- Home
- A-Z Publications
- Annual Review of Plant Biology
- Previous Issues
- Volume 52, 2001
Annual Review of Plant Biology - Volume 52, 2001
Volume 52, 2001
- Review Articles
-
-
-
PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species
Vol. 52 (2001), pp. 561–591More Less▪ AbstractThe production of reactive oxygen species (ROS), such as O2− and H2O2, is an unavoidable consequence of aerobic metabolism. In plant cells the mitochondrial electron transport chain (ETC) is a major site of ROS production. In addition to complexes I–IV, the plant mitochondrial ETC contains a non-proton-pumping alternative oxidase as well as two rotenone-insensitive, non-proton-pumping NAD(P)H dehydrogenases on each side of the inner membrane: NDex on the outer surface and NDin on the inner surface. Because of their dependence on Ca2+, the two NDex may be active only when the plant cell is stressed. Complex I is the main enzyme oxidizing NADH under normal conditions and is also a major site of ROS production, together with complex III. The alternative oxidase and possibly NDin(NADH) function to limit mitochondrial ROS production by keeping the ETC relatively oxidized. Several enzymes are found in the matrix that, together with small antioxidants such as glutathione, help remove ROS. The antioxidants are kept in a reduced state by matrix NADPH produced by NADP-isocitrate dehydrogenase and non-proton-pumping transhydrogenase activities. When these defenses are overwhelmed, as occurs during both biotic and abiotic stress, the mitochondria are damaged by oxidative stress.
-
-
-
-
PHOTOSYSTEM I: Function and Physiology
Vol. 52 (2001), pp. 593–626More Less▪ AbstractPhotosystem I is the light-driven plastocyanin-ferredoxin oxidoreductase in the thylakoid membranes of cyanobacteria and chloroplasts. In recent years, sophisticated spectroscopy, molecular genetics, and biochemistry have been used to understand the light conversion and electron transport functions of photosystem I. The light-harvesting complexes and internal antenna of photosystem I absorb photons and transfer the excitation energy to P700, the primary electron donor. The subsequent charge separation and electron transport leads to the reduction of ferredoxin. The photosystem I proteins are responsible for the precise arrangement of cofactors and determine redox properties of the electron transfer centers. With the availability of genomic information and the structure of photosystem I, one can now probe the functions of photosystem I proteins and cofactors. The strong reductant produced by photosystem I has a central role in chloroplast metabolism, and thus photosystem I has a critical role in the metabolic networks and physiological responses in plants.
-
-
-
GUARD CELL SIGNAL TRANSDUCTION
Vol. 52 (2001), pp. 627–658More Less▪ AbstractGuard cells surround stomatal pores in the epidermis of plant leaves and stems. Stomatal pore opening is essential for CO2 influx into leaves for photosynthetic carbon fixation. In exchange, plants lose over 95% of their water via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate hormonal stimuli, light signals, water status, CO2, temperature, and other environmental conditions to modulate stomatal apertures for regulation of gas exchange and plant survival under diverse conditions. Stomatal guard cells have become a highly developed model system for characterizing early signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. In this review we focus on recent advances in understanding signal transduction mechanisms in guard cells.
-
-
-
TRANSPORTERS RESPONSIBLE FOR THE UPTAKE AND PARTITIONING OF NITROGENOUS SOLUTES
LE Williams, and AJ MillerVol. 52 (2001), pp. 659–688More Less▪ AbstractThe acquisition and allocation of nitrogenous compounds are essential processes in plant growth and development. The huge economic and environmental costs resulting from the application of nitrogen fertilizers make this topic very important. A diverse array of transporters varying in their expression pattern and also in their affinity, specificity, and capacity for nitrogenous compounds has been identified. Now the future challenge is to define their individual contribution to nitrogen nutrition and signalling processes. Here we have reviewed recent advances in the identification and molecular characterization of these transporters, concentrating on mechanisms existing at the plasma membrane. The review focuses on nitrate, ammonium, and amino acid transporter familes, but we also briefly describe what is known at the molecular level about peptide transporters and a recently identified family implicated in the transport of purines and their derivatives.
-
-
-
DEFENSIVE RESIN BIOSYNTHESIS IN CONIFERS
Vol. 52 (2001), pp. 689–724More Less▪ AbstractTree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin, a complex mixture of mono-, sesqui-, and diterpenoids that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects, from host selection to pheromone signaling and tritrophic level interactions. The biochemistry of oleoresin terpenoids is reviewed, and the regulation of production of this unusual plant secretion is described in the context of bark beetle infestation dynamics with respect to the function of the turpentine and rosin components. Recent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest biotechnology.
-
-
-
MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING
Vol. 52 (2001), pp. 725–749More Less▪ AbstractThe development and maturation of fruits has received considerable scientific scrutiny because of both the uniqueness of such processes to the biology of plants and the importance of fruit as a significant component of the human diet. Molecular and genetic analysis of fruit development, and especially ripening of fleshy fruits, has resulted in significant gains in knowledge over recent years. Great strides have been made in the areas of ethylene biosynthesis and response, cell wall metabolism, and environmental factors, such as light, that impact ripening. Discoveries made in Arabidopsis in terms of general mechanisms for signal transduction, in addition to specific mechanisms of carpel development, have assisted discovery in more traditional models such as tomato. This review attempts to coalesce recent findings in the areas of fruit development and ripening.
