There is no abstract available.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abranovich S. 1992. The Best Kept Secret.. Yediot Ahronot. 23 April:13–20 [Google Scholar]
  2. Abresch EC, Paddock ML, Stowell MHB, McPhillips TM, Axelrod HL. et al. 1998. Identification of proton transfer pathways in the X-ray crystal structure of the bacterial reaction center from Rhodobacter sphaeroides.. Photosynth. Res. 55:119–25 [Google Scholar]
  3. Ädelroth P, Paddock ML, Sagle LB, Feher G, Okamura MY. 2000. Identification of the proton pathway in bacterial reaction centers: both protons associated with reduction of QB to QBH2 share a common entry point.. Proc. Natl. Acad. Sci. USA 97:13086–91 [Google Scholar]
  4. Adir N, Axelrod HL, Beroza P, Isaacson RA, Rongey SH. et al. 1996. Co-crystallization and characterization of the photosynthetic reaction center-cytochrome c2 complex from Rhodobacter sphaeroides.. Biochemistry 35:2535–47 [Google Scholar]
  5. Alderton G, Fevold HL. 1946. Direct crystallization of lysozyme from egg white and some crystalline salts of lysozyme.. J. Biol. Chem. 164:1–5 [Google Scholar]
  6. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC. 1987. Structure of the reaction center from Rhodobacter sphaeroides R-26: II. The protein subunits.. Proc. Natl. Acad. Sci. USA 84:6162–66 [Google Scholar]
  7. Allen JP, Feher G, Yeates TO, Rees DC, Deisenhofer J. et al. 1986. Structural homology of reaction centers from R. sphaeroides and R. viridis as determined by X-ray diffraction.. Proc. Natl. Acad. Sci. USA 83:8589–93 [Google Scholar]
  8. Anderson PW. 1978. Local moments and localized states.. Science 201(4353):307–16 [Google Scholar]
  9. Archive of “Haganah” History, Ref. 1193
  10. Axelrod HL, Abresch EC, Okamura MY, Feher G, Yeh AP, Rees DC. 1999. X-ray structure determination of the RC-cyt c2 complex from Rhodobacter sphaeroides.. Biophys. J. 76:A20 [Google Scholar]
  11. Axelrod HL, Abresch EC, Paddock ML, Okamura MY, Feher G. 2000. Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers.. Proc. Natl. Acad. Sci. USA 97:1542–47 [Google Scholar]
  12. Axelrod HL, Feher G, Allen JP, Chirino AJ, Day MW. et al. 1994. Crystallization and X-ray structure determination of cytochrome c2 from Rhodobacter sphaeroides in three crystal forms.. Acta Crystallogr. D 50:596–602 [Google Scholar]
  13. Benedek GB. 1969. Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology and engineering. In Polarisation, Matière et Rayonnement, Livre de Jubilé en l'honneur d'Alfred Kastler 49–84 Paris: Presses Univ. France [Google Scholar]
  14. Bennet JE, Ingram DJE, George P, Griffith JS. 1955. Paramagnetic resonance absorption of ferrihaemoglobin and ferrimyoglobin derivatives.. Nature 176:394 [Google Scholar]
  15. Bloch F. 1946. Nuclear induction.. Phys. Rev. 70(7–8):460–74 [Google Scholar]
  16. Bloembergen N. 1956. Proposal for a new type solid state maser.. Phys. Rev. 104(2):324–27 [Google Scholar]
  17. Bridges F. 1975. Paraelectric phenomena in CRC.. Crit. Rev. Solid State Phys. 5:1–88 [Google Scholar]
  18. Butler WF, Calvo R, Fredkin DR, Isaacson RA, Okamura MY, Feher G. 1984. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides III. EPR measurements of the reduced acceptor complex.. Biophys. J. 45:947–73 [Google Scholar]
  19. Calvo R, Isaacson RA, Paddock ML, Abresch EC, Okamura MY. et al. 2001. EPR study of the semiquinone biradical Q·AQ·B in photosynthetic reaction centers from Rb. sphaeroides at 326 GHz: determination of the exchange interaction J0.. J. Phys. Chem. B 105(19):4053–57 [Google Scholar]
