1932

Abstract

Bird migration has long been a subject of fascination for humankind and is a behavior that is both intricate and multifaceted. In recent years, advances in technology, particularly in the fields of genomics and animal tracking, have enabled significant progress in our understanding of this phenomenon. In this review, we provide an overview of the latest advancements in the genetics of bird migration, with a particular focus on genomics, and examine various factors that contribute to the evolution of this behavior, including climate change. Integration of research from the fields of genomics, ecology, and evolution can enhance our comprehension of the complex mechanisms involved in bird migration and inform conservation efforts in a rapidly changing world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021122-092239
2024-02-15
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021122-092239.html?itemId=/content/journals/10.1146/annurev-animal-021122-092239&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fudickar AM, Alex EJ, Ellen D, Ketterson ED. 2021. Animal migration: an overview of one of nature's great spectacles. Annu. Rev. Ecol. Evol. Syst. 52:479–97
    [Google Scholar]
  2. 2.
    Pulido F. 2007. The genetics and evolution of avian migration. BioScience 57:165–74
    [Google Scholar]
  3. 3.
    Liedvogel M, Åkesson S, Staffan B. 2011. The genetics of migration on the move. Trends Ecol. Evol. 26:561–69
    [Google Scholar]
  4. 4.
    Kays R, Crofoot MC, Jetz W, Wikelski M. 2015. Terrestrial animal tracking as an eye on life and planet. Science 348:aaa2478
    [Google Scholar]
  5. 5.
    Menz MH, Scacco M, Bürki-Spycher HM, Williams HJ, Reynolds DR et al. 2022. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. Science 377:764–68
    [Google Scholar]
  6. 6.
    Liedvogel M. 2019. Genetics of animal and bird migration. Encyclopedia of Animal Behavior ed. JC Choe pp. 323–30 New York/London: Academic
    [Google Scholar]
  7. 7.
    Newton I, Dale L. 1996. Relationship between migration and latitude among west European birds. J. Anim. Ecol. 65:137–46
    [Google Scholar]
  8. 8.
    Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M et al. 2016. Costs of migratory decisions: a comparison across eight white stork populations. Sci. Adv. 2:e1500931
    [Google Scholar]
  9. 9.
    Klaassen RH, Hake M, Strandberg R, Koks BJ, Trierweiler C et al. 2014. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83:176–84
    [Google Scholar]
  10. 10.
    Somveille M, Rodrigues AS, Manica A. 2018. Energy efficiency drives the global seasonal distribution of birds. Nat. Ecol. Evol. 2:962–69
    [Google Scholar]
  11. 11.
    Soriano-Redondo A, Gutiérrez JS, Hodgson D, Bearhop S. 2020. Migrant birds and mammals live faster than residents. Nat. Commun. 11:5719
    [Google Scholar]
  12. 12.
    Alerstam T, Hedenström A, Åkesson S. 2003. Long-distance migration: evolution and determinants. Oikos 103:247–60
    [Google Scholar]
  13. 13.
    Berthold P, Helbig AJ, Mohr G, Querner U. 1992. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360:668–70
    [Google Scholar]
  14. 14.
    Able KP, Belthoff JR. 1998. Rapid ‘evolution’ of migratory behaviour in the introduced house finch of eastern North America. Proc. R. Soc. Lond. B 265:2063–71
    [Google Scholar]
  15. 15.
    Urbanek RP, Fondow LA, Satyshur CD, Lacy AE, Zimorski SE et al. 2005. First cohort of migratory whooping cranes reintroduced to eastern North America: the first year after release. Proceedings of the Ninth North American Crane Workshop, January 17–20, 2003 F Chavez-Ramirez 213–24 Sacramento: N. Am. Crane Work. Group
    [Google Scholar]
  16. 16.
    Madsen J, Schreven KH, Jensen GH, Johnson FA, Nilsson L et al. 2023. Rapid formation of new migration route and breeding area by Arctic geese. Curr. Biol. 33:1162–70
    [Google Scholar]
  17. 17.
    Perdeck AC. 1958. Two types of orientation in migrating starlings, Sturnus yulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 55:1–2
    [Google Scholar]
  18. 18.
    Piersma T, Loonstra AJ, Verhoeve MA, Oudman T. 2020. Rethinking classic starling displacement experiments: Evidence for innate or for learned migratory directions?. J. Avian Biol. 51:e02337
    [Google Scholar]
  19. 19.
