1932

Abstract

Abstract

The study of decision making spans such varied fields as neuroscience, psychology, economics, statistics, political science, and computer science. Despite this diversity of applications, most decisions share common elements including deliberation and commitment. Here we evaluate recent progress in understanding how these basic elements of decision formation are implemented in the brain. We focus on simple decisions that can be studied in the laboratory but emphasize general principles likely to extend to other settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.29.051605.113038
2007-07-21
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ne/30/1/annurev.neuro.29.051605.113038.html?itemId=/content/journals/10.1146/annurev.neuro.29.051605.113038&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham NM, Spors H, Carleton A, Margrie TW, Kuner T, Schaefer AT. 2004. Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice. Neuron 44:865–78 [Google Scholar]
  2. Afraz SR, Kiani R, Esteky H. 2006. Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–78 [Google Scholar]
  3. Allred S, Liu Y, Jagadeesh B. 2005. Selectivity of inferior temporal neurons for realistic pictures predicted by algorithms for image database navigation. J. Neurophysiol. 94:4068–78 [Google Scholar]
  4. Andersen RA, Asanuma C, Essick G, Siegel RM. 1990. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296:65–78 [Google Scholar]
  5. Andersen RA, Brotchie PR, Mazzoni P. 1992. Evidence for the lateral intraparietal area as the parietal eye field. Curr. Opin. Neurobiol. 2:840–78 [Google Scholar]
  6. Asanuma C, Andersen RA, Cowan WM. 1985. The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J. Comp. Neurol. 241:357–78 [Google Scholar]
  7. Assad J, Maunsell J. 1995. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373:518–78 [Google Scholar]
  8. Audley RJ, Pike AR. 1965. Some alternative stochastic models of choice. Br. J. Math. Stat. Psychol. 18:207–78 [Google Scholar]
  9. Barraclough DJ, Conroy ML, Lee D. 2004. Prefrontal cortex and decision making in a mixed-strategy game. Nat. Neurosci. 7:404–78 [Google Scholar]
  10. Basso MA, Wurtz RH. 1997. Modulation of neuronal activity by target uncertainty. Nature 389:66–78 [Google Scholar]
  11. Basso MA, Wurtz RH. 1998. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci. 18:7519–78 [Google Scholar]
  12. Baylis V, Salter L, Locke R. 2003. Pathways for continence care: an audit to assess how they are used. Br. J. Nurs. 12:857–78 [Google Scholar]
  13. Bisley JW, Krishna BS, Goldberg ME. 2004. A rapid and precise on-response in posterior parietal cortex. J. Neurosci. 24:1833–78 [Google Scholar]
  14. Blatt GJ, Andersen RA, Stoner GR. 1990. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299:421–78 [Google Scholar]
  15. Bradley DC, Chang GC, Andersen RA. 1998. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392:714–78 [Google Scholar]
  16. Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. 2001. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30:619–78 [Google Scholar]
  17. Bremmer F, Duhamel JR, Ben Hamed S, Graf W. 2002a. Heading encoding in the macaque ventral intraparietal area (VIP). Eur J. Neurosci. 16:1554–78 [Google Scholar]
  18. Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W. 2002b. Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J. Neurosci. 16:1569–78 [Google Scholar]
  19. Britten KH. 1998. Clustering of response selectivity in the medial superior temporal area of extrastriate cortex in the macaque monkey. Vis. Neurosci. 15:553–78 [Google Scholar]
  20. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. 1996. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13:87–78 [Google Scholar]
  21. Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12:4745–78 [Google Scholar]
  22. Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1993. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10:1157–78 [Google Scholar]
  23. Britten KH, van Wezel RJ. 2002. Area MST and heading perception in macaque monkeys. Cereb. Cortex 12:692–78 [Google Scholar]
  24. Britten KH, van Wezel RJ. 1998. Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat. Neurosci. 1:59–78 [Google Scholar]
  25. Brody CD, Hernandez A, Zainos A, Romo R. 2003. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13:1196–78 [Google Scholar]
