1932

Abstract

We determined the high-resolution structures of large and small ribosomal subunits from mesophilic and thermophilic bacteria and compared them with those of the thermophilic ribosome and the halophilic large subunit. We confirmed that the elements involved in intersubunit contacts and in substrate binding are inherently flexible and that a common ribosomal strategy is to utilize this conformational variability for optimizing its functional efficiency and minimizing nonproductive interactions. Under close-to-physiological conditions, these elements maintain well-ordered characteristic conformations. In unbound subunits, the features creating intersubunit bridges within associated ribosomes lie on the interface surface, and the features that bind factors and substrates reach toward the binding site only when conditions are ripe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.31.082901.134439
2002-06-01
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/31/1/annurev.biophys.31.082901.134439.html?itemId=/content/journals/10.1146/annurev.biophys.31.082901.134439&mimeType=html&fmt=ahah

Literature Cited

  1. Altamura S, Sanz JL, Amils R, Cammarano P, Londei P. 1988. The antibiotic sensitivity spectra of ribosomes from the thermoproteales phylogenetic depth and distribution of antibiotic binding sites.. Syst. Appl. Microbiol. 10:218–25 [Google Scholar]
  2. Ban N, Freeborn B, Nissen P, Penczek P, Grassucci RA. et al. 1998. A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit.. Cell 93:1105–15 [Google Scholar]
  3. Ban N, Nissen P, Hansen J, Capel M, Moore P, Steitz TA. 1999. Placement of protein and RNA structures into a 5 Å resolution map of the 50S ribosomal subunit.. Nature 400:841–47 [Google Scholar]
  4. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution.. Science 289:905–20 [Google Scholar]
  5. Barta A, Dorner S, Polacek N. 2001. Mechanism of ribosomal peptide bond formation.. Science 291:203–4 [Google Scholar]
  6. Bashan A, Agmon I, Zarivach R, Schlünzen F, Harms J. et al. 2001. High Resolution Structures of Ribosomal Subunits: Initiation, Inhibition and Conformational Variability. New York: Cold Spring Harbor. In press [Google Scholar]
  7. Berkovitch-Yellin Z, Bennett WS, Yonath A. 1992. Aspects in structural studies on ribosomes.. CRC Rev. Biochem. Mol. Biol. 27:403–44 [Google Scholar]
  8. Biou V, Shu F, Ramakrishnan V. 1995. X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix.. EMBO J. 14:4056–64 [Google Scholar]
  9. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT. et al. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin and hygromycin B on the 30S ribosomal subunit.. Cell 103:1143–54 [Google Scholar]
  10. Bruhns J, Gualerzi CO. 1980. Structure-function relationship in E. coli initiation factors: role of tyrosine residues in ribosomal binding and functional activity of IF-3.. Biochemistry 19:1670–76 [Google Scholar]
  11. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T. et al. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit.. Science 291:498–501 [Google Scholar]
  12. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Wimberly BT. et al. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics.. Nature 407:340–48 [Google Scholar]
  13. Cate JH, Doudna JA. 1996. Metal-binding site in the major groove of a large ribozyme domain.. Structure 4:1221–29 [Google Scholar]
  14. Chandra Sanyal S, Liljas A. 2000. The end of the beginning: structural studies of ribosomal proteins.. Curr. Opin. Struct. Biol. 10:633–36 [Google Scholar]
  15. Clemons WM Jr, Brodersen DE, McCutcheon JP, May JLC, Carter AP. et al. 2001. Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination.. J. Mol. Biol. 310:827–43 [Google Scholar]
  16. Cundliffe E, Dixon P, Stark M, Stoffler G, Ehrlich R. et al. 1979. Ribosomes in thiostrepton-resistant mutants of Bacillus megaterium lacking a single 50S subunit protein.. J. Mol. Biol. 132:235–52 [Google Scholar]