  20. Chang CH, Tiede D, Tang J, Smith U, Norris J, Schiffer M. 1986. Structure of Rodopseudomonas sphaeroides R-26 reaction center.. FEBS Lett. 205:82–86 [Google Scholar]
  21. Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC. et al. 1994. Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides.. Biochemistry 33:4584–93 [Google Scholar]
  22. Clark WG, Feher G. 1963. Nuclear polarization in InSb by a d.c. current.. Phys. Rev. Lett. 10(4):134–38 [Google Scholar]
  23. Clayton RK, Wang RT. 1971. Photochemical reaction centers from Rhodopseudomonas sphaeroides.. Methods Enzymol. 23:696–704 [Google Scholar]
  24. Combrisson J, Honig A, Townes CH. 1956. Compt. Rend. 242:2451–53 [Google Scholar]
  25. Commoner B, Heise JJ, Townsend J. 1956. Light-induced paramagnetism in chloroplasts.. Proc. Natl. Acad. Sci. USA 42(10):710–18 [Google Scholar]
  26. Commoner B, Townsend J, Pake GE. 1954. Free radicals in biological materials.. Nature 174:689–91 [Google Scholar]
  27. Debus RJ, Feher G, Okamura MY. 1986. Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+.. Biochemistry 25(8):2276–87 [Google Scholar]
  28. Deisenhofer J, Epp O, Miki K, Huber R, Michel H. 1984. X-ray structure analysis of a membrane protein complex.. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis J. Mol. Biol. 180(2):385–98 [Google Scholar]
  29. Dickerson RE, Geis I. 1969. The Structure and Action of Proteins. New York: Harper & Row 120 pp. [Google Scholar]
  30. Dresselhaus G, Kip AF, Kittel C. 1955. Cyclotron resonance of electrons and holes in silicon and germanium crystals.. Phys. Rev. 98(2):368–84 [Google Scholar]
  31. Durbin SD, Feher G. 1986. Crystal growth studies of lysozyme as a model for protein crystallization.. J. Cryst. Growth 76:583–92 [Google Scholar]
  32. Durbin SD, Feher G. 1990. Studies of crystal growth mechanisms of proteins by electron microscopy.. J. Mol. Biol. 212(4):763–74 [Google Scholar]
  33. Durbin SD, Feher G. 1991. Simulation of lysozyme crystal growth by the Monte Carlo method.. J. Cryst. Growth 110:41–51 [Google Scholar]
  34. Durbin SD, Feher G. 1996. Protein crystallization.. Annu. Rev. Phys. Chem. 47:171–204 [Google Scholar]
  35. Duysens LNM. 1952. Transfer of excitation energy in photosynthesis.. PhD thesis. Univ. Utrecht, The Netherlands
  36. Ehrenberg A, Malmstrom BG, Vanngard T. eds 1967. Magnetic Resonance in Biological Systems, Vol. 9. New York: Pergamon
  37. Eigen M, DeMaeyer L. 1963. Relaxation methods. In Techniques of Organic Chemistry, ed. A Weissberger 8895–1054 New York: Intersci. Publ [Google Scholar]
  38. Eisenberger P, Okamura MY, Feher G. 1982. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides II. Extended X-ray fine structure studies.. Biophys. J. 37:523–38 [Google Scholar]
  39. Eisenberger P, Pershan PS. 1967. Magnetic resonance studies of met-myoglobin and myoglobin azide.. J. Chem. Phys. 47(9):3327–33 [Google Scholar]
  40. Eisinger J, Feher G. 1958. Hfs anomaly of Sb121 and Sb123 determined by the electron nuclear double-resonance technique.. Phys. Rev. 109(4):1172–83 [Google Scholar]
  41. Emerson R, Arnold W. 1932. The photochemical reaction in photosynthesis.. J. Gen. Physiol. 16:191–205 [Google Scholar]
  42. Feher ER. 1964. Effect of uniaxial stresses on the paramagnetic spectra of Mn3+ and Fe3+ in MgO.. Phys. Rev. 136(1):A145–57 [Google Scholar]