  26. Bruce CJ, Goldberg ME. 1985. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53:603–78 [Google Scholar]
  27. Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. 1985. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54:714–78 [Google Scholar]
  28. Buck L, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–78 [Google Scholar]
  29. Buck LB. 1996. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19:517–78 [Google Scholar]
  30. Busemeyer JR, Townsend JT. 1993. Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100:432–78 [Google Scholar]
  31. Carpenter RHS. 1981. In Eye Movements: Cognition and Visual Perception ed. DF Fischer, RA Monty, JW Senders pp. 237–46 Hillsdale, NJ: Lawrence Erlbaum [Google Scholar]
  32. Carpenter RHS. 1988. Movements of the Eyes. London: Pion [Google Scholar]
  33. Carpenter RHS, Williams MLL. 1995. Neural computation of log likelihood in control of saccadic eye movements. Nature 377:59–78 [Google Scholar]
  34. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. 1998. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–78 [Google Scholar]
  35. Chafee MV, Goldman-Rakic PS. 2000. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J. Neurophysiol. 83:1550–78 [Google Scholar]
  36. Cisek P. 2007. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos. Trans. R. Soc. B. In press [Google Scholar]
  37. Clark A. 1997. Being There: Putting Brain, Body, and World Together Again. Cambridge, MA: MIT Press269pp. [Google Scholar]
  38. Colby CL, Duhamel JR, Goldberg ME. 1993. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69:902–78 [Google Scholar]
  39. Connolly JD, Goodale MA, Goltz HC, Munoz DP. 2005. fMRI activation in the human frontal eye field is correlated with saccadic reaction time. J. Neurophysiol. 94:605–78 [Google Scholar]
  40. Cook EP, Maunsell JH. 2002a. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22:1994–78 [Google Scholar]
  41. Cook EP, Maunsell JH. 2002b. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat. Neurosci. 5:985–78 [Google Scholar]
  42. Corrado GS, Sugrue LP, Seung HS, Newsome WT. 2005. Linear-nonlinear-Poisson models of primate choice dynamics. J. Exp. Anal. Behav. 84:581–78 [Google Scholar]
  43. DeAngelis GC, Cumming BG, Newsome WT. 1998. Cortical area MT and the perception of stereoscopic depth. Nature 394:677–78 [Google Scholar]
  44. DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD. 1999. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19:4046–78 [Google Scholar]
  45. DeAngelis GC, Gu Y, Angelaki DE. 2006. Role of area MSTd in cue integration for heading discrimination: II. Analysis of correlations between neural responses and perceptual decisions. J. Vis. 6:(Abstr. 408)408a [Google Scholar]
  46. DeAngelis GC, Newsome WT. 2004. Perceptual “read-out” of conjoined direction and disparity maps in extrastriate area MT. PLoS Biol. 2:E77 [Google Scholar]
  47. de Lafuente V, Romo R. 2005. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8:1698–78 [Google Scholar]
  48. Diederich A. 2003. MDFT account of decision making under time pressure. Psychon. Bull. Rev. 10:157–78 [Google Scholar]
  49. Ditterich J, Mazurek M, Shadlen MN. 2003. Microstimulation of visual cortex affects the speed of perceptual decisions. Nat. Neurosci. 6:891–78 [Google Scholar]
  50. Dodd JV, Krug K, Cumming BG, Parker AJ. 2001. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21:4809–78 [Google Scholar]
  51. Dolan RJ, Fink GR, Rolls E, Booth M, Holmes A. et al. 1997. How the brain learns to see objects and faces in an impoverished context. Nature 389:596–78 [Google Scholar]
  52. Dorris MC, Glimcher PW. 2004. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44:365–78 [Google Scholar]
  53. Dorris MC, Munoz DP. 1998. Saccadic probability influences motor preparation signals and time to saccadic initiation. J. Neurosci. 18:7015–78 [Google Scholar]
  54. Dorris MC, Paré M, Munoz DP. 1997. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J. Neurosci. 17:8566–78 [Google Scholar]
  55. Duffy CJ, Wurtz RH. 1991. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity of large-field stimuli. J. Neurophysiol. 65:1329–78 [Google Scholar]
  56. Duffy CJ, Wurtz RH. 1995. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15:5192–78 [Google Scholar]
  57. Duffy CJ, Wurtz RH. 1997. Medial superior temporal area neurons respond to speed patterns in optic flow. J. Neurosci. 17:2839–78 [Google Scholar]