  17. de Cock E, Springer M, Dardel F. 1999. The inter domain linker of E. coli initiation factor IF3: a possible trigger of translation initiation specificity.. Mol. Microbiol. 32:193–202 [Google Scholar]
  18. Evers U, Franceschi F, Boeddeker N, Yonath A. 1994. Crystallography of halophilic ribosome: the isolation of an internal ribonucleoprotein complex.. Biophys. Chem. 50:3–16 [Google Scholar]
  19. Firpo MA, Connelly MB, Goss DJ, Dahlberg AE. 1996. Mutations at two invariant nucleotides in the 3′-minor domain of E. coli 16S rRNA affecting translational initiation and initiation factor 3 function.. J. Biol. Chem. 271:4693–98 [Google Scholar]
  20. Franceschi F, Sagi I, Boeddeker N, Evers U, Arndt E. et al. 1994. Crystallography, biochemical and genetics studies on halophilic ribosomes.. Syst. Appl. Microbiol. 16:697–705 [Google Scholar]
  21. Gabashvili I, Grawal RK, Grassucci R, Frank J. 1999. Structure and structural variations of the E. coli 30S ribosomal subunit as revealed by three-dimensional cryo-electron microscopy.. J. Mol. Biol. 286:1285–91 [Google Scholar]
  22. Garcia C, Fortier P, Blanquet S, Lallemand J-Y, Dardel F. 1995. 1H and 15N resonance assignment and structure of the N-terminal domain of Escherichia coli initiation factor 3.. Eur. J. Biochem. 228:395–402 [Google Scholar]
  23. Garcia C, Fortier P, Blanquet S, Lallemand J-Y, Dardel F. 1995. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3.. Homology with U1A protein of the eukaryotic spliceosome J. Mol. Biol. 254:247–59 [Google Scholar]
  24. Ginzburg M, Sacks L, Ginzburg BZ. 1970. Ion metabolism in Halobacterium.. J. Gen. Physiol. 55:178–207 [Google Scholar]
  25. Gluehmann M, Harms J, Zarivach R, Bashan A, Schlünzen F, Yonath A. 2001. Ribosomal crystallography: from poorly diffracting micro-crystals to high resolution structures.. Methods In press [Google Scholar]
  26. Grunberg-Manago M, Dessen P, Pantaloni D, Godefroy-Colburn T, Wolfe AD. et al. 1975. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of E. coli ribosomes.. J. Mol. Biol. 94:461–78 [Google Scholar]
  27. Hansen HAS, Volkmann N, Piefke J, Glotz C, Weinstein S, Makowski I. et al. 1990. Crystals of complexes mimicking protein biosynthesis are suitable for crystallographic studies.. Biochim. Biophys. Acta 1050:1–7 [Google Scholar]
  28. Harms J, Schlünzen F, Zarivach R, Bashan A, Gat S. et al. 2001. High-resolution structure of the large ribosomal subunit from a mesophilic eubacterium.. Cell 107:1–20 [Google Scholar]
  29. Harms J, Tocilj A, Levin I, Agmon I, Stark H. et al. 1999. Elucidating the medium-resolution structure of ribosomal particles: an interplay between electron cryo-microscopy and X-ray crystallography.. Struct. Fold Des. 7:931–41 [Google Scholar]
  30. Hershey JW. 1987. Protein synthesis. In ASM Molecular Biology, ed. F Neidhardt, J Ingraham, K Low, B Magasanik, M Schaechter, H Umbarger 613–47 Washington, DC: ASM [Google Scholar]
  31. Hershey JW, Asano K, Naranda T, Vornlocher HP, Hanachi P, Merrick WC. 1996. Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast.. Biochimie 78:903–7 [Google Scholar]
  32. Hope H, Frolow F, von Boehlen K, Makowski I, Kratky C. et al. 1989. Cryo crystallography of ribosomal particles.. Acta Crystallogr. B 345:190 [Google Scholar]
  33. Hua YX, Raleigh DP. 1998. Conformational analysis of the inter domain linker of the central homology region of chloroplast initiation factor IF3 supports a structural model of two compact domains connected by a flexible tether.. FEBS Lett. 433:153–56 [Google Scholar]
  34. Hua YX, Raleigh DP. 1998. On the global architecture of initiation factor IF3: a comparative study of the linker regions from the E. coli protein and the Bacillus stearothermophilus protein.. J. Mol. Biol. 278:871–78 [Google Scholar]
  35. Kurylo-Borowska Z. 1975. Biosynthesis of edeine.. II. Localization of edeine synthetase within Bacillus brevis Vm4 Biochim. Biophys. Acta 399:31–41 [Google Scholar]