  43. Feher G. 1956. Method of polarizing nuclei in paramagnetic substances.. Phys. Rev. 103(2):500–1 [Google Scholar]
  44. Feher G. 1956. Observation of nuclear magnetic resonances via the electron spin resonance line.. Phys. Rev. 103(3):834–35 [Google Scholar]
  45. Feher G. 1957. Sensitivity considerations in microwave paramagnetic resonance absorption techniques.. Bell. Syst. Technol. J. 36(2):449–84 [Google Scholar]
  46. Feher G. 1959. Electron spin resonance experiments on donors in silicon.. I. Electronic structure of donors by the electron nuclear double resonance technique Phys. Rev. 114(5):1219–44 [Google Scholar]
  47. Feher G. 1959. Nuclear polarization via “hot” conduction electrons.. Phys. Rev. Lett. 3(3):135–37 [Google Scholar]
  48. Feher G. 1970. Determination of the zero field splitting parameter “D”. In Electron Paramagnetic Resonance with Application to Selected Problems in Biology, ed. C deWitt, J Matricon 61–64 New York: Gordon & Breach [Google Scholar]
  49. Feher G. 1971. Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants.. Photochem. Photobiol. 14(3):373–87 [Google Scholar]
  50. Feher G. 1978. Fluctuation spectroscopy.. Trends Biochem. Sci. 3(5):N111–13 [Google Scholar]
  51. Feher G. 1983. Primary process in bacterial photosynthesis.. Biophys. Soc., Natl. Lect. Biophys. J. 41:3 [Google Scholar]
  52. Feher G. 1992. Identification and characterization of the primary donor in bacterial photosynthesis: a chronological account of an EPR/ENDOR investigation.. J. Chem. Soc. Perkin Trans. 2, pp. 1861–74 [Google Scholar]
  53. Feher G. 1998. Light reflections III.. Photosynth. Res. 55(2–3):375–78 [Google Scholar]
  54. Feher G. 1998. The development of ENDOR and other reminiscences of the 1950's. In Foundations of Modern EPR, ed. GR Eaton, SS Eaton, KM Salikov 1548–56 Singapore: World Sci. Publ [Google Scholar]
  55. Feher G. 1998. The primary and secondary electron acceptors in bacterial photosynthesis: I. A chronological account of their identification by EPR.. Appl. Magn. Reson. 15:23–38 [Google Scholar]
  56. Feher G. 1998. Three decades of research in bacterial photosynthesis and the road leading to it: a personal account.. Photosynth. Res. 55:1–40 [Google Scholar]
  57. Feher G, Allen JP, Okamura MY, Rees DC. 1989. Structure and function of photosynthetic reaction centers.. Nature 339:111–16 [Google Scholar]
  58. Feher G, Fuller CS, Gere EA. 1957. Spin and magnetic moment of P22 by the electron nuclear double-resonance technique.. Phys. Rev. 107(5):1462–64 [Google Scholar]
  59. Feher G, Gordon JP, Buehler E, Gere EA, Thurmond CD. 1958. Spontaneous emission of radiation from an electron spin system.. Phys. Rev. 109(1):221–22 [Google Scholar]
  60. Feher G, Hensel JC, Gere EA. 1960. Paramagnetic resonance absorption from acceptors in silicon.. Phys. Rev. Lett. 5(7):309–11 [Google Scholar]
  61. Feher G, Hoff AJ, Isaacson RA, Ackerson LC. 1975. ENDOR experiments on chlorophyll and bacteriochlorophyll in vitro and in the photosynthetic unit.. Ann. NY Acad. Sci. 244:239–59 [Google Scholar]
  62. Feher G, Isaacson RA, Scholes GP, Nagel R. 1973. Electron nuclear double resonance (ENDOR) investigation on myoglobin and hemoglobin.. Ann. NY Acad. Sci. 222:86–101 [Google Scholar]
  63. Feher G, Kam Z. 1985. Nucleation and growth of protein crystals; general principles and assays.. Methods Enzymol. 114:77–112 [Google Scholar]
  64. Feher G, Malley M, Mauzerall D. 1967. Direct observation of the Zeeman splitting of the excited state of porphyrins.. See Ref. 35A 145–57