  58. Duhamel JR, Colby CL, Goldberg ME. 1998. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol. 79:126–78 [Google Scholar]
  59. Eskandar EN, Assad JA. 1999. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat. Neurosci. 2:88–78 [Google Scholar]
  60. Everling S, Munoz DP. 2000. Neuronal correlates for preparatory set associated with prosaccades and antisaccades in the primate frontal eye field. J. Neurosci. 20:387–78 [Google Scholar]
  61. Freedman DJ, Assad JA. 2006. Experience-dependent representation of visual categories in parietal cortex. Nature 443:85–78 [Google Scholar]
  62. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. 2002. Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior. J. Neurophysiol. 88:929–78 [Google Scholar]
  63. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. 2003. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 23:5235–78 [Google Scholar]
  64. Friedman HR, Goldman-Rakic PS. 1994. Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. J. Neurosci. 14:2775–78 [Google Scholar]
  65. Fries W. 1984. Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J. Comp. Neurol. 230:55–78 [Google Scholar]
  66. Gehring WJ, Willoughby AR. 2002. The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295:2279–78 [Google Scholar]
  67. Gibson JJ. 1950. Perception of the Visual World. Boston: Houghton-Mifflin [Google Scholar]
  68. Glimcher PW. 2005. Indeterminacy in brain and behavior. Annu. Rev. Psychol. 56:25–78 [Google Scholar]
  69. Gold JI, Shadlen MN. 2000. Representation of a perceptual decision in developing oculomotor commands. Nature 404:390–78 [Google Scholar]
  70. Gold JI, Shadlen MN. 2001. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5:10–78 [Google Scholar]
  71. Gold JI, Shadlen MN. 2002. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36:299–78 [Google Scholar]
  72. Gold JI, Shadlen MN. 2003. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23:632–78 [Google Scholar]
  73. Good IJ. 1979. Studies in the history of probability and statistics. XXXVII A.M. Turing's statistical work in World War II. Biometrika 66:393–78 [Google Scholar]
  74. Good IJ. 1983. Good Thinking: The Foundations of Probability and Its Applications. Minneapolis: Univ. Minn. Press [Google Scholar]
  75. Goodale M, Milner A. 1992. Separate visual pathways for perception and action. Trends Neurosci. 15:20–78 [Google Scholar]
  76. Graziano MS, Andersen RA, Snowden RJ. 1994. Tuning of MST neurons to spiral motions. J. Neurosci. 14:54–78 [Google Scholar]
  77. Graziano MSA, Hu XT, Gross CG. 1997. Visuospatial properties of ventral premotor cortex. J. Neurophysiol. 77:2268–78 [Google Scholar]
  78. Green DM, Swets JA. 1966. Signal Detection Theory and Psychophysics. New York: Wiley [Google Scholar]
  79. Grill-Spector K, Kushnir T, Hendler T, Malach R. 2000. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3:837–78 [Google Scholar]
  80. Gu Y, Watkins PV, Angelaki DE, DeAngelis GC. 2006. Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J. Neurosci. 26:73–78 [Google Scholar]
  81. Gurney K, Bogacz R. 2006. The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput. 19:442–78 [Google Scholar]
  82. Hanes DP, Carpenter RH. 1999. Countermanding saccades in humans. Vis. Res. 39:2777–78 [Google Scholar]
  83. Hanes DP, Patterson WF, Schall JD. 1998. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J. Neurophys. 79:817–78 [Google Scholar]
  84. Hanes DP, Schall JD. 1996. Neural control of voluntary movement initiation. Science 274:427–78 [Google Scholar]
  85. Hanks TD, Ditterich J, Shadlen MN. 2006. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat. Neurosci. 9:682–78 [Google Scholar]
  86. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL. 1994. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J. Neurosci. 14:6336–78 [Google Scholar]
  87. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. 2004. A general mechanism for perceptual decision-making in the human brain. Nature 431:859–78 [Google Scholar]
  88. Henning GB, Hertz BG, Broadbent DE. 1975. Some experiments bearing on the hypothesis that the visual system analyzes patterns in independent bands of spatial frequency. Vis. Res. 15:887–78 [Google Scholar]
  89. Hernandez A, Zainos A, Romo R. 2000. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc. Natl. Acad. Sci. USA 97:6191–78 [Google Scholar]
  90. Hernandez A, Zainos A, Romo R. 2002. Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33:959–78 [Google Scholar]