-
-
-
CYTOKINESIS AND BUILDING OF THE CELL PLATE IN PLANTS
Vol. 52 (2001), pp. 751–784More Less▪ AbstractCytokinesis in plant cells is more complex than in animals, as it involves building a cell plate as the final step in generating two cells. The cell plate is built in the center of phragmoplast by fusion of Golgi-derived vesicles. This step imposes an architectural problem where ballooning of the fused structures has to be avoided to create a plate instead. This is apparently achieved by squeezing the vesicles into dumbbell-shaped vesicle-tubule-vesicle (VTV) structures with the help of phragmoplastin, a homolog of dynamin. These structures are fused at their ends in a star-shaped body creating a tubulovesicular “honeycomb-like” structure sandwiched between the positive ends of the phragmoplast microtubules. This review summarizes our current understanding of various mechanisms involved in budding-off of Golgi vesicles, delivery and fusion of vesicles to initiate cell plate, and the synthesis of polysaccharides at the forming cell plate. Little is known about the molecular mechanisms involved in determining the site, direction, and the point of attachment of the growing cell plate with the parental cell wall. These gaps may be filled soon, as many genes that have been identified by mutations are analyzed and functions of their products are deciphered.
-
-
-
RIBOSOME-INACTIVATING PROTEINS: A Plant Perspective
Vol. 52 (2001), pp. 785–816More Less▪ AbstractRibosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate the universally conserved α-sarcin loop of large rRNAs. This depurination inactivates the ribosome, thereby blocking its further participation in protein synthesis. RIPs are widely distributed among different plant genera and within a variety of different tissues. Recent work has shown that enzymatic activity of at least some RIPs is not limited to site-specific action on the large rRNAs of ribosomes but extends to depurination and even nucleic acid scission of other targets. Characterization of the physiological effects of RIPs on mammalian cells has implicated apoptotic pathways. For plants, RIPs have been linked to defense by antiviral, antifungal, and insecticidal properties demonstrated in vitro and in transgenic plants. How these effects are brought about, however, remains unresolved. At the least, these results, together with others summarized here, point to a complex biological role. With genetic, genomic, molecular, and structural tools now available for integrating different experimental approaches, we should further our understanding of these multifunctional proteins and their physiological functions in plants.
-
-
-
PLANT PLASMA MEMBRANE H+-ATPases: Powerhouses for Nutrient Uptake
Vol. 52 (2001), pp. 817–845More Less▪ AbstractMost transport proteins in plant cells are energized by electrochemical gradients of protons across the plasma membrane. The formation of these gradients is due to the action of plasma membrane H+ pumps fuelled by ATP. The plasma membrane H+-ATPases share a membrane topography and general mechanism of action with other P-type ATPases, but differ in regulatory properties. Recent advances in the field include the identification of the complete H+-ATPase gene family in Arabidopsis, analysis of H+-ATPase function by the methods of reverse genetics, an improved understanding of the posttranslational regulation of pump activity by 14-3-3 proteins, novel insights into the H+ transport mechanism, and progress in structural biology. Furthermore, the elucidation of the three-dimensional structure of a related Ca2+ pump has implications for understanding of structure-function relationships for the plant plasma membrane H+-ATPase.
-
-
-
THE COHESION-TENSION MECHANISM AND THE ACQUISITION OF WATER BY PLANT ROOTS
Vol. 52 (2001), pp. 847–875More Less▪ AbstractThe physical basis and evidence in support of the cohesion-tension theory of the ascent of sap in plants are reviewed. The focus is on the recent discussion of challenges to the cohesion-tension mechanism based on measurements with the pressure probe. Limitations of pressure probes to measure tensions (negative pressures) in intact transpiring plants are critically assessed. The possible role of the cohesion-tension mechanism during the acquisition of water and solutes by plant roots is discussed.
-
Previous Volumes
-
Volume 75 (2024)
-
Volume 74 (2023)
-
Volume 73 (2022)
-
Volume 72 (2021)
-
Volume 71 (2020)
-
Volume 70 (2019)
-
Volume 69 (2018)
-
Volume 68 (2017)
-
Volume 67 (2016)
-
Volume 66 (2015)
-
Volume 65 (2014)
-
Volume 64 (2013)
-
Volume 63 (2012)
-
Volume 62 (2011)
-
Volume 61 (2010)
-
Volume 60 (2009)
-
Volume 59 (2008)
-
Volume 58 (2007)
-
Volume 57 (2006)
-
Volume 56 (2005)
-
Volume 55 (2004)
-
Volume 54 (2003)
-
Volume 53 (2002)
-
Volume 52 (2001)
-
Volume 51 (2000)
-
Volume 50 (1999)
-
Volume 49 (1998)
-
Volume 48 (1997)
-
Volume 47 (1996)
-
Volume 46 (1995)
-
Volume 45 (1994)
-
Volume 44 (1993)
-
Volume 43 (1992)
-
Volume 42 (1991)
-
Volume 41 (1990)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1987)
-
Volume 37 (1986)
-
Volume 36 (1985)
-
Volume 35 (1984)
-
Volume 34 (1983)
-
Volume 33 (1982)
-
Volume 32 (1981)
-
Volume 31 (1980)
-
Volume 30 (1979)
-
Volume 29 (1978)
-
Volume 28 (1977)
-
Volume 27 (1976)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1973)
-
Volume 23 (1972)
-
Volume 22 (1971)
-
Volume 21 (1970)
-
Volume 20 (1969)
-
Volume 19 (1968)
-
Volume 18 (1967)
-
Volume 17 (1966)
-
Volume 16 (1965)
-
Volume 15 (1964)
-
Volume 14 (1963)
-
Volume 13 (1962)
-
Volume 12 (1961)
-
Volume 11 (1960)
-
Volume 10 (1959)
-
Volume 9 (1958)
-
Volume 8 (1957)
-
Volume 7 (1956)
-
Volume 6 (1955)
-
Volume 5 (1954)
-
Volume 4 (1953)
-
Volume 3 (1952)
-
Volume 2 (1951)
-
Volume 1 (1950)
-
Volume 0 (1932)