Full text loading...
Abstract
Protective ant-plant interactions, important in both temperate and tropical communities, are increasingly used to study a wide range of phenomena of general interest. As antiherbivore defenses “worn on the outside,” they pose fewer barriers to experimentation than do direct (e.g., chemical) plant defenses. This makes them tractable models to study resource allocation to defense and mechanisms regulating it. As multi-trophic level interactions varying in species specificity and impact on fitness of participants, ant-plant-herbivore associations figure prominently in studies of food-web structure and functioning. As horizontally transmitted mutualisms that are vulnerable to parasites and “cheaters,” ant-plant symbioses are studied to probe the evolutionary dynamics of interspecies interactions. These symbioses, products of coevolution between plants and insect societies, offer rich material for studying ant social evolution in novel contexts, in settings where colony limits, resource supply, and nest-site availability are all more easily quantifiable than in the ground-nesting ants hitherto used as models.