- Home
- A-Z Publications
- Annual Review of Physiology
- Previous Issues
- Volume 62, 2000
Annual Review of Physiology - Volume 62, 2000
Volume 62, 2000
- Review Articles
-
-
-
The Na-K-Cl Cotransporter of Secretory Epithelia
Vol. 62 (2000), pp. 515–534More Less▪ AbstractThe Na-K-Cl cotransporters are a class of ion transport proteins that transport Na, K, and Cl ions into and out of cells in an electrically neutral manner, in most cases with a stoichiometry of 1Na:1K:2Cl. To date, two Na-K-Cl cotransporter isoforms have been identified: NKCC1, which is present in a wide variety of secretory epithelia and non-epithelial cells; and NKCC2, which is present exclusively in the kidney, in the epithelial cells of the thick ascending limb of Henle’s loop and of the macula densa. Both NKCC isoforms represent part of a diverse family of cationchloride cotransport proteins that share a common predicted membrane topology; this family also includes Na-Cl cotransporters and multiple K-Cl cotransporter isoforms. In secretory epithelia, the regulation of NKCC1, which is typically present on the basolateral membrane, is tightly coordinated with that of other transporters, including apical Cl channels, to maintain cell volume and integrity during active salt and fluid secretion. Changes in intracellular [Cl] ([Cl]i) appear to be involved in this regulation of NKCC1, which is directly phosphorylated by an unknown protein kinase in response to various secretagogues as well as reductions in [Cl]i and cell volume. This review focuses on structure-function relationships within NKCC1 and on recent developments pertaining to NKCC1 regulation at cellular and molecular levels.
-
-
-
-
Chloride Secretion by the Intestinal Epithelium: Molecular Basis and Regulatory Aspects
Vol. 62 (2000), pp. 535–572More Less▪ AbstractChloride secretion is the major determinant of mucosal hydration thoughout the gastrointestinal tract, and chloride transport is also pivotal in the regulation of fluid secretion by organs that drain into the intestine. Moreover, there are pathological consequences if chloride secretion is either reduced or increased such as in cystic fibrosis and secretory diarrhea, respectively. With the molecular cloning of many of the proteins and regulatory factors that make up the chloride secretory mechanism, there have been significant advances in our understanding of this process at the cellular level. Similarly, emerging data have clarified the intercellular relationships that govern the extent of chloride secretion. The goal of our article is to review this area of investigation, with an emphasis on recent developments and their implications for the physiology and pathophysiology of chloride transport.
-
-
-
Structure and Regulation of Amiloride-Sensitive Sodium Channels
Vol. 62 (2000), pp. 573–594More Less▪ AbstractAmiloride-sensitive Na+ channels constitute a new class of proteins known as the ENaC-Deg family of ion channels. All members in this family share a common protein structure but differ in their ion selectivity, their affinity for the blocker amiloride, and in their gating mechanisms. These channels are expressed in many tissues of invertebrate and vertebrate organisms where they serve diverse functions varying from Na+ absorption across epithelia to being the receptors for neurotransmitters in the nervous system. Here, we review progress made during the last years in the characterization, regulation, and cloning of new amiloride-sensitive Na+ channels.
-
-
-
Branching Morphogenesis During Kidney Development
M. Pohl, R. O. Stuart, H. Sakurai, and S. K. NigamVol. 62 (2000), pp. 595–620More Less▪ AbstractEpithelial tissues such as kidney, lung, and breast arise through branching morphogenesis of a pre-existing epithelial structure. They share common morphological stages and a need for regulation of a similar set of developmental decisions—where to start; when, where, and in which direction to branch; and how many times to branch—decisions requiring regulation of cell proliferation, apoptosis, invasiveness, and cell motility. It is likely that similar molecular mechanisms exist for the epithelial branching program. Here we focus on the development of the collecting system of the kidney, where, from recent data using embryonic organ culture, cell culture models of branching morphogenesis, and targeted gene deletion experiments, the outlines of a working model for branching morphogenesis begin to emerge. Key branching morphogenetic molecules in this model include growth factors, transcription factors, distal effector molecules (such as extracellular matrix proteins, integrins, proteinases and their inhibitors), and genes regulating apoptosis and cell proliferation.