  65. Feher G, Okamura MY, McElroy JD. 1972. Identification of an electron acceptor in reaction centers of Rhodopseudomonas spheroides by EPR spectroscopy.. Biochim. Biophys. Acta 267:222–26 [Google Scholar]
  66. Feher G, Okamura MY. 1999. The primary and secondary acceptors in bacterial photosynthesis: II. The structure of the Fe2+-Q complex.. Appl. Magn. Reson. 16:63–100 [Google Scholar]
  67. Feher G, Prepost R, Sachs AM. 1960. Muonium formation in semiconductors.. Phys. Rev. Lett. 5(11):515–17 [Google Scholar]
  68. Feher G, Richards PL. 1967. Determination of the zero-field splitting “D” in heme chloride by far-infrared spectroscopy.. See Ref. 35A 141–44
  69. Feher G, Scovil HED. 1957. Electron spin relaxation times in gadolinium ethyl sulfate.. Phys. Rev. 105(2):760–62 [Google Scholar]
  70. Feher G, Shepherd IW, Shore HB. 1966. Paraelectric resonance of OH dipoles in KC1.. Phys. Rev. Lett. 16(12):500–3 [Google Scholar]
  71. Feher G, Weissman M. 1973. Fluctuation spectroscopy: determination of chemical reaction kinetics from the frequency spectrum of fluctuations.. Proc. Natl. Acad. Sci. USA 70(3):870–75 [Google Scholar]
  72. Fermi E. 1930. Über die magnetischen Momente der Atomkerne.. Z. Phys. 60:320–33 [Google Scholar]
  73. Garavito RM, Rosenbusch JP. 1980. Three-dimensional crystals of an integral membrane protein: an initial X-ray analysis.. J. Cell Biol. 86(1):327–29 [Google Scholar]
  74. Giauque WF, Macdougall DP. 1933. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O.. Phys. Rev. 43(9):768–68 [Google Scholar]
  75. Gordon JP, Zeiger HJ, Townes CH. 1954. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3.. Phys. Rev. 95(1):282–84 [Google Scholar]
  76. Graige MS, Feher G, Okamura MY. 1998. Conformational gating of the electron transfer reaction Q·AQB → QAQB·, in bacterial reaction centers of Rb. sphaeroides determined by a driving force assay.. Proc. Natl. Acad. Sci. USA 95:11679–84 [Google Scholar]
  77. Graige MS, Paddock ML, Bruce JM, Feher G, Okamura MY. 1996. Mechanism of proton-coupled electron transfer for quinone (QB) reduction in reaction centers of Rb. sphaeroides.. J. Am. Chem. Soc. 118(38):9005–16 [Google Scholar]
  78. Griffith JS. 1956. On the magnetic properties of some haemoglobin complexes.. Proc. R. Soc. London Ser. A 235:23–36 [Google Scholar]
  79. Deleted in proof
  80. Heller P. 1966. Hemoglobinopathic dysfunction of the red cell.. Am. J. Med. 41(5):799–814 [Google Scholar]
  81. Hensel JC, Feher G. 1960. Valence band parameters in silicon from cyclotron resonances in crystals subjected to uniaxial stress.. Phys. Rev. Lett. 5(7):307–9 [Google Scholar]
  82. Hensel JC, Feher G. 1963. Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials.. Phys. Rev. 129(3):1041–62 [Google Scholar]
  83. Honig A. 1954. Polarization of arsenic nuclei in a silicon semiconductor.. Phys. Rev. 96(1):234–35 [Google Scholar]
  84. Hutterman J. 1993. ENDOR of randomly oriented mononuclear metalloproteins. In Biological Magnetic Resonance, ed. LJ Berliner, J Reuben 13219–52 New York: Plenum [Google Scholar]
  85. Kam Z, Shore HB, Feher G. 1978. On the crystallization of proteins.. J. Mol. Biol. 123(4):539–55 [Google Scholar]
  86. Känzig W, Hart RH Jr, Roberts S. 1964. Paraelectricity and ferroelectricity due to hydroxyl ions in alkali halides; paraelectric cooling.. Phys. Rev. Lett. 13(18):543–45 [Google Scholar]
