- Home
- A-Z Publications
- Annual Review of Ecology, Evolution, and Systematics
- Previous Issues
- Volume 45, 2014
Annual Review of Ecology, Evolution, and Systematics - Volume 45, 2014
Volume 45, 2014
-
-
Biodiversity and Ecosystem Functioning
Vol. 45 (2014), pp. 471–493More LessSpecies diversity is a major determinant of ecosystem productivity, stability, invasibility, and nutrient dynamics. Hundreds of studies spanning terrestrial, aquatic, and marine ecosystems show that high-diversity mixtures are approximately twice as productive as monocultures of the same species and that this difference increases through time. These impacts of higher diversity have multiple causes, including interspecific complementarity, greater use of limiting resources, decreased herbivory and disease, and nutrient-cycling feedbacks that increase nutrient stores and supply rates over the long term. These experimentally observed effects of diversity are consistent with predictions based on a variety of theories that share a common feature: All have trade-off-based mechanisms that allow long-term coexistence of many different competing species. Diversity loss has an effect as great as, or greater than, the effects of herbivory, fire, drought, nitrogen addition, elevated CO2, and other drivers of environmental change. The preservation, conservation, and restoration of biodiversity should be a high global priority.
-
-
-
On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms
Mark L. Siegal, and Jun-Yi LeuVol. 45 (2014), pp. 495–517More LessBiologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with nonadditive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
-
-
-
Ecology and Evolution of the African Great Lakes and Their Faunas
Vol. 45 (2014), pp. 519–545More LessThe Great Lakes of East Africa are collectively the earth's most remarkable and species-rich freshwater feature. Intrinsic biological factors and extrinsic ecological opportunities allowed much of the lakes' spectacular biological diversity to evolve through evolutionary (often adaptive) radiation and explosive speciation. Beyond evolutionary patterns and processes that led to this remarkable biodiversity and its astonishing morphological disparity, we highlight ecosystem functioning and complex biotic interactions such as coevolution. Comparative biogeographic patterns for vertebrates and invertebrates are discussed, as are patterns of diversity and disparity through the late Cenozoic. We demonstrate that the African Great Lakes, because of excellent fossil archives, are a phenomenal setting to integrate micro- and macroevolution. Unfortunately, these amazing ecosystems are also subject to various anthropogenic stressors at global and regional scales, which have already impacted their stability and threaten part of their extraordinary biodiversity with extinction.
-
-
-
Biome Shifts and Niche Evolution in Plants
Vol. 45 (2014), pp. 547–572More LessWhat factors influence whether a lineage can successfully transition into a new biome, and why have some biome shifts been more frequent than others? To orient this line of research we develop a conceptual framework in which the likelihood of a biome shift is a function of (a) exposure to contrasting environments over time, (b) the evolutionary accessibility of relevant adaptations, and (c) changing biotic interactions. We evaluate the literature on biome shifts in plants in relation to a set of hypotheses on the size, connectedness, and absolute age of biomes, as well as on the adaptability of particular lineages and ecological interactions over time. We also critique the phylogenetic inference of past biomes and a “global” model-based approach to biome evolution. More robust generalizations about biome shifts will require detailed studies of well-sampled and well-resolved clades, accounting for changes in the relevant abiotic and biotic factors through time.
-
-
-
Using Ancient DNA to Understand Evolutionary and Ecological Processes
Vol. 45 (2014), pp. 573–598More LessAncient DNA provides a unique means to record genetic change through time and directly observe evolutionary and ecological processes. Although mostly based on mitochondrial DNA, the increasing availability of genomic sequences is leading to unprecedented levels of resolution. Temporal studies of population genetics have revealed dynamic patterns of change in many large vertebrates, featuring localized extinctions, migrations, and population bottlenecks. The pronounced climate cycles of the Late Pleistocene have played a key role, reducing the taxonomic and genetic diversity of many taxa and shaping modern populations. Importantly, the complex series of events revealed by ancient DNA data is seldom reflected in current biogeographic patterns. DNA preserved in ancient sediments and coprolites has been used to characterize a range of paleoenvironments and reconstruct functional relationships in paleoecological systems. In the near future, genome-level surveys of ancient populations will play an increasingly important role in revealing, calibrating, and testing evolutionary processes.
-
-
-
Resolving Conflicts During the Evolutionary Transition to Multicellular Life
Vol. 45 (2014), pp. 599–620More LessThe evolution of multicellular life from unicellular ancestral types involves a hierarchical shift in the level at which selection operates. The shift, from cells to collectives, depends on the emergence of Darwinian properties at the level of nascent collectives. However, from the very earliest phases—even before the emergence of higher-level Darwinian properties—the stage is set for the evolution of conflict. Here we consider the range of ways by which cooperation and conflict manifest at different levels of biological organization. We give prominence to the emerging idea that conflict is a central driver in the evolution of biological complexity and, in particular, that solutions to conflict, notably those that arise from selection operating at different temporal scales, have fueled the evolution of individuality.
-
-
-
Speciation in Freshwater Fishes
Vol. 45 (2014), pp. 621–651More LessThe extraordinary species richness of freshwater fishes has attracted much research on mechanisms and modes of speciation. We here review research on speciation in freshwater fishes in light of speciation theory, and place this in a context of broad-scale diversity patterns in freshwater fishes. We discuss several major repeated themes in freshwater fish speciation and the speciation mechanisms they are frequently associated with. These include transitions between marine and freshwater habitats, transitions between discrete freshwater habitats, and ecological transitions within habitats, as well as speciation without distinct niche shifts. Major research directions in the years to come include understanding the transition from extrinsic environment-dependent to intrinsic reproductive isolation and its influences on species persistence and understanding the extrinsic and intrinsic constraints to speciation and how these relate to broad-scale diversification patterns through time.
-
Previous Volumes
-
Volume 55 (2024)
-
Volume 54 (2023)
-
Volume 53 (2022)
-
Volume 52 (2021)
-
Volume 51 (2020)
-
Volume 50 (2019)
-
Volume 49 (2018)
-
Volume 48 (2017)
-
Volume 47 (2016)
-
Volume 46 (2015)
-
Volume 45 (2014)
-
Volume 44 (2013)
-
Volume 43 (2012)
-
Volume 42 (2011)
-
Volume 41 (2010)
-
Volume 40 (2009)
-
Volume 39 (2008)
-
Volume 38 (2007)
-
Volume 37 (2006)
-
Volume 36 (2005)
-
Volume 35 (2004)
-
Volume 34 (2003)
-
Volume 33 (2002)
-
Volume 32 (2001)
-
Volume 31 (2000)
-
Volume 30 (1999)
-
Volume 29 (1998)
-
Volume 28 (1997)
-
Volume 27 (1996)
-
Volume 26 (1995)
-
Volume 25 (1994)
-
Volume 24 (1993)
-
Volume 23 (1992)
-
Volume 22 (1991)
-
Volume 21 (1990)
-
Volume 20 (1989)
-
Volume 19 (1988)
-
Volume 18 (1987)
-
Volume 17 (1986)
-
Volume 16 (1985)
-
Volume 15 (1984)
-
Volume 14 (1983)
-
Volume 13 (1982)
-
Volume 12 (1981)
-
Volume 11 (1980)
-
Volume 10 (1979)
-
Volume 9 (1978)
-
Volume 8 (1977)
-
Volume 7 (1976)
-
Volume 6 (1975)
-
Volume 5 (1974)
-
Volume 4 (1973)
-
Volume 3 (1972)
-
Volume 2 (1971)
-
Volume 1 (1970)
-
Volume 0 (1932)