1932

Abstract

Abstract

Single-particle cryo-electron microscopy (cryo-EM) is the method of choice for studying the dynamics of macromolecular machines both at a phenomenological and, increasingly, at the molecular level, with the advent of high-resolution component X-ray structures and of progressively improving fitting algorithms. Cryo-EM has shed light on the structure of the ribosome during the four steps of translation: initiation, elongation, termination, and recycling. Interpretation of cryo-EM reconstructions of the ribosome in quasi-atomic detail reveals a picture in which the ribosome uses RNA not only to catalyze chemical reactions, but also as a means for signal transduction over large distances.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.35.040405.101950
2006-06-09
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/bb/35/1/annurev.biophys.35.040405.101950.html?itemId=/content/journals/10.1146/annurev.biophys.35.040405.101950&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian M, Dubochet J, Lepault J, McDowall AW. 1984. Cryoelectron microscopy of viruses. Nature 308:32–36 [Google Scholar]
  2. Agrawal RK, Heagle AB, Penczek P, Grassucci RA, Frank J. 1999. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat. Struct. Biol. 6:643–47 [Google Scholar]
  3. Agrawal RK, Penczek P, Grassucci RA, Frank J. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95:6134–38 [Google Scholar]
  4. Agrawal RK, Penczek P, Grassucci RA, Li Y, Leith A. et al. 1996. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science 271:1000–2 [Google Scholar]
  5. Baker TS, Johnson JE. 1996. Low resolution meets high: towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6:585–94 [Google Scholar]
  6. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–20 [Google Scholar]
  7. Belnap DM, McDermott BM Jr, Filman DJ, Cheng N, Trus BL. et al. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97:73–78 [Google Scholar]
  8. Bottcher B, Wynne SA, Crowther RA. 1997. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 36:88–91 [Google Scholar]
  9. Brenner S, Horne RW. 1959. A negative staining method for high resolution electron microscopy of viruses. Biochem. Biophys. Acta 34:103–10 [Google Scholar]
  10. Brooks B, Karplus M. 1983. Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80:6571–75 [Google Scholar]
  11. Brunger AT, Adams PD, Rice LM. 1998. Recent developments for the efficient crystallographic refinement of macromolecular structures. Curr. Opin. Struct. Biol. 8:606–11 [Google Scholar]
  12. Brunger AT, Adams PD, Rice LM. 1999. Annealing in crystallography: a powerful optimization tool. Prog. Biophys. Mol. Biol. 72:135–55 [Google Scholar]
  13. Brunger AT, Krukowski A, Erickson J. 1990. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr. A 46:585–93 [Google Scholar]
  14. Cate JHD, Yusupov MM, Yusupova GZ, Earnest TN, Noller HN. 1999. X-ray structures of 70S ribosome functional complexes. Science 285:2095–104 [Google Scholar]
  15. Chacon P, Wriggers W. 2002. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317:375–84 [Google Scholar]
  16. Chapman MS. 1995. Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron density function. Acta Crystallogr. A 51:69–80 [Google Scholar]
  17. Chen LF, Blanc E, Chapman MS, Taylor KA. 2001. Real space refinement of acto-myosin structures from sectioned muscle. J. Struct. Biol. 133:221–32 [Google Scholar]
  18. Crowther RA. 1971. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos. Trans. R. Soc. London B 261:221–30 [Google Scholar]
  19. Darst SA, Opalka N, Chacon P, Polyakov A, Richter C. et al. 2002. Conformational flexibility of bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 99:4296–301 [Google Scholar]
  20. DeRosier D, Klug A. 1968. Reconstruction of 3-dimensional structures from electron micrographs. Nature 217:130–34 [Google Scholar]
  21. Dubochet J, Adrian M, Lepault J, McDowall AW. 1985. Cryo-electron microscopy of vitrified biological specimens. Trends Biochem. Sci. 10:143–46An informative introduction into the method of specimen preparation and microscopy in cryo-EM by the pioneers of the technique. [Google Scholar]