  87. Katz B. 1966. Quantal nature of chemical transmission. In Nerve, Muscle and Synapse 129–41 New York: McGrawHill [Google Scholar]
  88. Kirmaier C, Holten D. 1993. Electron transfer and charge recombination reactions in wild-type and mutant bacterial reaction centers. In The Photosynthetic Reaction Center, ed. J Deisenhofer, JR Norris 249–70 San Diego, CA: Academic [Google Scholar]
  89. Kleinfeld D, Okamura MY, Feher G. 1984. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes.. Biochemistry 23:5780–86 [Google Scholar]
  90. Koenig SH. 1959. Hot and warm electrons—a review.. J. Phys. Chem. Solids 8:227–34 [Google Scholar]
  91. Köhler G, Wendt H. 1966. Di Bestimmung von Gleichgewichtskonstanten aus kinetischen messungen.. Ber. Bunsenges. Phys. Chem. 70:674–81 [Google Scholar]
  92. Kopfermann H. 1956. Kernmomente. Frankfurt: Akad. Verlag [Google Scholar]
  93. Kuhn U, Lüty F. 1965. Paraelectric heating and cooling with OH-dipoles in alkali halides.. Solid State Commun. 4:31–33 [Google Scholar]
  94. Lee TD, Yang CN. 1956. Question of parity conservation in weak interactions.. Phys. Rev. 104(1):254–58 [Google Scholar]
  95. Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M. et al. 1993. The electronic structure of the primary donor cation radical in Rhodobacter sphaeroides R-26: ENDOR and TRIPLE resonance studies in single crystals of reaction centers.. Biochim. Biophys. Acta 1183:139–60 [Google Scholar]
  96. Loach PA, Hall RL. 1972. The question of the primary electron acceptor in bacterial photosynthesis.. Proc. Natl. Acad. Sci. USA 69(4):786–90 [Google Scholar]
  97. Lockhart DJ, Boxer SG. 1987. Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers.. Biochemistry 26:664–68 [Google Scholar]
  98. Lösche M, Feher G, Okamura MY. 1987. The Stark effect in reaction centers from Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis.. Proc. Natl. Acad. Sci. USA 84:7537–41 [Google Scholar]
  99. Low W. 1960. In Paramagnetic Resonance in Solids, ed. F Seitz, D Turnbull 67 New York: Academic
  100. Lubitz W, Abresch EC, Debus RJ, Isaacson RA, Okamura MY, Feher G. 1985. Electron nuclear double resonance of semiquinones in reaction centers of Rhodopseudomonas sphaeroides.. Biochim. Biophys. Acta 808(3):464–69 [Google Scholar]
  101. Lubitz W, Feher G. 1999. The primary and secondary acceptors in bacterial photosynthesis: III characterization of the quinone radicals Q·A and Q·B by EPR and ENDOR.. Appl. Magn. Reson. 17:1–48 [Google Scholar]
  102. Malley M, Feher G, Mauzerall D. 1968. The Stark effect in porphyrins.. J. Mol. Spectrosc. 25(4):544–48 [Google Scholar]
  103. Marcus RA. 1993. Electron-transfer reactions in chemistry: theory and experiment (Nobel Lecture).. Angew. Chem. 32:1111–21 [Google Scholar]
  104. Marinetti TD, Okamura MY, Feher G. 1979. Localization of the primary quinone binding site in reaction centers from Rhodopseudomonas sphaeroides R-26 by photoaffinity labeling.. Biochemistry 18:3126–33 [Google Scholar]
  105. Mauzerall D, Feher G. 1964. A study of the photoinduced porphyrin free radical by electron spin resonance.. Biochim. Biophys. Acta 79:430–32 [Google Scholar]
  106. Mauzerall D, Feher G. 1964. Optical absorption of the porphyrin free radical formed in a reversible photochemical reaction.. Biochim. Biophys. Acta 88:658–60 [Google Scholar]
  107. McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR. 1999. Structural details of an interaction between cardiolipin and an integral membrane protein.. Proc. Natl. Acad. Sci. USA 96(26):14706–11 [Google Scholar]