  91. Herrnstein RJ. 1961. Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav. 4:267–78 [Google Scholar]
  92. Herrnstein RJ, Vaughan W. 1980. Melioration and behavioral allocation. In Limits to Action: The Allocation of Individual Behavior ed. J Staddon pp. 143–76 New York: Academic [Google Scholar]
  93. Heuer HW, Britten KH. 2004. Optic flow signals in extrastriate area MST: comparison of perceptual and neuronal sensitivity. J. Neurophysiol. 91:1314–78 [Google Scholar]
  94. Horwitz GD, Batista AP, Newsome WT. 2004. Representation of an abstract perceptual deccision in macaque superior colliculus. J. Neurophysiol. 91:2281–78 [Google Scholar]
  95. Horwitz GD, Newsome WT. 1999. Separate signals for target selection and movement specification in the superior colliculus. Science 284:1158–78 [Google Scholar]
  96. Horwitz GD, Newsome WT. 2001. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. J. Neurophysiol. 86:2543–78 [Google Scholar]
  97. Huk AC, Shadlen MN. 2005. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25:10420–78 [Google Scholar]
  98. Ito S, Stuphorn V, Brown JW, Schall JD. 2003. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302:120–78 [Google Scholar]
  99. Janssen P, Shadlen MN. 2005. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8:234–78 [Google Scholar]
  100. Johnson KO. 1980a. Sensory discrimination: decision process. J. Neurophysiol. 43:1771–78 [Google Scholar]
  101. Johnson KO. 1980b. Sensory discrimination: neural processes preceding discrimination decision. J. Neurophysiol. 43:1793–78 [Google Scholar]
  102. Kaelbling LP, Littman ML, Moore AW. 1996. Reinforcement learning: a survey. J. Artif. Intel. Res. 4:237–78 [Google Scholar]
  103. Kahneman D. 2002. Nobel prize lecture: Maps of Bounded Rationality: a perspective on intuitive judgment and choice. In Nobel Prizes 2002: Nobel Prizes, Presentations, Biographies, & Lectures ed. T Frangsmyr pp. 416–99 Stockholm: Almqvist & Wiksell Int. [Google Scholar]
  104. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–78 [Google Scholar]
  105. Kawagoe R, Takikawa Y, Hikosaka O. 2004. Reward-predicting activity of dopamine and caudate neurons—a possible mechanism of motivational control of saccadic eye movement. J. Neurophysiol. 91:1013–78 [Google Scholar]
  106. Kepecs A, Uchida N, Mainen ZF. 2006. The sniff as a unit of olfactory processing. Chem. Senses 31:167–78 [Google Scholar]
  107. Kersten D, Mamassian P, Yuille A. 2004. Object perception as Bayesian inference. Annu. Rev. Psychol. 55:271–78 [Google Scholar]
  108. Kiani R, Hanks TD, Shadlen MN. 2006. Improvement in sensitivity with viewing time is limited by an integration-to-bound mechanism in area LIP. Soc. Neurosci. Abstr. 605.7 [Google Scholar]
  109. Kim JN, Shadlen MN. 1999. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2:176–78 [Google Scholar]
  110. Kohn A, Smith MA. 2005. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25:3661–78 [Google Scholar]
  111. Knutson B, Taylor J, Kaufman M, Peterson R, Glover G. 2005. Distributed neural representation of expected value. J. Neurosci. 25:4806–78 [Google Scholar]
  112. Kobayashi S, Lauwereyns J, Koizumi M, Sakagami M, Hikosaka O. 2002. Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. J. Neurophysiol. 87:1488–78 [Google Scholar]
  113. Krug K, Cumming BG, Parker AJ. 2004. Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. J. Neurophysiol. 92:1586–78 [Google Scholar]
  114. LaBerge DA. 1962. A recruitment theory of simple behavior. Psychometrika 27:375–78 [Google Scholar]
  115. Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA. 1994. Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J. Neurophysiol. 71:1597–78 [Google Scholar]
  116. Laming DRJ. 1968. Information Theory of Choice-Reaction Times. London: Academic [Google Scholar]
  117. Lasley DJ, Cohn T. 1981. Detection of a luminance increment: effect of temporal uncertainty. J. Opt. Soc. Am. 71:845–78 [Google Scholar]
  118. Lau B, Glimcher PW. 2005. Dynamic response-by-response models of matching behavior in rhesus monkeys. J. Exp. Anal. Behav. 84:555–78 [Google Scholar]
  119. Lauwereyns J, Takikawa Y, Kawagoe R, Kobayashi S, Koizumi M. et al. 2002. Feature-based anticipation of cues that predict reward in monkey caudate nucleus. Neuron 33:463–78 [Google Scholar]