  22. Dubochet J, Lepault J, Freeman R, Berriman JA, Homo JC. 1982. Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128:219–37 [Google Scholar]
  23. Fabiola F, Chapman MS. 2005. Fitting of high-resolution structures into electron microscopy reconstruction images. Structure 13:389–400A clear and concise review on the two-step fitting of high-resolution atomic models into moderate-resolution cryo-EM reconstructions using real-space refinement. [Google Scholar]
  24. Frank J. 1998. How the ribosome works. Am. Sci. 86:428–39 [Google Scholar]
  25. Frank J. 2006. Three-Dimensional Electron Microscopy of Macromolecular Assemblies New York: Oxford Univ. Press [Google Scholar]
  26. Frank J, Agrawal RK. 2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–22First observation, by cryo-EM, of large conformational changes (relative rotation of the subunits) in the ribosome accompanying translocation. [Google Scholar]
  27. Frank J, Penczek P, Agrawal RK, Grassucci RA, Heagle AB. 2000. Three-dimensional cryoelectron microscopy of ribosomes. Methods Enzymol. 317:276–91 [Google Scholar]
  28. Frank J, Penczek P, Grassucci R, Srivastava S. 1991. Three-dimensional reconstruction of the 70S E. coli ribosome in ice: the distribution of ribosomal RNA. J. Cell Biol. 115:597–605 [Google Scholar]
  29. Frank J, Sengupta J, Gao H, Li W, Valle M. et al. 2005. The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett. 579:959–62 [Google Scholar]
  30. Frank J, Zhu J, Penczek P, Li Y, Srivastava S. et al. 1995. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441–44 [Google Scholar]
  31. Gabashvili IS, Agrawal RK, Spahn CMT, Grassucci RA, Svergun DI, Frank J. 2000. Solution structure of the E. coli ribosome at 11.5 Å resolution. Cell 100:537–49 [Google Scholar]
  32. Gao H, Sengupta J, Valle M, Korostelev A, Eswar N. et al. 2003. Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement. Cell 113:789–801Application of real space refinement using rigid bodies to the fitting of an atomic model into cryo-EM reconstructions of the E. coli ribosome. [Google Scholar]
  33. Gao N, Zavialov AV, Li W, Sengupta J, Valle M. 2005. Mechanism for the disassembly of the post-termination complex inferred from cryo-EM studies. Mol. Cell 18:663–74 [Google Scholar]
  34. Gesteland RF, Cech T, Atkins JF. eds. 1999. The RNA World Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  35. Go N, Noguti T, Nishikawa T. 1983. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80:3696–700 [Google Scholar]
  36. Goncharov AB, Vainshtein B, Ryskin AI, Vagin AA. 1987. Three-dimensional reconstruction of arbitrarily oriented particles from their electron photomicrographs. Sov. Phys. Crystallogr. 32:504–9 [Google Scholar]
  37. Gorlich D, Kutay U. 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15:607–60 [Google Scholar]
  38. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. et al. 2001. High resolution structure of the large ribosomal subunit from mesophilic eubacterium. Cell 107:679–88 [Google Scholar]
  39. Harrison W. 1984. Variational calculation of the normal modes of a large macromolecule: methods and some initial results. Biopolymers 23:2943–49 [Google Scholar]
  40. Hartz D, Binkley J, Hollingsworth T, Gold L. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 4:1790–800 [Google Scholar]
  41. He Y, Bowman VD, Mueller S, Bator CM, Bella J. et al. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Natl. Acad. Sci. USA 97:79–84 [Google Scholar]
  42. Karimi R, Pavlov MY, Buckingham RH, Ehrenberg M. 1999. Novel roles for classical factors at the interface between translation termination and initiation. Mol. Cell 3:601–9 [Google Scholar]
  43. Kidera A, Go N. 1990. Refinement of protein dynamic structure: normal mode refinement. Proc. Natl. Acad. Sci. USA 87:3718–22 [Google Scholar]
  44. Klein DJ, Schmeing TM, Moore PB, Steitz TA. 2001. The kink-turn: a new RNA secondary structure motif. EMBO J. 20:4214–21 [Google Scholar]
  45. Malhotra A, Penczek P, Agrawal RK, Gabashvili IS, Grassucci RA. et al. 1998. Escherichia coli 70S ribosome at 15 Å resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. J. Mol. Biol. 280:103–16 [Google Scholar]
  46. Deleted in proof