  108. McElroy JD, Feher G, David C, Mauzerall DC. 1972. Characterization of primary reactants in bacterial photosynthesis.. I. Comparison of the light-induced EPR signal (g = 2.0026) with that of a bacteriochlorophyll radical Biochim. Biophys. Acta 267:363–74 [Google Scholar]
  109. McElroy JD, Mauzerall DC, Feher G. 1974. Characterization of primary reactants in bacterial photosynthesis II. Kinetic studies of the light-induced signal (g = 2.0026) and the optical absorbance changes at cryogenic temperatures.. Biochim. Biophys. Acta 333:261–78 [Google Scholar]
  110. McPherson A. 1999. Crystallization of Biological Macromolecules. New York: Cold Spring Harbor Lab. Press 586 pp. [Google Scholar]
  111. Michel H, Oesterhelt D. 1980. Three-dimensional crystals of membrane proteins: bacteriorhodopsin.. Proc. Natl. Acad. Sci. USA 77(3):1283–85 [Google Scholar]
  112. Michel H. 1982. Three-dimensional crystals of a membrane protein complex: the photosynthetic reaction center from Rhodopseudomonas viridis.. J. Mol. Biol. 158(3):567–72 [Google Scholar]
  113. Norris JR, Scheer H, Katz JJ. 1975. Models for antenna and reaction center chlorophylls.. Ann. NY Acad. Sci. 244:260–80 [Google Scholar]
  114. Norris JR, Uphaus RA, Crespi HL, Katz JJ. 1971. Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis.. Proc. Natl. Acad. Sci. USA 68(3):625–28 [Google Scholar]
  115. Okamura MY, Feher G, Nelson N. 1982. Reaction centers. In Photosynthesis: Energy Conversion by Plants and Bacteria, ed. Govindjee 1195–272 New York: Academic [Google Scholar]
  116. Okamura MY, Fredkin DR, Isaacson RA, Feher G. 1979. Magnetic interactions and electron transfer kinetics of the reduced intermediate acceptor in reaction centers (RCs) of Rhodopseudomonas sphaeroides R-26. Evidence for thermally induced tunneling. In Tunneling in Biological Systems, ed. B Chance, D DeVault, H Frauenfelder, RA Marcus, JR Schrieffer, N Sutin 729–43 New York: Academic [Google Scholar]
  117. Okamura MY, Isaacson RA, Feher G. 1975. Primary acceptor in bacterial photosynthesis: the obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas sphaeroides.. Proc. Natl. Acad. Sci. USA 72(9):3491–95 [Google Scholar]
  118. Okamura MY, Paddock ML, Graige MS, Feher G. 2000. Proton and electron transfer in bacterial reaction centers.. Biochim. Biophys. Acta 1458:148–63 [Google Scholar]
  119. Okamura MY, Steiner LA, Feher G. 1974. Characterization of reaction centers from photosynthetic bacteria.. I. Subunit structure of the protein mediating the primary photochemistry in Rhodopseudomonas sphaeroides R-26 Biochemistry 13(7):1394–403 [Google Scholar]
  120. Orbach R. 1961. Spin-lattice relaxation in rare-earth salts.. Proc. R. Soc. London Ser. A 264:458–84 [Google Scholar]
  121. Osborne TB. 1892. Crystallized vegetable proteins.. Am. Chem. J. 14:662–89 [Google Scholar]
  122. Overhauser AW. 1953. Polarization of nuclei in metals.. Phys. Rev. 92(2):411–15 [Google Scholar]
  123. Paddock ML, Ädelroth P, Chang C, Abresch EC, Feher G, Okamura MY. 2001. Identification of the proton pathway in bacterial reaction centers: cooperation between Asp-M17 and Asp-L210 facilitates proton transfer to the secondary quinone (QB).. Biochemistry 40:6893–902 [Google Scholar]
  124. Paddock ML, Graige MS, Feher G, Okamura MY. 1999. Identification of the proton pathway in bacterial reaction centers: inhibition of proton transfer by binding of Zn2+ or Cd2+.. Proc. Natl. Acad. Sci. USA 96:6183–88 [Google Scholar]