  120. Law C, Gold JI. 2005. Physiological correlates of perceptual learning in monkey areas MT and LIP. Soc. Neurosci. Abstr. 621.15 [Google Scholar]
  121. Lecas JC, Requin J, Anger C, Vitton N. 1986. Changes in neuronal activity of the monkey precentral cortex during preparation for movement. J. Neurophysiol. 56:1680–78 [Google Scholar]
  122. Lee D, McGreevy BP, Barraclough DJ. 2005. Learning and decision making in monkeys during a rock-paper-scissors game. Brain. Res. Cogn. Brain. Res. 25:416–78 [Google Scholar]
  123. Leon MI, Shadlen MN. 1998. Modulation of dorsolateral prefrontal cortex neurons by varying expectations of reward magnitude. Soc. Neurosci. Abstr. 24:1425 [Google Scholar]
  124. Leon MI, Shadlen MN. 2003. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:317–78 [Google Scholar]
  125. Lewis JW, Van Essen DC. 2000a. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428:112–78 [Google Scholar]
  126. Lewis JW, Van Essen DC. 2000b. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428:79–78 [Google Scholar]
  127. Link SW. 1992. The Wave Theory of Difference and Similarity. Hillsdale, NJ: Lawrence Erlbaum [Google Scholar]
  128. Link SW, Heath RA. 1975. A sequential theory of psychological discrimination. Psychometrika 40:77–78 [Google Scholar]
  129. Lo CC, Wang XJ. 2006. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat. Neurosci. 9:956–78 [Google Scholar]
  130. Logan GD. 2002. An instance theory of attention and memory. Psychol. Rev. 109:376–78 [Google Scholar]
  131. Logan GD, Cowan WB, Davis KA. 1984. On the ability to inhibit simple and choice reaction time responses: a model and a method. J. Exp. Psychol. Hum. Percept. Perform. 10:276–78 [Google Scholar]
  132. Luce RD. 1986. Response Times: Their Role in Inferring Elementary Mental Organization. New York: Oxford Univ. Press [Google Scholar]
  133. Ludwig CJ, Gilchrist ID, McSorley E, Baddeley RJ. 2005. The temporal impulse response underlying saccadic decisions. J. Neurosci. 25:9907–78 [Google Scholar]
  134. Luna R, Hernandez A, Brody CD, Romo R. 2005. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8:1210–78 [Google Scholar]
  135. Lynch JC, Graybiel AM, Lobeck LJ. 1985. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235:241–78 [Google Scholar]
  136. Machens CK, Romo R, Brody CD. 2005. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307:1121–78 [Google Scholar]
  137. Major G, Tank D. 2004. Persistent neural activity: prevalence and mechanisms. Curr. Opin. Neurobiol. 14:675–78 [Google Scholar]
  138. Maunsell JHR, Van Essen DC. 1983. Functional properties of neurons in the middle temporal visual area (MT) of the macaque monkey: II. Binocular interactions and the sensitivity to binocular disparity. J. Neurophysiol. 49:1148–78 [Google Scholar]
  139. Mazurek ME, Roitman JD, Ditterich J, Shadlen MN. 2003. A role for neural integrators in perceptual decision making. Cereb. Cortex 13:1257–78 [Google Scholar]
  140. McCoy AN, Crowley JC, Haghighian G, Dean HL, Platt ML. 2003. Saccade reward signals in posterior cingulate cortex. Neuron 40:1031–78 [Google Scholar]
  141. McMillen T, Holmes P. 2006. The dynamics of choice among multiple alternatives. J. Math. Psychol. 50:30–78 [Google Scholar]
  142. Meister M, Bonhoeffer T. 2001. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21:1351–78 [Google Scholar]
  143. Merleau-Ponty M. 1962. Phenomenology of Perception. London: Routledge & Kegan Paul [Google Scholar]
  144. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A. et al. 1996. Visualizing an olfactory sensory map. Cell 87:675–78 [Google Scholar]
  145. Mountcastle VB, Steinmetz MA, Romo R. 1990. Frequency discrimination in the sense of flutter: psychophysical measurements correlated with postcentral events in behaving monkeys. J. Neurosci. 10:3032–78 [Google Scholar]
  146. Munoz DP, Wurtz RH. 1993. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J. Neurophys. 70:559–78 [Google Scholar]
  147. Nachmias J, Rogowitz BE. 1983. Masking by spatially-modulated gratings. Vis. Res. 23:1621–78 [Google Scholar]
  148. Newsome WT, Paré EB. 1988. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8:2201–78 [Google Scholar]
  149. Op de Beeck H, Wagemans J, Vogels R. 2001. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nat. Neurosci. 4:1244–78 [Google Scholar]
  150. O'Regan JK, Noë A. 2001. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24:939–78 [Google Scholar]