    Klein H, Berthold P, Gwinner E. 1973. Der Zug europäischer Garten- und Mönchsgrasmücken (Sylvia borin und S. atricapilla). Vogelwarte 27:73–134
    [Google Scholar]
  20. 20.
    Zink G. 1973. Der Zug europäischer Singvögel: Ein Atlas der Wiederfunde beringter Vögel Radolfzell, Ger: Max Planck Inst. Anim. Behav.
  21. 21.
    Berthold P, Querner U. 1981. Genetic basis of migratory behavior in European warblers. Science 212:77–79
    [Google Scholar]
  22. 22.
    Helbig AJ. 1991. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28:9–12
    [Google Scholar]
  23. 23.
    Helbig AJ. 1996. Genetic basis, mode of inheritance and evolutionary changes of migratory directions in palearctic warblers (Aves: Sylviidae). J. Evol. Biol. 199:49–55
    [Google Scholar]
  24. 24.
    Bensch S, Andersson T, Åkesson S. 1999. Morphological and molecular variation across a migratory divide in willow warblers, Phylloscopus trochilus. Evolution 53:1925–35
    [Google Scholar]
  25. 25.
    Bensch S, Akesson S, Irwin DE. 2002. The use of AFLP to find an informative SNP: genetic differences across a migratory divide in willow warblers. Mol. Ecol. 11:2359–66
    [Google Scholar]
  26. 26.
    Bensch S, Grahn M, Müller N, Gay L, Akesson S. 2009. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 18:3087–96
    [Google Scholar]
  27. 27.
    Chamberlain CP, Bensch S, Feng X, Åkesson S, Andersson T. 2000. Stable isotopes examined across a migratory divide in Scandinavian willow warblers (Phylloscopus trochilus trochilus and Phylloscopus trochilus acredula) reflect their African winter quarters. Proc. R. Soc. Lond. B 267:43–48
    [Google Scholar]
  28. 28.
    Liedvogel M, Lundberg M. 2014. The genetics of migration. Animal Movement Across Scales L-A Hansson, S Åkesson 219–31 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  29. 29.
    Lundberg M, Liedvogel M, Larson K, Sigeman H, Grahn M et al. 2017. Genetic differences between willow warbler migratory phenotypes are few and cluster in large haplotype blocks. Evol. Lett. 1:155–68
    [Google Scholar]
  30. 30.
    Cramp S, Brooks DJ 1992. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic 6: Warblers Oxford, UK: Oxford Univ. Press
  31. 31.
    Bensch S, Bengtsson G, Åkesson S. 2006. Patterns of stable isotope signatures in willow warbler Phylloscopus trochilus feathers collected in Africa. J. Avian Biol. 37:323–30
    [Google Scholar]
  32. 32.
    Lerche-Jørgensen M, Willemoes M, Tøttrup AP, Snell KRS, Thorup K. 2017. No apparent gain from continuing migration for more than 3000 kilometres: Willow warblers breeding in Denmark winter across the entire northern Savannah as revealed by geolocators. Mov. Ecol. 5:17
    [Google Scholar]
  33. 33.
    Sokolovskis K, Bianco G, Willemoes M, Solovyeva D, Bensch S et al. 2018. Ten grams and 13,000 km on the wing-route choice in willow warblers Phylloscopus trochilus yakutensis migrating from Far East Russia to East Africa. Mov. Ecol. 6:20
    [Google Scholar]
  34. 34.
    Lundberg M, Mackintosh A, Petri A, Bensch S. 2023. Inversions maintain differences between migratory phenotypes of a songbird. Nat. Commun. 14:452
    [Google Scholar]
  35. 35.
    Caballero-López V, Lundberg M, Sokolovskis K, Bensch S. 2022. Transposable elements mark a repeat-rich region associated with migratory phenotypes of willow warblers (Phylloscopus trochilus). Mol. Ecol. 31:1128–41
    [Google Scholar]
  36. 36.
    Sokolovskis K, Lundberg M, Åkesson S, Willemoes M, Zhao TH et al. 2023. Migration direction in a songbird explained by two loci. Nat. Commun. 14:165
    [Google Scholar]
  37. 37.
    Delmore KE, Irwin DE. 2014. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17:1211–18
    [Google Scholar]
  38. 38.
    Delmore KE, Toews DPL, Germain RR, Owens GL, Irwin DE. 2016. The genetics of seasonal migration and plumage color. Curr. Biol. 26:2167–73
    [Google Scholar]
  39. 39.