  125. Paddock ML, Rongey SH, Feher G, Okamura MY. 1989. Pathway of proton transfer in bacterial reaction centers: replacement of glutamic acid 212 in the L subunit by glutamine inhibits quinone (secondary acceptor) turnover.. Proc. Natl. Acad. Sci. USA 86:6602–6 [Google Scholar]
  126. Parson WW. 1969. The reaction between primary and secondary electron acceptors in bacterial photosynthesis.. Biochim. Biophys. Acta 1098:151–58 [Google Scholar]
  127. Perutz MF. 1998. I Wish I Had Made You Angry Earlier. New York: Cold Spring Harbor Lab. Press [Google Scholar]
  128. Perutz MF, Pulsinelli PD, Ranney HM. 1972. Structure and subunit interaction of haemoglobin M Milwaukee.. Nat. New Biol. 237(78):259–63 [Google Scholar]
  129. Perutz MF, Wilkinson AJ, Paoli M, Dodson GG. 1998. The stereochemical mechanism of the cooperative effects in hemoglobin revisited.. Annu. Rev. Biophys. Biomol. Struct. 27:1–34 [Google Scholar]
  130. Platt JR. 1965. Electronic structure and excitation of polyenes and porphyrins. In Radiation Biology III, ed. A Hollaender 271–123 New York: McGraw-Hill [Google Scholar]
  131. Portis AM. 1953. Electronic structure of F centers: saturation of the electron spin resonance.. Phys. Rev. 91(5):1071–78 [Google Scholar]
  132. Reed DW, Clayton RK. 1968. Isolation of a reaction center fraction from Rhodopseudomonas spheroids.. Biochem. Biophys. Res. Commun. 30(5):471–75 [Google Scholar]
  133. Rees DC, Komiya H, Yeates TO, Allen JP, Feher G. 1989. The bacterial photosynthetic reaction center as a model for membrane proteins.. Annu. Rev. Biochem. 58:607–33 [Google Scholar]
  134. Reif F. 1965. Fundamentals of Statistical and Thermal Physics, ed. EU Condon, Sect 15572–73 New York: McGraw-Hill
  135. Richards FM. 1997. Whatever happened to the fun?. An autobiographical investigation Annu. Rev. Biophys. Biomol. Struct. 26:1–25 [Google Scholar]
  136. Richards PL, Caughey WS, Eberspaecher H, Feher G, Malley M. 1967. Determination of the zero-field splitting of Fe3+ in several hemin compounds.. J. Chem. Phys. 47(3):1187–88 [Google Scholar]
  137. Roberts TM, Lauer GD, Klotz LC. 1975. Physical studies on DNA from “primitive” eucaryotes.. CRC Crit. Rev. Biochem. 3(4):349–449 [Google Scholar]
  138. Rongey SH, Feher G, Okamura MY. 1995. Investigation of the binding domain in the Rhodobacter sphaeroides cyt c2: reaction center complex by site-directed mutagenesis of Asp-M184 and Asp-L155 to Lys. Int. Photosynth. Congr., 10th, Montpellier, Fr., ed. P Mathis 635–38 Dordrecht: Kluwer [Google Scholar]
  139. Samuel I. The Old Testament. Chapter 28: 7 [Google Scholar]
  140. Das Sarma S, Fabian J, Hu XD, Zutic I. 2000. Theoretical perspectives on spintronics and spin-polarized transport.. IEEE Trans. Magn. 36(5):2821–26 [Google Scholar]
  141. Scholes CP, Isaacson RA, Feher G. 1971. Determination of the zero-field splitting of Fe3+ in heme proteins from the temperature dependence of the spin-lattice relaxation rate.. Biochim. Biophys. Acta 244(1):206–10 [Google Scholar]
  142. Scholes CP, Isaacson RA, Feher G. 1972. Electron nuclear double resonance studies on heme proteins: determination of the interaction of Fe3+ with its ligand nitrogens in metmyoglobin.. Biochim. Biophys. Acta 263(2):448–52 [Google Scholar]
  143. Scholes CP, Lapidot A, Mascarenhas R, Inubushi T, Isaacson RA, Feher G. 1982. Electron nuclear double resonance (ENDOR) from heme and histidine nitrogens in single crystals of aquometmyoglobin.. J. Am. Chem. Soc. 104(10):2724–35 [Google Scholar]