-
-
-
Intrarenal Dopamine: A Key Signal in the Interactive Regulation of Sodium Metabolism
Vol. 62 (2000), pp. 621–647More Less▪ AbstractThe kidney regulates sodium metabolism with extraordinary precision and sensitivity. This is accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between anti-natriuretic and natriuretic factors. Dopamine, produced in renal proximal tubule cells, plays a central role in this interactive network. Natriuretic hormones that are released from extrarenal sources, such as atrial natriuretic peptide, mediate some of their effects via renal dopamine receptors. On the level of the tubules, dopamine acts by opposing the effects of anti-natriuretic factors, such as angiotensin II and α-adrenergic receptors. Sodium retention leads to an increase in renal dopamine tonus, and the natriuretic effects of dopamine are more prominent under this condition. Inhibition or down-regulation of dopamine receptors significantly attenuates the natriuretic response to salt loading. Renal dopamine is modulated by the supply of filtered L-DOPA and the metabolism of dopamine via catechol-O-methyldopamine. The importance of dopamine as a natriuretic hormone is reflected by its capacity to inhibit the majority of renal tubule sodium transporters. Notably, the activity of Na+,K+ATPase is inhibited in most tubule segments by dopamine. Recent studies have elucidated many of the signaling pathways for renal dopamine receptors. Novel principles for homologous and heterologous sensitization of dopamine receptors have been detected that may explain some of the interaction between dopamine and other first messengers that modulate renal tubule sodium transport. A broad understanding of the renal dopamine system has become increasingly important, since there is now strong evidence from both clinical and experimental studies that dysregulation of the renal dopamine system plays a role in many forms of multigenetic hypertension.
-
-
-
Endothelial Signal Integration in Vascular Assembly
Vol. 62 (2000), pp. 649–671More Less▪ AbstractRegulated assembly of a highly specialized interconnecting network of vascular endothelial and supportive cells is fundamental to embryonic development and organogenesis, as well as to postnatal tissue repair in metazoans. This review advances an “endotheliocentric” model that defines tasks required of endothelial cells and describes molecular controls that regulate steps in activation, assembly, and maturation of new vessels. In addition to the classical assembly mechanisms—angiogenesis and vasculogenesis—endothelial cells are also recruited into vascular structures from the circulatory system in adult animals and from resident mesenchymally derived progenitors during organogenesis of kidney and other organs. Paracrine signaling cascades regulated by hypoxia initiate a sequentially coordinated series of endothelial responses, including matrix degradation, migration, proliferation, and morphogenetic remodeling. Surface receptors on committed endothelial lineage progenitors transduce cues from extracellular-matrix–associated proteins and cell-cell contact to direct migration, matrix attachment, proliferation, targeting and cell-cell assembly, and vessel maturation. Through their capacity to spatially segregate and temporally integrate a diverse range of extracellular signals, endothelial cells determine their migratory paths, cellular partners, and life-or-death responses to local cues.
-
-
-
Mechanisms of Guanylin Action Via Cyclic GMP in the Kidney
Vol. 62 (2000), pp. 673–695More Less▪ AbstractGuanylin, uroguanylin, and lymphoguanylin are small peptides that activate cell-surface guanylate cyclase receptors and influence cellular function via intracellular cGMP. Guanylins activate two receptors, GC-C and OK-GC, which are expressed in intestine and/or kidney. Elevation of cGMP in the intestine elicits an increase in electrolyte and water secretion. Activation of renal receptors by uroguanylin stimulates urine flow and excretion of sodium, chloride, and potassium. Intracellular cGMP pathways for guanylins include activation of PKG-II and/or indirect stimulation of PKA-II. The result is activation of CFTR and/or ClC-2 channel proteins to enhance the electrogenic secretion of chloride and bicarbonate. Similar cellular mechanisms may be involved in the renal responses to guanylin peptides. Uroguanylin serves as an intestinal natriuretic hormone in postprandial states, thus linking the digestive and renal organ systems in a novel endocrine axis. Therefore, uroguanylin participates in the complex physiological processes underlying the saliuresis that is elicited by a salty meal.