  47. Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S. et al. 2005. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438:318–24A successful application of normal mode-based flexible fitting methods to the problem of the conformational dynamics of the protein-conducting channel. [Google Scholar]
  48. Moazed D, Noller HF. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142–48 [Google Scholar]
  49. Moore PB. 1980. Scattering studies of the three-dimensional organization of the E. coli ribosome. In Ribosomes: Structure, Function and Genetics ed. G Chambliss, GR Craven, J Davies, K Davis, L Kahan, M Nomura pp. 111–33 Baltimore, MD: Univ. Park Press [Google Scholar]
  50. Nakamura T, Ito K. 2003. Making sense of mimic in translation termination. Trends Biochem. Sci. 28:99–105 [Google Scholar]
  51. Nakatogawa H, Ito K. 2002. The ribosomal exit tunnel functions as a discriminating gate. Cell 108:629–36 [Google Scholar]
  52. Navaza J, Lepault J, Rey FA, Alvarez-Rua C, Borge J. 2002. On the fitting of model electron densities into EM reconstructions: a reciprocal-space formulation. Acta Crystallogr. D 58:1820–25 [Google Scholar]
  53. Noller HF, Hoffarth V, Zimniak L. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416–19 [Google Scholar]
  54. Oakes MI, Scheiman A, Atha T, Shankweiler G, Lake JA. 1990. Ribosome structure: three-dimensional locations of rRNA and proteins. In The Ribosome, Structure, Function, and Evolution ed. A Dahlberg, RA Garrett, PB Moore, D Schlessinger, JR Warner pp. 180–93 Washington, DC: ASM [Google Scholar]
  55. Pape T, Wintermeyer W, Rodnina M. 1998. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17:7490–97 [Google Scholar]
  56. Penczek P, Zhu J, Schröder R, Frank J. 1997. Three-dimensional reconstruction with contrast transfer compensation from defocus series. Scanning Microsc. 11:147–54 [Google Scholar]
  57. Radon J. 1917. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. K.-Sächs. Ges. Wiss. Leipz. Math. Phys. Klasse 69:262–77 [Google Scholar]
  58. Ramakrishnan V. 2002. Ribosome structure and the mechanism of translation. Cell 108:557–72A lucid account of the structural basis of translation. [Google Scholar]
  59. Rath BK, Hegerl A, Leith A, Shaikh TR, Wagenknecht T, Frank J. 2003. Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103 [Google Scholar]
  60. Razga F, Koca J, Sponer J, Leontis NB. 2005. Hinge-like motions in RNA kink-turns: the role of the second A-Minor motif and nominally upaired bases. Biophys. J. 88:3466–85 [Google Scholar]
  61. Razga F, Spackova N, Reblova K, Koca J, Leontis NB, Sponer J. 2004. Ribosomal RNA kink-turn motif: a flexible molecular hinge. J. Biomol. Struct. Dyn. 22:183–93 [Google Scholar]
  62. Rice LM, Brunger AT. 1994. Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19:277–90 [Google Scholar]
  63. Roseman AM. 2000. Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Crystallogr. D 56:1332–40 [Google Scholar]
  64. Rossmann MG. 2000. Fitting atomic models into electron-microscopy maps. Acta Crystallogr. D 56:1341–49 [Google Scholar]
  65. Saibil HR. 2000. Molecular chaperones: containers and surfaces for folding, stabilizing or unfolding proteins. Curr. Opin. Struct. Biol. 10:251–58 [Google Scholar]
  66. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M. et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 A resolution. Cell 102:615–23 [Google Scholar]
  67. Schuwirth BS, Borovinskyay MA, Hau CW, Zhang W, Vila-Sanjurjo A, Cate JHD. 2005. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310:827–34 [Google Scholar]
  68. Sengupta J, Frank J. 2006. Cryo-electron microscopy as a tool to study molecular machines. In Protein Structures: Methods in Protein Structure and Stability Analysis Hauppauge, NY: Nova Sci. Publ. [Google Scholar]
  69. Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jorgensen R, Andersen GR. et al. 2004. Domain movements of elongation factor eEF2 and eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23:1008–19 [Google Scholar]
  70. Stark H, Mueller F, Orlova EV, Schatz M, Dube P. et al. 1995. The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. Structure 3:815–21 [Google Scholar]