  144. Schrödinger E. 1944. What is Life. Cambridge, UK: Cambridge Univ. Press 92 pp. [Google Scholar]
  145. Scovil HED, Feher G, Seidel H. 1957. Operation of a solid state maser.. Phys. Rev. 105(2):762–63 [Google Scholar]
  146. Shepherd I, Feher G. 1965. Cooling by adiabatic depolarization of OH molecules in KCl.. Phys. Rev. Lett. 15(5):194–98 [Google Scholar]
  147. Sogo P, Jost M, Calvin M. 1959. Evidence for free-radical production in photosynthesizing systems.. Radiat. Res. Suppl. I:511–18 [Google Scholar]
  148. Steiner LA, Okamura MY, Lopes AD, Moskowitz E, Feher G. 1974. Characterization of reaction centers from photosynthetic bacteria.. II. Amino acid composition of the reaction center protein and its subunits in Rhodopseudomonas sphaeroides R-26 Biochemistry 13(7):1403–10 [Google Scholar]
  149. Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G. 1997. Light induced structural changes in photosynthetic reaction centers.. Science 276:812–16 [Google Scholar]
  150. Sutton MR, Rosen D, Feher G, Steiner LA. 1982. Amino-terminal sequences of L, M, and H subunits of reaction centers from photosynthetic bacterium, Rhodopseudomonas sphaeroides R-26.. Biochemistry 21(16):3842–49 [Google Scholar]
  151. Szent-Györgyi A. 1957. Excitations and the biological matrix. In Bioenergetics 32–40 New York: Academic [Google Scholar]
  152. Takahashi E, Wraight CA. 1990. A crucial role for AspL213 in the proton transfer pathway to the secondary quinone of reaction centers from Rhodobacter sphaeroides.. Biochim. Biophys. Acta 1020:107–11 [Google Scholar]
  153. Tetreault M, Rongey SH, Feher G, Okamura MY. 2001. Interaction between cytochrome c2 and the photosynthetic reaction center from Rhodobacter sphaeroides: effects of charge modifying mutations on binding and electron transfer.. Biochemistry 40(29):8452–62 [Google Scholar]
  154. Valkirs GE, Feher G. 1982. Topography of reaction center subunits in the membrane of the photosynthetic bacterium Rhodopseudomonas sphaeroides.. J. Cell Biol. 95(1):179–88 [Google Scholar]
  155. Van Vleck JH. 1932. The Theory of Electric and Magnetic Susceptibilities. New York: Oxford Univ. Press 384 pp. [Google Scholar]
  156. Volmer M. 1939. Kinetik der Phasenbildung, ed. KF Bonhoeffer. Dresden: Steinkopff
  157. Weissman M, Schindler H, Feher G. 1976. Determination of molecular weights by fluctuation spectroscopy; application to DNA.. Proc. Natl. Acad. Sci. USA 73(8):2776–80 [Google Scholar]
  158. Willenbrock FK, Blombergen N. 1953. Paramagnetic resonance in n- and p-type silicon.. Phys. Rev. 91(5):1281–81 [Google Scholar]
  159. Williams JC, Steiner LA, Feher G. 1986. Primary structure of the reaction center from Rhodopseudomonas sphaeroides.. Proteins 1(4):312–25 [Google Scholar]
  160. Williams JC, Steiner LA, Feher G, Simon MI. 1984. Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides.. Proc. Natl. Acad. Sci. USA 81(23):7303–7 [Google Scholar]
  161. Williams JC, Steiner LA, Ogden RC, Simon MI, Feher G. 1983. Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides.. Proc. Natl. Acad. Sci. USA 80:6505–9 [Google Scholar]
  162. Wilson DK, Feher G. 1961. Electron spin resonance experiments on donors in silicon.. III. Investigation of excited states by the application of uniaxial stress and their importance in relaxation processes Phys. Rev. 124(4):1068–83 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error