  36. Kycia JH, Biou V, Shu F, Gerchman SE, Graziano V. et al. 1995. Prokaryotic translation initiation factor IF3 is an elongated protein consisting of two crystallizable domains.. Biochemistry 34:6183–87 [Google Scholar]
  37. La Teana A, Gualerzi CO, Brimacombe R. 1995. From stand-by to decoding site.. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors RNA 1:772–82 [Google Scholar]
  38. Mackeen LA, Kahan L, Wahba AJ, Schwartz I. 1980. Photochemical cross-linking of initiation factor-III to Escherichia coli 30S ribosomal-subunits.. J. Biol. Chem. 255:526–31 [Google Scholar]
  39. Makowski I, Frolow F, Shoham M, Wittmann HG, Yonath A. 1987. Single crystals of large ribosomal particles from H. marismortui diffract to 6 Å.. J. Mol. Biol. 193:819–22 [Google Scholar]
  40. Mankin AS, Garrett RA. 1991. Chloramphenicol resistance mutations in the single 23S rRNA gene of archaeon Halobacterium halobium.. J. Bacteriol. 173:3559–63 [Google Scholar]
  41. McCutcheon JP, Agrawal RK, Philips SM, Grassucci RA, Gerchman SE. et al. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit.. Proc. Natl. Acad. Sci. USA 96:4301–6 [Google Scholar]
  42. Meinnel T, Sacerdot C, Graffe M, Blanquet S, Springer M. 1999. Discrimination by E. coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules.. J. Mol. Biol. 290:825–37 [Google Scholar]
  43. Moazed D, Noller HF. 1987. Interaction of antibiotics with functional sites in 16S rRNA.. Nature 327:389–94 [Google Scholar]
  44. Moazed D, Samaha RR, Gualerzi C, Noller HF. 1995. Specific protection of 16S rRNA by translational initiation factors.. J. Mol. Biol. 248:207–10 [Google Scholar]
  45. Moreau M, Coch E, Fortier PL, Garcia C, Albaret C. et al. 1997. Heteronuclear NMR studies of E. coli translation initiation factor IF3.. Evidence that the inter-domain region is disordered in solution J. Mol. Biol. 266:15–22 [Google Scholar]
  46. Nikonov S, Nevskaya N, Eliseikina I, Fomenkova N, Nikulin A. et al. 1996. Crystal structure of the RNA binding ribosomal protein L1 from Thermus thermophilus.. EMBO J. 15:1350–59 [Google Scholar]
  47. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. 2000. The structural basis of ribosome activity in peptide bond synthesis.. Science 289:920–30 [Google Scholar]
  48. Odon OW, Kramer G, Henderson AB, Pinphanichakarn P, Hardesty B. 1978. GTP hydrolysis during methionyl-tRNAf binding to 40S ribosomal subunits and the site of edeine inhibition.. J. Biol. Chem. 253:1807–16 [Google Scholar]
  49. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ. et al. 2000. Recognition of cognate transfer RNA by the 30S ribosomal subunit.. Science 292:897–902 [Google Scholar]
  50. Pioletti M, Schlünzen F, Harms J, Zarivach R, Gluhmann M. et al. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3.. EMBO J. 20:1829–39 [Google Scholar]
  51. Polacek N, Gaynor M, Yassin A, Mankin AS. 2001. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide.. Nature 411:498–501 [Google Scholar]
  52. Sacerdot C, de Cock E, Engst K, Graffe M, Dardel F, Springer M. 1999. Mutations that alter initiation codon discrimination by Escherichia coli initiation factor IF3.. J. Mol. Biol. 288:803–10 [Google Scholar]
  53. Schlünzen F, Tocilj A, Zarivach R, Harms J, Glühmann M. et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstrom resolution.. Cell 102:615–23 [Google Scholar]
  54. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A. et al. 2001. Structural basis for the interaction of five antibiotics with the peptidyl transferase center in eubacteria.. Nature 413:814–21 [Google Scholar]
  55. Sette M, Spurio R, Van Tilborg P, Gualerzi CO, Boelens R. 1999. Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy.. RNA 5:82–92 [Google Scholar]
  56. Shevack A, Gewitz HS, Hennemann B, Yonath A, Wittmann HG. 1985. Characterization and crystallization of ribosomal practical from H. marismortui.. FEBS Lett. 184:68–73 [Google Scholar]
