Full text loading...
Abstract
Splicing is an essential step of gene expression in which introns are removed from pre-mRNA to generate mature mRNA that can be translated by the ribosome. This reaction is catalyzed by a large and dynamic macromolecular RNP complex called the spliceosome. The spliceosome is formed by the stepwise integration of five snRNPs composed of U1, U2, U4, U5, and U6 snRNAs and more than 150 proteins binding sequentially to pre-mRNA. To study the structure of this particularly dynamic RNP machine that undergoes many changes in composition and conformation, single-particle cryo-electron microscopy (cryo-EM) is currently the method of choice. In this review, we present the results of these cryo-EM studies along with some new perspectives on structural and functional aspects of splicing, and we outline the perspectives and limitations of the cryo-EM technique in obtaining structural information about macromolecular complexes, such as the spliceosome, involved in splicing.