  151. Padoa-Schioppa C, Assad JA. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–78 [Google Scholar]
  152. Palmer J, Huk AC, Shadlen MN. 2005. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5:376–78 [Google Scholar]
  153. Paré M, Hanes DP. 2003. Controlled movement processing: superior colliculus activity associated with countermanded saccades. J. Neurosci. 23:6480–78 [Google Scholar]
  154. Paré M, Wurtz RH. 1997. Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J. Neurophysiol. 78:3493–78 [Google Scholar]
  155. Parker AJ, Newsome WT. 1998. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21:227–78 [Google Scholar]
  156. Philiastides MG, Ratcliff R, Sajda P. 2006. Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J. Neurosci. 26:8965–78 [Google Scholar]
  157. Philiastides MG, Sajda P. 2006. Temporal characterization of the neural correlates of perceptual decision making in the human brain. Cereb. Cortex 16:509–78 [Google Scholar]
  158. Platt ML, Glimcher PW. 1999. Neural correlates of decision variables in parietal cortex. Nature 400:233–78 [Google Scholar]
  159. Pouget P, Emeric EE, Stuphorn V, Reis K, Schall JD. 2005. Chronometry of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex. J. Neurophysiol. 94:2086–78 [Google Scholar]
  160. Rainer G, Lee H, Logothetis NK. 2004. The effect of learning on the function of monkey extrastriate visual cortex. PLoS Biol. 2:E44 [Google Scholar]
  161. Rao RPN. 1999. An optimal estimation approach to visual perception and learning. Vis. Res. 39:1963–78 [Google Scholar]
  162. Ratcliff R. 1978. A theory of memory retrieval. Psychol. Rev. 85:59–78 [Google Scholar]
  163. Ratcliff R, Cherian A, Segraves M. 2003. A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J. Neurophysiol. 90:1392–78 [Google Scholar]
  164. Ratcliff R, Rouder JN. 1998. Modeling response times for two-choice decisions. Psychol. Sci. 9:347–78 [Google Scholar]
  165. Ratcliff R, Smith PL. 2004. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111:333–78 [Google Scholar]
  166. Reddi BA, Asrress KN, Carpenter RH. 2003. Accuracy, information, and response time in a saccadic decision task. J. Neurophysiol. 90:3538–78 [Google Scholar]
  167. Reddi BA, Carpenter RH. 2000. The influence of urgency on decision time. Nat. Neurosci. 3:827–78 [Google Scholar]
  168. Ress D, Backus BT, Heeger DJ. 2000. Activity in primary visual cortex predicts performance in a visual detection task. Nat. Neurosci. 3:940–78 [Google Scholar]
  169. Ress D, Heeger DJ. 2003. Neuronal correlates of perception in early visual cortex. Nat. Neurosci. 6:414–78 [Google Scholar]
  170. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. 2004. The role of the medial frontal cortex in cognitive control. Science 306:443–78 [Google Scholar]
  171. Riehle A, Requin J. 1993. The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex. Behav. Brain Res. 53:35–78 [Google Scholar]
  172. Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W. 1997. Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press [Google Scholar]
  173. Rinberg D, Koulakov A, Gelperin A. 2006. Speed-accuracy tradeoff in olfaction. Neuron 51:351–78 [Google Scholar]
  174. Robinson DA. 1972. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12:1795–78 [Google Scholar]
  175. Robinson DA, Fuchs AF. 1969. Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32:637–78 [Google Scholar]
  176. Roe RM, Busemeyer JR, Townsend JT. 2001. Multialternative decision field theory: a dynamic connectionist model of decision making. Psychol. Rev. 108:370–78 [Google Scholar]
  177. Roitman JD, Shadlen MN. 2002. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22:9475–78 [Google Scholar]
  178. Romo R, Brody C, Hernandez A, Lemus L. 1999. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:470–78 [Google Scholar]
  179. Romo R, Hernandez A, Zainos A. 2004. Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41:165–78 [Google Scholar]
  180. Romo R, Hernandez A, Zainos A, Brody CD, Lemus L. 2000. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26:273–78 [Google Scholar]
  181. Romo R, Hernandez A, Zainos A, Lemus L, Brody CD. 2002. Neuronal correlates of decision-making in secondary somatosensory cortex. Nat. Neurosci. 5:1217–78 [Google Scholar]
  182. Romo R, Hernandez A, Zainos A, Salinas E. 1998. Somatosensory discrimination based on cortical microstimulation. Nature 392:387–78 [Google Scholar]