-
-
-
The Human Language Faculty as an Organ
Vol. 62 (2000), pp. 697–722More Less▪ AbstractDevelopments in the study of language and cognition give increasing credibility to the view that human knowledge of natural language results from—and is made possible by—a biologically determined capacity specific both to this domain and to our species. The functional properties of this capacity develop along a regular maturational path, such that it seems more appropriate to speak of knowledge of our own language as growing rather than as being learned. That our learning of language results from a specific innate capacity rather than by general mechanisms of induction is supported by the extent to which we can be shown to know things that we could not have learned from observation of any plausible available teaching. The domainspecificity of the language faculty is supported by the many dissociations that can be observed between control of language structure and other cognitive functions. Finally, the species-specificity of the human language faculty is supported by the observation that (absent severe pathology) every human child exposed in even limited ways to the triggering experience of linguistic data develops a full, rich capacity that is essentially homogeneous with that of the surrounding community. Efforts to teach human language to other species, however, have uniformly failed. These considerations make it plausible that human language arises in biologically based ways that are quite comparable to those directing other aspects of the structure of the organism. The language organ, in this sense, can be interpreted in a functional sense, and not as implying an anatomical location comparable to that of, say, the kidney.
-
-
-
Neural Adaptation in the Generation of Rhythmic Behavior
Vol. 62 (2000), pp. 723–753More Less▪ AbstractMotor systems can adapt rapidly to changes in external conditions and to switching of internal goals. They can also adapt slowly in response to training, alterations in the mechanics of the system, and any changes in the system resulting from injury. This article reviews the mechanisms underlying short- and long-term adaptation in rhythmic motor systems. The neuronal networks underlying the generation of rhythmic motor patterns (central pattern generators; CPGs) are extremely flexible. Neuromodulators, central commands, and afferent signals all influence the pattern produced by a CPG by altering the cellular and synaptic properties of individual neurons and the coupling between different populations of neurons. This flexibility allows the generation of a variety of motor patterns appropriate for the mechanical requirements of different forms of a behavior. The matching of motor output to mechanical requirements depends on the capacity of pattern-generating networks to adapt to slow changes in body mechanics and persistent errors in performance. Afferent feedback from body and limb proprioceptors likely plays an important role in driving these long-term adaptive processes.
-
-
-
Ligand-Gated Ion Channel Interactions with Cytoskeletal and Signaling Proteins
Vol. 62 (2000), pp. 755–778More Less▪ AbstractIn recent years, it has become apparent that ligand-gated ion channels (ionotropic receptors) in the neuronal plasma membrane interact via their cytoplasmic domains with a multitude of intracellular proteins. Different classes of ligand-gated channels associate with distinct sets of intracellular proteins, often through specialized scaffold proteins containing PDZ domains. These specific interactions link the receptor channel to the cortical cytoskeleton and to appropriate signal transduction pathways in the cell. Thus ionotropic receptors are components of extensive protein complexes that are likely involved in the subcellular targeting, cytoskeletal anchoring, and localized clustering of the receptors at specific sites on the neuronal surface. In addition to structural functions, receptor-associated proteins can play important roles as activity modulators or downstream effectors of ligand-gated channels.