  71. Stark H, Orlova EV, Rinke-Appel J, Junke N, Mueller F. et al. 1997. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cyromicroscopy. Cell 88:19–28 [Google Scholar]
  72. Stark H, Rodnina MV, Rinke-Appel J, Brimacombe R, Wintermeyer W, van Heel M. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389:403–6 [Google Scholar]
  73. Stöffler-Meilicke M, Stoffler G. 1988. Localization of ribosomal proteins on the surface of ribosomal subunits from Escherichia coli using immunoelectron microscopy. Methods Enzymol. 164:503–20 [Google Scholar]
  74. Tama F, Miyashita O, Brooks CL 3rd. 2004. Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. J. Mol. Biol. 337:985–99Description of a new method of flexible fitting, based on normal mode analysis of a molecule structure, with examples for applications. [Google Scholar]
  75. Tama F, Miyashita O, Brooks CL III. 2004. Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM. J. Struct. Biol. 147:315–26 [Google Scholar]
  76. Tama F, Sanejouand YH. 2001. Conformational change of proteins arising from normal mode calculations. Protein Eng. 14:1–6 [Google Scholar]
  77. Tama F, Valle M, Frank J, Brooks CL III. 2003. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 100:9319–23 [Google Scholar]
  78. Tenson T, Ehrenberg M. 2002. Regulatory nascent peptides in the ribosomal tunnel. Cell 108:591–94 [Google Scholar]
  79. Tirion MM. 1996. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77:1905–8 [Google Scholar]
  80. Tronrud DE Ten, Eyck LF, Matthews BW. 1987. An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Crystallogr. A 43:489–501 [Google Scholar]
  81. Tugarinov V, Choy WY, Orekhov VY, Kay LE. 2005. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc. Natl. Acad. Sci. USA 102:622–27 [Google Scholar]
  82. Valle M, Zavialov A, Li W, Stagg SM, Sengupta J. et al. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10:899–906 [Google Scholar]
  83. Valle M, Zavialov AV, Sengupta J, Rawat U, Ehrenberg M, Frank J. 2003. Locking and unlocking of ribosomal motions. Cell 114:123–34 [Google Scholar]
  84. van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E. et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44 [Google Scholar]
  85. van Heel M. 1987. Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21:111–24 [Google Scholar]
  86. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R. et al. 2000. Single-particle electron cryo-microscopy: towards atomic resolution. Q. Rev. Biophys. 33:307–69 [Google Scholar]
  87. van Loock MS, Alexandrov A, Yu X, Cozzarelli NR, Egelman EH. 2002. SV40 large T antigen hexamer structure: domain organization and DNA-induced conformational changes. Curr. Biol. 12:472–76 [Google Scholar]
  88. Volkmann N, Hanein D. 1999. Quantitative fitting of atomic models into observed densities derived by electron microscopy. J. Struct. Biol. 125:176–84 [Google Scholar]
  89. Volkmann N, Hanein D. 2003. Docking of atomic models into reconstructions from electron microscopy. Methods Enzymol. 374:204–25 [Google Scholar]
  90. Wimberly BT, Brodersen DE, Clemons WM, Morgan-Warren RJ, Carter AP. et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39 [Google Scholar]
  91. Wittman HG. 1983. Architecture of prokaryotic ribosomes. Annu. Rev. Biochem. 52:35–65 [Google Scholar]
  92. Wriggers W, Miligan RA, McCammon JA. 1999. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125:185–95The first published atomic model, determined by X-ray crystallography, of an assembled prokaryotic ribosome. [Google Scholar]
  93. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–96 [Google Scholar]
  94. Yusupova GZ, Yusupov MM, Cate JHD, Noller HF. 2001. The path of messenger RNA through the ribosome. Cell 106:233–41 [Google Scholar]
  95. Zavialov AV, Buckingham RH, Ehrenberg M. 2001. A post-termination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107:115–24 [Google Scholar]
  96. Zavialov AV, Ehrenberg M. 2003. Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114:113–22 [Google Scholar]
/content/journals/10.1146/annurev.biophys.35.040405.101950
Loading
/content/journals/10.1146/annurev.biophys.35.040405.101950
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error