  183. Rubin BD, Katz LC. 1999. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–78 [Google Scholar]
  184. Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E. 1986. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci. 6:145–78 [Google Scholar]
  185. Salinas E, Hernandez A, Zainos A, Romo R. 2000. Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20:5503–78 [Google Scholar]
  186. Salzman CD, Britten KH, Newsome WT. 1990. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–78 [Google Scholar]
  187. Salzman CD, Murasugi CM, Britten KH, Newsome WT. 1992. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12:2331–78 [Google Scholar]
  188. Sanfey AG, Loewenstein G, McClure SM, Cohen JD. 2006. Neuroeconomics: cross-currents in research on decision-making. Trends Cogn. Sci. 10:108–78 [Google Scholar]
  189. Schall JD, Stuphorn V, Brown JW. 2002. Monitoring and control of action by the frontal lobes. Neuron 36:309–78 [Google Scholar]
  190. Schiller PH, Stryker M. 1972. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35:915–78 [Google Scholar]
  191. Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S. et al. 1998. Signal timing across the macaque visual system. J. Neurosci. 79:3272–78 [Google Scholar]
  192. Schultz W. 1992. Activity of dopamine neurons in the behaving primate. Semin. Neurosci. 4:129–78 [Google Scholar]
  193. Schultz W. 1998. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80:1–78 [Google Scholar]
  194. Schultz W. 2004. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Curr. Opin. Neurbiol. 14:139–78 [Google Scholar]
  195. Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:1593–78 [Google Scholar]
  196. Schrater PR, Knill DC, Simoncelli EP. 2000. Mechanisms of visual motion detection. Nat. Neurosci. 3:64–78 [Google Scholar]
  197. Shadlen MN, Britten KH, Newsome WT, Movshon JA. 1996. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16:1486–78 [Google Scholar]
  198. Shadlen MN, Hanks TD, Churchland AK, Kiani R, Yang T. 2006. The speed and accuracy of a simple perceptual decision: a mathematical primer. In Bayesian Brain: Probabilistic Approaches to Neural Coding ed. K Doya, S Ishii, R Rao, A Pouget pp. 209–78 Cambridge, MA: MIT Press [Google Scholar]
  199. Shadlen MN, Newsome WT. 1996. Motion perception: Seeing and deciding. Proc. Natl. Acad. Sci. USA 93:628–78 [Google Scholar]
  200. Shadlen MN, Newsome WT. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86:1916–78 [Google Scholar]
  201. Sheinberg DL, Logothetis NK. 1997. The role of temporal cortical areas in perceptual organization. Proc. Natl. Acad. Sci. USA 94:3408–78 [Google Scholar]
  202. Sheinberg DL, Logothetis NK. 2001. Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J. Neurosci. 21:1340–78 [Google Scholar]
  203. Sinha N, Brown JT, Carpenter RH. 2006. Task switching as a two-stage decision process. J. Neurophysiol. 95:3146–78 [Google Scholar]
  204. Smith PL. 2000. Stochastic dynamic models of response time and accuracy: a foundational primer. J. Math. Psychol. 44:408–78 [Google Scholar]
  205. Smith PL, Ratcliff R. 2004. Psychology and neurobiology of simple decisions. Trends Neurosci. 27:161–78 [Google Scholar]
  206. Smith PL. 1995. Psychophysically principled models of visual simple reaction time. Psychol. Rev. 102:567–78 [Google Scholar]
  207. Smith PL. 1998. Bloch's law predictions from diffusion process models of detection. Aust. J. Psychol. 50:139–78 [Google Scholar]
  208. Sparks DL. 2002. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 3:952–78 [Google Scholar]
  209. Spivey MJ, Grosjean M, Knoblich G. 2005. Continuous attraction toward phonological competitors. Proc. Natl. Acad. Sci. USA 102:10393–78 [Google Scholar]
  210. Stuphorn V, Taylor TL, Schall JD. 2000. Performance monitoring by the supplementary eye field. Nature 408:857–78 [Google Scholar]
  211. Sugrue LP, Corrado GS, Newsome WT. 2004. Matching behavior and the representation of value in the parietal cortex. Science 304:1782–78 [Google Scholar]
  212. Sugrue LP, Corrado GS, Newsome WT. 2005. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6:363–78 [Google Scholar]
  213. Tanaka K, Hikosaka H, Saito H, Yukie Y, Fukada Y, Iwai E. 1986. Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J. Neurosci. 6:134–78 [Google Scholar]
  214. Tanaka K, Saito H. 1989. Analysis of motion of the visual field by direction, expansion/contraction and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62:626–78 [Google Scholar]