-
-
-
Insights from Mouse Models into the Molecular Basis of Neurodegeneration
N. Heintz, and H. Y. ZoghbiVol. 62 (2000), pp. 779–802More Less▪ AbstractThanks largely to cloning the genes for several neurodegenerative diseases over the past decade and the existence of mouse mutants, the molecular basis of neurodegeneration is finally beginning to yield some of its secrets. We discuss what has been learned about the pathogenesis of “triplet repeat” diseases through mouse models for spinocerebellar ataxia types 1 and 3 and Huntington disease, including the roles of nuclear aggregates and protein cleavage. We also discuss the neurologic phenotypes that arise from mutations in neurotransmitter receptors (lurcher mice) and ion channels (weaver, leaner, and tottering mice), drawing parallels between ischemic cell death and the neurodegeneration that occurs in the lurcher mouse. Finally, we discuss common mechanisms of cell death and lessons learned from these mouse models that might have broader relevance to other neurologic disorders.
-
-
-
Spatial Considerations for Stimulus-Dependent Transcription in Neurons
Vol. 62 (2000), pp. 803–823More Less▪ AbstractMost neurons have elaborate dendrites as well as an axon emanating from the cell body that form synaptic connections with one or many target cells, which may be located a considerable distance from the cell body. Such complex and impressive morphologies allow some types of neurons to integrate inputs from one to many thousands of pre-synaptic partners and to rapidly propagate electrical signals, often over long distances, to post-synaptic target cells. Much slower, non-electrical signals also propagate from dendrites and distal axons to neuronal nuclei that influence survival, growth, and plasticity. The distances between distal dendrites and/or distal axons and cell bodies of neurons can be hundreds of microns to more than one meter. This long-range biochemical signal propagation from distal dendrites and distal axons to neuronal nuclei is entirely unique to neurons. This review is focused on excitatory neurotransmitter signaling from dendritic synapses to neuronal nuclei as well as on retrograde growth factor signaling from distal axons to neuronal nuclei.
-
-
-
Lung Development and Function in Preterm Infants in the Surfactant Treatment Era
Vol. 62 (2000), pp. 825–846More Less▪ AbstractMortality of infants of <1-kg birth weight has decreased because of surfactant treatments, antenatal glucocorticoid treatments, and new ventilation strategies. However, many of these infants develop a chronic lung disease characterized by an arrest of lung development and interference with alveolarization. Antenatal glucocorticoids can induce early lung maturation clinically, but new information from transgenic and other experimental models indicates that traditional explanations for glucocorticoid effects on the developing lung are inadequate. These very preterm infants have lungs with small lung gas volumes and delicate lung tissue that are susceptible to injury with the initiation of ventilation and subsequent ventilation. Antenatal proinflammatory exposures are frequent in very preterm infants, and postnatal injury is associated with elevations of proinflammatory cytokines in the lungs. One hypothesis is that proinflammatory cytokines can promote or interfere with lung development as well as promote lung injury. Mechanisms of lung injury being characterized in the adult lung may have unique characteristics in the developing lung.
-
-
-
Ventilatory Responses to Changes in Temperature in Mammals and Other Vertebrates
Vol. 62 (2000), pp. 847–874More Less▪ AbstractThis article reviews the relationship between pulmonary ventilation (v̇e) and metabolic rate (oxygen consumption) during changes in ambient temperature. The main focus is on mammals, although for comparative purposes the v̇e responses of ectothermic vertebrates are also discussed. First, the effects of temperature on pulmonary mechanics, chemoreceptors, and airway receptors are summarized. Then we review the main v̇e responses to cold and warm stimuli and their interaction with exercise, hypoxia, or hypercapnia. In these cases, mammals attempt to maintain both oxygenation and body temperature, although conflicts can arise because of the respiratory heat loss associated with the increase in ventilation. Finally, we consider the v̇e responses of mammals when body temperature changes, as during torpor, fever, sleep, and hypothermia. In ectotherms, during changes in temperature, v̇e control becomes part of a general strategy to maintain constant relative alkalinity and ensure a constancy of pH-dependent protein functions (alphastat regulation). In mammals on the other hand, v̇e control is aimed to balance metabolic needs with homeothermy. Therefore, alphastat regulation in mammals seems to have a low priority, and it may be adopted only in exceptional cases.