  57. Sonenberg N, Wilchek M, Zamir A. 1973. Mapping of E. coli ribosomal components involved in peptidyl transferase activity.. Proc. Natl. Acad. Sci. USA 70:1423–26 [Google Scholar]
  58. Srivastava S, Verschoor A, Frank J. 1992. Eukaryotic initiation factor-III does not prevent association through physical blockage of the ribosomal-subunit interface.. J. Mol. Biol. 226:301–4 [Google Scholar]
  59. Subramanian AR, Dabbs ER. 1980. Functional studies on ribosomes lacking protein L1 from mutant Escherichia coli.. Eur. J. Biochem. 112:425–30 [Google Scholar]
  60. Sussman JK, Simons EL, Simons RW. 1996. E. coli translation initiation factor 3 discriminates the initiation codon in vivo.. Mol. Microbiol. 21:347–60 [Google Scholar]
  61. Tedin K, Moll I, Grill S, Resch A, Graschopf A. et al. 1999. Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs.. Mol. Microbiol. 31:67–77 [Google Scholar]
  62. Thompson J, Kim DF, O'Connor M, Lieberman KR, Bayfield MA. et al. 2001. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit.. Proc. Natl. Acad. Sci. USA 98:9002–7 [Google Scholar]
  63. Tocilj A, Schlünzen F, Janell D, Gluehmann M, Hansen HAS. et al. 1999. The small ribosomal subunit from T. thermophilus at 4.5 Å resolution: pattern fittings and the identification of a functional site.. Proc. Natl. Acad. Sci. USA 96:14252–57 [Google Scholar]
  64. Trakhanov SD, Yusupov MM, Agalarov SC, Garber MB, Ryazantsev SN. et al. 1987. Crystallization of 70S ribosomes and 30S ribosomal subunits from Thermus thermophilus.. FEBS Lett. 220:319–22 [Google Scholar]
  65. VanLoock MS, Agrawal RK, Gabashvili I, Frank J, Harvey SC. 2000. Movement of the decoding region of the 16S ribosomal RNA accompanies tRNA translocation.. J. Mol. Biol. 304:507–15 [Google Scholar]
  66. von Boehlen K, Makowski I, Hansen HA, Bartels H, Berkovitch-Yellin Z. et al. 1991. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution.. J. Mol. Biol. 222:11–15 [Google Scholar]
  67. Weiel J, Hershey JW. 1981. Fluorescence polarization studies of the interaction of E. coli protein synthesis initiation factor 3 with 30S ribosomal subunits.. Biochemistry 20:5859–65 [Google Scholar]
  68. Weinstein S, Jahn W, Glotz C, Schlünzen F, Levin I. et al. 1999. Metal compounds as tools for the construction and the interpretation of medium-resolution maps of ribosomal particles.. J. Struct. Biol. 127:141–51 [Google Scholar]
  69. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. et al. 2000. Structure of the 30S ribosomal subunit.. Nature 407:327–39 [Google Scholar]
  70. Wower IK, Wower J, Zimmermann RA. 1998. Ribosomal protein L27 participates in both 50S subunit assembly and the peptidyl transferase reaction.. J. Biol. Chem. 273:19847–52 [Google Scholar]
  71. Yonath A, Bartunik AD, Bartels K, Wittmann HG. 1984. Some X-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus.. J. Mol. Biol. 177:201–6 [Google Scholar]
  72. Yonath A, Glotz C, Gewitz HS, Bartels KS, von Bohlen K. et al. 1988. Characterization of crystals of small ribosomal subunits.. J. Mol. Biol. 203:831–34 [Google Scholar]
  73. Yonath A, Harms J, Hansen HAS, Bashan A, Schlünzen F. et al. 1998. Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry.. Acta Crystallogr. A 54:945–55 [Google Scholar]
  74. Yonath A, Mussig J, Tesche B, Lorenz S, Erdmann V, Wittmann HG. 1980. Biochem. Int. 1, 428:31–35 [Google Scholar]
  75. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution.. Science 292:883–96 [Google Scholar]
  76. Zamir A, Miskin R, Elson D. 1971. Inactivation and reactivation of ribosomal subunits: amino acyl transfer RNA binding activity of the 30S subunit from E. coli.. J. Mol. Biol. 60:347–64 [Google Scholar]
/content/journals/10.1146/annurev.biophys.31.082901.134439
Loading
/content/journals/10.1146/annurev.biophys.31.082901.134439
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error