    Ruegg KC, Smith TB. 2002. Not as the crow flies: a historical explanation for circuitous migration in Swainson's thrush (Catharus ustulatus). Proc. R. Soc. Lond. B 269:1375–81
    [Google Scholar]
  40. 40.
    Delmore KE, Fox JW, Irwin DE. 2012. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc. R. Soc. B 279:4582–89
    [Google Scholar]
  41. 41.
    Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB et al. 2018. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359:83–86
    [Google Scholar]
  42. 42.
    Bay RA, Karp DS, Saracco JF, Anderegg RL, Frishkoff LO et al. 2021. Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecol. Lett. 24:819–28
    [Google Scholar]
  43. 43.
    Thorup K, Pedersen L, Da Fonseca RR, Naimi B, Nogués-Bravo D et al. 2021. Response of an Afro-Palearctic bird migrant to glaciation cycles. PNAS 118:e2023836118
    [Google Scholar]
  44. 44.
    Toews DP, Taylor SA, Streby HM, Kramer GR, Lovette IJ. 2019. Selection on VPS13A linked to migration in a songbird. PNAS 116:18272–74
    [Google Scholar]
  45. 45.
    Kramer GR, Streby HM, Peterson SM, Lehman JA, Buehler DA et al. 2017. Nonbreeding isolation and population-specific migration patterns among three populations of Golden-winged Warblers. Condor 119:108–21
    [Google Scholar]
  46. 46.
    Kramer GR, Andersen DE, Buehler DA, Wood PB, Peterson SM et al. 2018. Population trends in Vermivora warblers are linked to strong migratory connectivity. PNAS 115:E3192–200
    [Google Scholar]
  47. 47.
    Gu Z, Pan S, Lin Z, Hu L, Dai X et al. 2021. Climate-driven flyway changes and memory-based long-distance migration. Nature 591:259–64
    [Google Scholar]
  48. 48.
    Pulido F, Berthold P. 2003. Quantitative genetic analysis of migratory behaviour. Avian Migration P Berthold, E Gwinner, E Sonnenschein 53–77 Berlin: Springer
    [Google Scholar]
  49. 49.
    Pulido F, Coppack T. 2004. Correlation between timing of juvenile moult and onset of migration in the blackcap, Sylvia atricapilla. Anim. Behav. 68:167–73
    [Google Scholar]
  50. 50.
    Teplitsky C, Mouawad NG, Balbontin J, De Lope F, Møller AP. 2011. Quantitative genetics of migration syndromes: a study of two barn swallow populations. J. Evol. Biol. 24:2025–39
    [Google Scholar]
  51. 51.
    Berthold P. 1999. A comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich 70:1–11
    [Google Scholar]
  52. 52.
    Åkesson S, Hedenström A. 2007. How migrants get there: migratory performance and orientation. BioScience 57:123–33
    [Google Scholar]
  53. 53.
    Piersma T, Pérez-Tris J, Mouritsen H, Bauchinger U, Bairlein F. 2005. Is there a “migratory syndrome” common to all migrant birds?. Ann. N.Y. Acad. Sci. 1046:282–93
    [Google Scholar]
  54. 54.
    Dingle H. 2006. Animal migration: Is there a common migratory syndrome?. J. Ornithol. 147:212–20
    [Google Scholar]
  55. 55.
    Merlin C, Liedvogel M. 2019. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J. Exp. Biol. 222:jeb191890
    [Google Scholar]
  56. 56.
    Mouritsen H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature 558:50–59
    [Google Scholar]
  57. 57.
    Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B et al. 2017. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos. Trans. R. Soc. B 372:20160252
    [Google Scholar]
  58. 58.
    Gwinner EG. 1972. Endogenous timing factors in bird migration. Anim. Orientat. Navig. 1972:321–38
    [Google Scholar]
  59. 59.
    Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL et al. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–25
    [Google Scholar]
  60. 60.
    Johnsen A, Fidler AE, Kuhn S, Carter KL, Hoffmann A et al. 2007. Avian Clock gene polymorphism: evidence for a latitudinal cline in allele frequencies. Mol. Ecol. 16:4867–80
    [Google Scholar]
  61. 61.
    Liedvogel M, Szulkin M, Knowles SC, Wood MJ, Sheldon BC. 2009. Phenotypic correlates of Clock gene variation in a wild blue tit population: evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18:2444–56
    [Google Scholar]
  62. 62.