-
-
-
Role of Transcription Factors in Fetal Lung Development and Surfactant Protein Gene Expression
Vol. 62 (2000), pp. 875–915More Less▪ AbstractBranching morphogenesis of the lung and differentiation of specialized cell populations is dependent upon reciprocal interactions between epithelial cells derived from endoderm of embryonic foregut and surrounding mesenchymal cells. These interactions are mediated by elaboration and concerted actions of a variety of growth and differentiation factors binding to specific receptors. Such factors include members of the fibroblast growth factor family, sonic hedgehog, members of the transforming growth factor-β family, epidermal growth factor, and members of the platelet-derived growth factor family. Hormones that increase cyclic AMP formation, glucocorticoids, and retinoids also play important roles in branching morphogenesis, alveolar development, and cellular differentiation. Expression of the genes encoding these morphogens and their receptors is controlled by a variety of transcription factors that also are highly regulated. Several of these transcription factors serve dual roles as regulators of genes involved in early lung development and in specialized functions of differentiated cells. Targeted null mutations of genes encoding many of these morphogens and transcription factors have provided important insight into their function during lung development. In this chapter, the cellular and molecular mechanisms that control lung development are considered, as well as those that regulate expression of the genes encoding the surfactant proteins.
-
Previous Volumes
-
Volume 86 (2024)
-
Volume 85 (2023)
-
Volume 84 (2022)
-
Volume 83 (2021)
-
Volume 82 (2020)
-
Volume 81 (2019)
-
Volume 80 (2018)
-
Volume 79 (2017)
-
Volume 78 (2016)
-
Volume 77 (2015)
-
Volume 76 (2014)
-
Volume 75 (2013)
-
Volume 74 (2012)
-
Volume 73 (2011)
-
Volume 72 (2010)
-
Volume 71 (2009)
-
Volume 70 (2008)
-
Volume 69 (2007)
-
Volume 68 (2006)
-
Volume 67 (2005)
-
Volume 66 (2004)
-
Volume 65 (2003)
-
Volume 64 (2002)
-
Volume 63 (2001)
-
Volume 62 (2000)
-
Volume 61 (1999)
-
Volume 60 (1998)
-
Volume 59 (1997)
-
Volume 58 (1996)
-
Volume 57 (1995)
-
Volume 56 (1994)
-
Volume 55 (1993)
-
Volume 54 (1992)
-
Volume 53 (1991)
-
Volume 52 (1990)
-
Volume 51 (1989)
-
Volume 50 (1988)
-
Volume 49 (1987)
-
Volume 48 (1986)
-
Volume 47 (1985)
-
Volume 46 (1984)
-
Volume 45 (1983)
-
Volume 44 (1982)
-
Volume 43 (1981)
-
Volume 42 (1980)
-
Volume 41 (1979)
-
Volume 40 (1978)
-
Volume 39 (1977)
-
Volume 38 (1976)
-
Volume 37 (1975)
-
Volume 36 (1974)
-
Volume 35 (1973)
-
Volume 34 (1972)
-
Volume 33 (1971)
-
Volume 32 (1970)
-
Volume 31 (1969)
-
Volume 30 (1968)
-
Volume 29 (1967)
-
Volume 28 (1966)
-
Volume 27 (1965)
-
Volume 26 (1964)
-
Volume 25 (1963)
-
Volume 24 (1962)
-
Volume 23 (1961)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1958)
-
Volume 19 (1957)
-
Volume 18 (1956)
-
Volume 17 (1955)
-
Volume 16 (1954)
-
Volume 15 (1953)
-
Volume 14 (1952)
-
Volume 13 (1951)
-
Volume 12 (1950)
-
Volume 11 (1949)
-
Volume 10 (1948)
-
Volume 9 (1947)
-
Volume 8 (1946)
-
Volume 7 (1945)
-
Volume 6 (1944)
-
Volume 5 (1943)
-
Volume 4 (1942)
-
Volume 3 (1941)
-
Volume 2 (1940)
-
Volume 1 (1939)
-
Volume 0 (1932)