  215. Tehovnik EJ. 1996. Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods 65:1–78 [Google Scholar]
  216. Tenenbaum JB, Griffiths TL. 2001. Generalization, similarity, and Bayesian inference. Behav. Brain Sci. 24:629–78 [Google Scholar]
  217. Tremblay L, Schultz W. 1999. Relative reward preference in primate orbitofrontal cortex. Nature 398:704–78 [Google Scholar]
  218. Tremblay L, Schultz W. 2000. Reward-related neuronal activity during Go-nogo task performance in primate orbitofrontal cortex. J. Neurophysiol. 83:1864–78 [Google Scholar]
  219. Uchida N, Kepecs A, Mainen ZF. 2006. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat. Rev. Neurosci. 7:485–78 [Google Scholar]
  220. Uchida N, Mainen ZF. 2003. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6:1224–78 [Google Scholar]
  221. Uka T, DeAngelis GC. 2003. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23:3515–78 [Google Scholar]
  222. Uka T, DeAngelis GC. 2006. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26:6791–78 [Google Scholar]
  223. Ungerleider LG, Mishkin M. 1982. Two cortical visual systems. In Analysis of Visual Behavior ed. DJ Ingle, MA Goodale, RJW Mansfield pp. 549–78 Cambridge, MA: MIT Press [Google Scholar]
  224. Ullman JD. 1979. The Interpretation of Visual Motion. Cambridge, MA: MIT Press [Google Scholar]
  225. Usher M, McClelland JL. 2001. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108:550–78 [Google Scholar]
  226. VanRullen R, Thorpe SJ. 2001. The time course of visual processing: from early perception to decision-making. J. Cogn. Neurosci. 13:454–78 [Google Scholar]
  227. Verghese P, Watamaniuk SNJ, McKee SP, Grzywacz NM. 1999. Local motion detectors cannot account for the detectability of an extended trajectory in noise. Vis. Res. 39:19–78 [Google Scholar]
  228. Vickers D. 1970. Evidence for an accumulator model of psychophysical discrimination. In Contemporary Problems in Perception: Ergonomics ed. AT Welford, L Houssiadas pp. 37–58 London: Taylor & Francis [Google Scholar]
  229. von Helmholtz HLF. 1925. Treatise on Physiological Optics. New York: Dover [Google Scholar]
  230. von Neumann J, Morgenstern O. 1944. The Theory of Games and Economic Behavior. Princeton: Princeton Univ. Press [Google Scholar]
  231. Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A. et al. 1998. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281:1188–78 [Google Scholar]
  232. Wald A, Wolfowitz J. 1947. Optimum character of the sequential probability ratio test. Ann. Math. Statist. 19:326–78 [Google Scholar]
  233. Wallis JD, Anderson KC, Miller EK. 2001. Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–78 [Google Scholar]
  234. Wang XJ. 2002. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–78 [Google Scholar]
  235. Watanabe K, Lauwereyns J, Hikosaka O. 2003. Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. J. Neurosci. 23:10052–78 [Google Scholar]
  236. Watanabe M. 1996. Reward expectancy in primate prefrontal neurons. Nature 382:629–78 [Google Scholar]
  237. Watson AB. 1986. Temporal sensitivity. In Handbook of Perception and Human Performance. ed. K Boff, J Thomas pp. 6.1–6.43 New York: Wiley [Google Scholar]
  238. Westheimer G. 1954. Mechanism of saccadic eye movements. AMA Arch. Ophthalmol. 52:710–78 [Google Scholar]
  239. Wong KF, Huk A, Shadlen MN, Wang XJ. 2005. Time integration in a perceptual decision task: adding and subtracting brief pulses of evidence in a recurrent cortical network model. Soc. Neurosci. Abstr. 621.5 [Google Scholar]
  240. Wong KF, Wang XJ. 2006. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26:1314–78 [Google Scholar]
  241. Yeung N, Sanfey AG. 2004. Independent coding of reward magnitude and valence in the human brain. J. Neurosci. 24:6258–78 [Google Scholar]
  242. Zhang T, Britten KH. 2004. Clustering of selectivity for optic flow in the ventral intraparietal area. NeuroReport 15:1941–78 [Google Scholar]
  243. Zhang T, Heuer HW, Britten KH. 2004. Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42:993–78 [Google Scholar]
  244. Zohary E, Shadlen MN, Newsome WT. 1994. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–78 [Google Scholar]
/content/journals/10.1146/annurev.neuro.29.051605.113038
Loading
/content/journals/10.1146/annurev.neuro.29.051605.113038
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error