    Peterson MP, Abolins-Abols M, Atwell JW, Rice RJ, Milá B et al.2013 Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2:115
    [Google Scholar]
  63. 63.
    Bazzi G, Ambrosini R, Caprioli M, Costanzo A, Liechti F et al. 2015. Clock gene polymorphism and scheduling of migration: a geolocator study of the barn swallow Hirundo rustica. Sci. Rep. 5:12443
    [Google Scholar]
  64. 64.
    Contina A, Bridge ES, Ross JD, Shipley JR, Kelly JF. 2018. Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine. PLOS ONE 13:e019859
    [Google Scholar]
  65. 65.
    Saino N, Romano M, Caprioli M, Fasola M, Lardelli R et al. 2013. Timing of molt of barn swallows is delayed in a rare Clock genotype. PeerJ 1:e17
    [Google Scholar]
  66. 66.
    Dor R, Lovette IJ, Safran RJ, Billerman SM, Huber GH et al. 2011. Low variation in the polymorphic clock gene poly-Q region despite population genetic structure across barn swallow (Hirundo rustica) populations. PLOS ONE 6:e28843
    [Google Scholar]
  67. 67.
    Dor R, Cooper CB, Lovette IJ, Massoni V, Bulit F et al. 2012. Clock gene variation in Tachycineta swallows. Ecol. Evol. 2:95–105
    [Google Scholar]
  68. 68.
    Liedvogel M, Sheldon BC. 2010. Low variability and absence of phenotypic correlates of Clock gene variation in the great tit. J. Avian Biol. 41:543–50
    [Google Scholar]
  69. 69.
    Mueller JC, Pulido F, Kempenaers B. 2011. Identification of a gene associated with avian migratory behaviour. Philos. Trans. R. Soc. B 278:2848–56
    [Google Scholar]
  70. 70.
    Parody M. 2018. Genetics of migration timing in bar-tailed godwits PhD Diss. Massey Univ. Manawatū, N.Z.:
  71. 71.
    Le Clercq L-S, Bazzi G, Cecere JG, Gianfranceschi L, Grobler JP et al. 2023. Time trees and clock genes: a systematic review and comparative analysis of contemporary avian migration genetics. Biol. Rev. 98:1051–80
    [Google Scholar]
  72. 72.
    Lugo Ramos JS, Delmore KE, Liedvogel M. 2017. Candidate genes for migration do not distinguish migratory and non-migratory birds. J. Comp. Physiol. A 203:383–97
    [Google Scholar]
  73. 73.
    Veen T, Svedin N, Forsman JT, Hjernquist MB, Qvarnström A et al. 2007. Does migration of hybrids contribute to post-zygotic isolation in flycatchers?. Proc. R. Soc. B 274:707–12
    [Google Scholar]
  74. 74.
    Veen T, Hjernquist MB, Van Wilgenburg SL, Hobson KA, Folmer E et al. 2014. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach. PLOS ONE 9:e98075
    [Google Scholar]
  75. 75.
    Yohannes E, Lee RW, Jochimsen MC, Hansson B. 2011. Stable isotope ratios in winter-grown feathers of great reed warblers Acrocephalus arundinaceus, clamorous reed warblers A. stentoreus and their hybrids in a sympatric breeding population in Kazakhstan. Ibis 153:502–8
    [Google Scholar]
  76. 76.
    Delmore K, Illera JC, Pérez-Tris J, Segelbacher G, Lugo Ramos JS et al. 2020. The evolutionary history and genomics of European blackcap migration. eLife 9:e54462
    [Google Scholar]
  77. 77.
    Väli Ü, Mirski P, Sellis U, Dagys M, Maciorowski G. 2018. Genetic determination of migration strategies in large soaring birds: evidence from hybrid eagles. Proc. R. Soc. B 285:20180855
    [Google Scholar]
  78. 78.
    Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW et al. 2010. Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. PNAS 107:2078–81
    [Google Scholar]
  79. 79.
    Butler PJ. 2016. The physiological basis of bird flight. Philos. Trans. R. Soc. B 371:20150384
    [Google Scholar]
  80. 80.
    Gwinner E. 1968. Artspezifische Muster der Zugunruhe bei Laubsängern und ihre mögliche Bedeutung für die Beendigung des Zuges im Winterquartier. . Z. Tierpsychol. 25:843–53
    [Google Scholar]
  81. 81.
