Biol. 23:268–76
    [Google Scholar]
  108. 108. 
    Emsley P, Brunger AT, Lütteke T 2015. Tools to assist determination and validation of carbohydrate 3D structure data. Glycoinformatics T Lütteke, M Frank 229–40 New York: Springer
    [Google Scholar]
  109. 109. 
    Reiter DM, Frierson JM, Halvorson EE, Kobayashi T, Dermody TS, Stehle T 2011. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides. PLOS Pathog 7:e1002166
    [Google Scholar]
  110. 110. 
    Weis W, Brown J, Cusack S, Paulson J, Skehel J, Wiley D 1988. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–31
    [Google Scholar]
  111. 111. 
    Sauter NK, Hanson JE, Glick GD, Brown JH, Crowther RL et al. 1992. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31:9609–21
    [Google Scholar]
  112. 112. 
    Dormitzer PR, Sun ZYJ, Wagner G, Harrison SC 2002. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–97
    [Google Scholar]
  113. 113. 
    Grubmuller H, Heymann B, Tavan P 1996. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–99
    [Google Scholar]
  114. 114. 
    Rief M, Grubmüller H. 2002. Force spectroscopy of single biomolecules. Chem. Phys. Chem. 3:255–61
    [Google Scholar]
  115. 115. 
    Sieben C, Kappel C, Zhu R, Wozniak A, Rankl C et al. 2012. Influenza virus binds its host cell using multiple dynamic interactions. PNAS 109:13626–31
    [Google Scholar]
  116. 116. 
    Rademacher C, Krishna NR, Palcic M, Parra F, Peters T 2008. NMR experiments reveal the molecular basis of receptor recognition by a calicivirus. J. Am. Chem. Soc. 130:3669–75
    [Google Scholar]
  117. 117. 
    Uetrecht C, Heck AJ. 2011. Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew. Chem. Int. Ed. 50:8248–62
    [Google Scholar]
  118. 118. 
    Bereszczak JZ, Rose RJ, van Duijn E, Watts NR, Wingfield PT et al. 2013. Epitope-distal effects accompany the binding of two distinct antibodies to hepatitis B virus capsids. J. Am. Chem. Soc. 135:6504–12
    [Google Scholar]
  119. 119. 
    Klebe G. 2015. The use of thermodynamic and kinetic data in drug discovery: decisive insight or increasing the puzzlement. ? Chem. Med. Chem. 10:229–31Review on the current understanding of thermodynamic and kinetic data used in drug discovery.
    [Google Scholar]
  120. 120. 
    Suenaga E, Mizuno H, Penmetcha KK 2012. Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. Biosens. Bioelectron. 32:195–201
    [Google Scholar]
  121. 121. 
    Papp I, Sieben C, Ludwig K, Roskamp M, Bottcher C et al. 2010. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6:2900–6
    [Google Scholar]
  122. 122. 
    Parajuli B, Acharya K, Bach HC, Parajuli B, Zhang S et al. 2018. Restricted HIV-1 Env glycan engagement by lectin-reengineered DAVEI protein chimera is sufficient for lytic inactivation of the virus. Biochem. J. 475:931–57
    [Google Scholar]
  123. 123. 
    Kubota M, Takeuchi K, Watanabe S, Ohno S, Matsuoka R et al. 2016. Trisaccharide containing α2,3-linked sialic acid is a receptor for mumps virus. PNAS 113:11579–84
    [Google Scholar]
  124. 124. 
    Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S 2010. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 1:100
    [Google Scholar]
  125. 125. 
    Guo H, Rabouw H, Slomp A, Dai M, van der Vegt F et al. 2018. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLOS Pathog 14:e1007233
    [Google Scholar]
  126. 126. 
    Koehler M, Aravamudhan P, Guzman-Cardozo C, Dumitru AC, Yang J et al. 2019. Glycan-mediated enhancement of reovirus receptor binding. Nat. Commun. 10:1–14
    [Google Scholar]
  127. 127. 
    Gillet L, Alenquer M, Glauser DL, Colaco S, May JS, Stevenson PG 2009. Glycoprotein L sets the neutralization profile of murid herpesvirus 4. J. Gen. Virol. 90:1202–14
    [Google Scholar]
  128. 128. 
    Verma D, Gupta D, Lal S 2018. Host lipid rafts play a major role in binding and endocytosis of influenza A virus. Viruses 10:650
    [Google Scholar]
  129. 129. 
    Gu Y, Yang Y, Liu Y 2011. Imaging early steps of Sindbis virus infection by total internal reflection fluorescence microscopy. Adv. Virol. 2011:535206
    [Google Scholar]
  130. 130. 
