Full text loading...
Abstract
Our understanding of the social lives of microbes has been revolutionized over the past 20 years. It used to be assumed that bacteria and other microorganisms lived relatively independent unicellular lives, without the cooperative behaviors that have provoked so much interest in mammals, birds, and insects. However, a rapidly expanding body of research has completely overturned this idea, showing that microbes indulge in a variety of social behaviors involving complex systems of cooperation, communication, and synchronization. Work in this area has already provided some elegant experimental tests of social evolutionary theory, demonstrating the importance of factors such as relatedness, kin discrimination, competition between relatives, and enforcement of cooperation. Our aim here is to review these social behaviors, emphasizing the unique opportunities they offer for testing existing evolutionary theory as well as highlighting the novel theoretical problems that they pose.