    Berthold P, Gwinner E, Klein H, Westrich P. 1972. Beziehungen zwischen Zugunruhe und Zugablauf bei Gartenund Mönchsgrasmücke (Sylvia borin und S. atricapilla). Z. Tierpsychol. 30:26–35
    [Google Scholar]
  82. 82.
    Berthold P. 1973. Relationships between migratory restlessness and migratory distance in six Sylvia species. Ibis 115:594–99
    [Google Scholar]
  83. 83.
    Berthold P. 2003. Genetic basis and evolutionary aspects of bird migration. Adv. Study Behav. 33:175–229
    [Google Scholar]
  84. 84.
    Bazzi G, Galimberti A, Hays QR, Bruni I, Cecere JG et al. 2016. Adcyap1 polymorphism covaries with breeding latitude in a Nearctic migratory songbird, the Wilson's warbler (Cardellina pusilla). Ecol. Evol. 6:3226–39
    [Google Scholar]
  85. 85.
    de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC et al. 2022. Shorebirds’ longer migratory distances are associated with larger Adcyap1 microsatellites and greater morphological complexity of hippocampal astrocytes. Front. Psychol. 12:6679
    [Google Scholar]
  86. 86.
    Ferguson GD, Storm DR. 2004. Why calcium-stimulated adenylyl cyclases?. Physiology 19:271–76
    [Google Scholar]
  87. 87.
    Zhang M, Moon C, Chan GCK, Yang L, Zheng F et al. 2008. Ca-stimulated type 8 adenylyl cyclase is required for rapid acquisition of novel spatial information and for working/episodic-like memory. J. Neurosci. 28:4736–44
    [Google Scholar]
  88. 88.
    Swaddle JP, Witter MS, Cuthill IC, Budden A, McCowen P. 1996. Plumage condition affects flight performance in common starlings: implications for developmental homeostasis, abrasion and moult. J. Avian Biol. 27:103–11
    [Google Scholar]
  89. 89.
    Norris DR, Marra PP, Montgomerie R, Kyser TK, Ratcliffe LM. 2004. Reproductive effort, molting latitude, and feather color in a migratory songbird. Science 306:2249–50
    [Google Scholar]
  90. 90.
    Jenni L, Winkler R. 2020. Moult and Ageing of European Passerines London: Bloomsbury Publ, 2nd ed.
  91. 91.
    Tonra CM, Reudink MW. 2018. Expanding the traditional definition of molt-migration. Auk 135:1123–32
    [Google Scholar]
  92. 92.
    Tomotani BM, Muijres FT. 2019. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack. J. Exp. Biol. 222:jeb195396
    [Google Scholar]
  93. 93.
    Berthold P, Querner U. 1995. Microevolutionary aspects of bird migration based on experimental results. Isr. J. Ecol. Evol. 41:377–85
    [Google Scholar]
  94. 94.
    Helm B, Gwinner E. 1999. Timing of postjuvenal molt in African (Saxicola torquata axillaris) and European (Saxicola torquata rubicola) stonechats: effects of genetic and environmental factors. Auk 116:589–603
    [Google Scholar]
  95. 95.
    Contina A, Bossu CM, Allen D, Wunder MB, Ruegg KC. 2023. Genetic and ecological drivers of molt in a migratory bird. Sci. Rep. 13:814
    [Google Scholar]
  96. 96.
    Busby L, Aceituno C, McQueen C, Rich CA, Ros MA et al. 2020. Sonic hedgehog specifies flight feather positional information in avian wings. Development 147:dev188821
    [Google Scholar]
  97. 97.
    Pays L, Charvet I, Hemming FJ, Saxod R. 1997. Close link between cutaneous nerve pattern development and feather morphogenesis demonstrated by experimental production of neo-apteria and ectopic feathers: implication of chondroitin sulphate proteoglycans and other matrix molecules. Anat. Embryol. 195:457–66
    [Google Scholar]
  98. 98.
    Lockwood R, Swaddle JP, Rayner JM. 1998. Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J. Avian Biol. 29:273–92
    [Google Scholar]
  99. 99.
    Bowlin MS, Wikelski M. 2008. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLOS ONE 3:e2154
    [Google Scholar]
  100. 100.
