- Home
- A-Z Publications
- Annual Review of Marine Science
- Issue Home
Annual Review of Marine Science - Current Issue
Volume 16, 2024
-
-
Designing More Informative Multiple-Driver Experiments
Vol. 16 (2024), pp. 513–536More LessFor decades, multiple-driver/stressor research has examined interactions among drivers that will undergo large changes in the future: temperature, pH, nutrients, oxygen, pathogens, and more. However, the most commonly used experimental designs—present-versus-future and ANOVA—fail to contribute to general understanding or predictive power. Linking experimental design to process-based mathematical models would help us predict how ecosystems will behave in novel environmental conditions. We review a range of experimental designs and assess the best experimental path toward a predictive ecology. Full factorial response surface, fractional factorial, quadratic response surface, custom, space-filling, and especially optimal and sequential/adaptive designs can help us achieve more valuable scientific goals. Experiments using these designs are challenging to perform with long-lived organisms or at the community and ecosystem levels. But they remain our most promising path toward linking experiments and theory in multiple-driver research and making accurate, useful predictions.
-
-
-
Welcoming More Participation in Open Data Science for the Oceans
Vol. 16 (2024), pp. 537–549More LessOpen science is a global movement happening across all research fields. Enabled by technology and the open web, it builds on years of efforts by individuals, grassroots organizations, institutions, and agencies. The goal is to share knowledge and broaden participation in science, from early ideation to making research outputs openly accessible to all (open access). With an emphasis on transparency and collaboration, the open science movement dovetails with efforts to increase diversity, equity, inclusion, and belonging in science and society. The US Biden–Harris Administration and many other US government agencies have declared 2023 the Year of Open Science, providing a great opportunity to boost participation in open science for the oceans. For researchers day-to-day, open science is a critical piece of modern analytical workflows with increasing amounts of data. Therefore, we focus this article on open data science—the tooling and people enabling reproducible, transparent, inclusive practices for data-intensive research—and its intersection with the marine sciences. We discuss the state of various dimensions of open science and argue that technical advancements have outpaced our field's culture change to incorporate them. Increasing inclusivity and technical skill building are interlinked and must be prioritized within the marine science community to find collaborative solutions for responding to climate change and other threats to marine biodiversity and society.
-
-
-
Combined Use of Short-Lived Radionuclides (234Th and 210Po) as Tracers of Sinking Particles in the Ocean
Vol. 16 (2024), pp. 551–575More LessRadionuclides can provide key information on the temporal dimension of environmental processes, given their well-known rates of radioactive decay and production. Naturally occurring radionuclides, such as 234Th and 210Po, have been used as powerful particle tracers in the marine environment to study particle cycling and vertical export. Since their application to quantify the magnitude of particulate organic carbon (POC) export in the 1990s, 234Th and, to a lesser extent, 210Po have been widely used to characterize the magnitude of the biological carbon pump (BCP). Combining both radionuclides, with their different half-lives, biogeochemical behaviors, and input sources to the ocean, can help to better constrain POC export and capture BCP dynamics that would be missed by a single tracer. Here, we review the studies that have simultaneously used 234Th and 210Po as tracers of POC export, emphasizing what can be learned from their joint application, and provide recommendations and future directions.
-
-
-
Metal Organic Complexation in Seawater: Historical Background and Future Directions
Vol. 16 (2024), pp. 577–599More LessThe speciation of most biologically active trace metals in seawater is dominated by complexation by organic ligands. This review traces the history of work in this area, from the early observations that showed surprisingly poor recoveries using metal preconcentration protocols to the present day, where advances in mass spectroscopy and stable isotope geochemistry are providing new insights into the structure, origin, fate, and biogeochemical impact of organic ligands. Many long-standing hypotheses about the specific biological origin of ligands such as siderophores in seawater are finally being validated. This work has revealed the complexity of organic complexation, with multiple ligands and, in some cases, timescales of ligand exchange that are much slower than originally thought. The influence of organic complexation on scavenging is now a key parameter in biogeochemical models of biologically essential metals, especially iron. New insights about the sources and sinks of ligands are required to enhance the usefulness of these models.
-