    Lakadamyali M, Rust MJ, Babcock HP, Zhuang X 2003. Visualizing infection of individual influenza viruses. PNAS 100:9280–85
    [Google Scholar]
  131. 131. 
    Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W 2007. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell Biol. 9:310–15
    [Google Scholar]
  132. 132. 
    Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M et al. 2019. Super-resolution microscopy demystified. Nat. Cell Biol. 21:72–84Overview about super-resolution microscopy methods to study virus-glycan interactions.
    [Google Scholar]
  133. 133. 
    Wang I, Burckhardt C, Yakimovich A, Greber U 2018. Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses 10:166
    [Google Scholar]
  134. 134. 
    Burckhardt CJ, Greber UF. 2009. Virus movements on the plasma membrane support infection and transmission between cells. PLOS Pathog 5:e1000621
    [Google Scholar]
  135. 135. 
    Hanne J, Zila V, Heilemann M, Müller B, Kräusslich HG 2016. Super‐resolved insights into human immunodeficiency virus biology. FEBS Lett 590:1858–76
    [Google Scholar]
  136. 136. 
    Nicholls JM, Bourne AJ, Chen H, Guan Y, Peiris JM 2007. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses. Respir. Res. 8:73
    [Google Scholar]
  137. 137. 
    Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR 2007. Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129:8400–1
    [Google Scholar]
  138. 138. 
    Letschert S, Göhler A, Franke C, Bertleff‐Zieschang N, Memmel E et al. 2014. Super‐resolution imaging of plasma membrane glycans. Angew. Chem. Int. Ed. 53:10921–24
    [Google Scholar]
  139. 139. 
    Takagi S, Momose F, Morikawa Y 2017. FRET analysis of HIV‐1 Gag and GagPol interactions. FEBS Open Bio 7:1815–25
    [Google Scholar]
  140. 140. 
    Emmott E, Sweeney TR, Goodfellow I 2015. A cell-based fluorescence resonance energy transfer (FRET) sensor reveals inter- and intragenogroup variations in norovirus protease activity and polyprotein cleavage. J. Biol. Chem. 290:27841–53
    [Google Scholar]
  141. 141. 
    Chojnacki J, Waithe D, Carravilla P, Huarte N, Galiani S et al. 2017. Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nat. Commun. 8:545
    [Google Scholar]
  142. 142. 
    Ando T, Uchihashi T, Kodera N 2013. High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42:393–414
    [Google Scholar]
  143. 143. 
    Hinterdorfer P, Dufrêne YF. 2006. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3:347–55
    [Google Scholar]
  144. 144. 
    Neuman KC, Nagy A. 2008. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:491–505Comprehensive review about single-molecule force spectroscopy tools.
    [Google Scholar]
  145. 145. 
    Rankl C, Kienberger F, Wildling L, Wruss J, Gruber HJ et al. 2008. Multiple receptors involved in human rhinovirus attachment to live cells. PNAS 105:17778–83
    [Google Scholar]
  146. 146. 
    Joo K-I, Lei Y, Lee C-L, Lo J, Xie J et al. 2008. Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. ACS Nano 2:1553–62
    [Google Scholar]
  147. 147. 
    Herrmann A, Sieben C. 2015. Single-virus force spectroscopy unravels molecular details of virus infection. Integr. Biol. 7:620–32Review about the capability to unravel molecular details about virus infection using single-virus force spectroscopy.
    [Google Scholar]
  148. 148. 
    Chang MI, Panorchan P, Dobrowsky TM, Tseng Y, Wirtz D 2005. Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells. J. Virol. 79:14748–55
    [Google Scholar]
  149. 149. 
    Dobrowsky TM, Zhou Y, Sun SX, Siliciano RF, Wirtz D 2008. Monitoring early fusion dynamics of human immunodeficiency virus type 1 at single-molecule resolution. J. Virol. 82:7022–33
    [Google Scholar]
  150. 150. 
    Delguste M, Zeippen C, Machiels B, Mast J, Gillet L, Alsteens D 2018. Multivalent binding of herpesvirus to living cells is tightly regulated during infection. Sci. Adv. 4:eaat1273
    [Google Scholar]
  151. 151. 
    Delguste M, Peerboom N, Le Brun G, Trybala E, Olofsson S et al. 2019. Regulatory mechanisms of the mucin-like region on herpes simplex virus during cellular attachment. ACS Chem. Biol. 14:534–42
    [Google Scholar]
/content/journals/10.1146/annurev-virology-122019-070025
Loading
/content/journals/10.1146/annurev-virology-122019-070025
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error