    Tarka M, Åkesson M, Beraldi D, Hernandez-Sanchez J, Hasselquist D et al. 2010. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc. R. Soc. B 277:2361–69
    [Google Scholar]
  101. 101.
    Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H. 2012. QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Mol. Ecol. 21:329–39
    [Google Scholar]
  102. 102.
    Hansson B, Sigeman H, Stervander M, Tarka M, Ponnikas S et al. 2018. Contrasting results from GWAS and QTL mapping on wing length in great reed warblers. Mol. Ecol. Resour. 18:867–76
    [Google Scholar]
  103. 103.
    McWilliams SR, Ramenofsky M, Pierce BJ. 2022. Physiological challenges of migration. Sturkie's Avian Physiology CG Scanes, S Dridi 1311–52 Cambridge, MA: Academic
    [Google Scholar]
  104. 104.
    Weber JM. 2009. The physiology of long-distance migration: extending the limits of endurance metabolism. J. Exp. Biol. 212:593–97
    [Google Scholar]
  105. 105.
    Price ER, Bauchinger U, Zajac DM, Cerasale DJ, McFarlan JT et al. 2011. Migration- and exercise-induced changes to flight muscle size in migratory birds and association with IGF1 and myostatin mRNA expression. J. Exp. Biol. 214:2823–31
    [Google Scholar]
  106. 106.
    DeMoranville KJ, Corder KR, Hamilton A, Russell DE, Huss JM et al. 2019. PPAR expression, muscle size and metabolic rates across the gray catbird's annual cycle are greatest in preparation for fall migration. J. Exp. Biol. 222:jeb198028
    [Google Scholar]
  107. 107.
    Piersma T, Gill RE Jr., Ruthrauff DR, Guglielmo CG, Conklin JR et al. 2022. The Pacific as the world's greatest theater of bird migration: Extreme flights spark questions about physiological capabilities, behavior, and the evolution of migratory pathways. Ornithology 139:ukab086
    [Google Scholar]
  108. 108.
    Sharma A, Sur S, Tripathi V, Kumar V. 2023. Genetic control of avian migration: insights from studies in latitudinal passerine migrants. Genes 14:1191
    [Google Scholar]
  109. 109.
    Franchini P, Irisarri I, Fudickar A, Schmidt A, Meyer A et al. 2017. Animal tracking meets migration genomics: transcriptomic analysis of a partially migratory bird species. Mol. Ecol. 26:3204–16
    [Google Scholar]
  110. 110.
    Frias-Soler RC, Pildaín LV, Pârâu LG, Wink M, Bairlein F. 2020. Transcriptome signatures in the brain of a migratory songbird. Comp. Biochem. Physiol. D 34:100681
    [Google Scholar]
  111. 111.
    Johnston RA, Paxton KL, Moore FR, Wayne RK, Smith TB. 2016. Seasonal gene expression in a migratory songbird. Mol. Ecol. 25:5680–91
    [Google Scholar]
  112. 112.
    Horton WJ, Jensen M, Sebastian A, Praul CA, Albert I, Bartell PA. 2019. Transcriptome analyses of heart and liver reveal novel pathways for regulating songbird migration. Sci. Rep. 9:6058
    [Google Scholar]
  113. 113.
    Sharma A, Das S, Sur S, Tiwari J, Chaturvedi K et al. 2021. Photoperiodically driven transcriptome-wide changes in the hypothalamus reveal transcriptional differences between physiologically contrasting seasonal life-history states in migratory songbirds. Sci. Rep. 11:12823
    [Google Scholar]
  114. 114.
    Saino N, Ambrosini R, Albetti B, Caprioli M, Giorgio BD et al. 2017. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci. Rep. 7:45412
    [Google Scholar]
  115. 115.
    de Greef E, Suh A, Thorstensen MJ, Delmore KE, Fraser KC. 2023. Genomic architecture of migration timing in a long-distance migratory songbird. Sci. Rep. 13:2437
    [Google Scholar]
  116. 116.
    Bauer S, Hoye BJ. 2014. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344:1242552
    [Google Scholar]
  117. 117.
    Cox GW. 1968. The role of competition in the evolution of migration. Evolution 22:180–92
    [Google Scholar]
  118. 118.
    McKinnon L, Smith PA, Nol E, Martin JL, Doyle FI et al. 2010. Lower predation risk for migratory birds at high latitudes. Science 327:326–27
    [Google Scholar]
  119. 119.
    Furey NB, Armstrong JB, Beauchamp DA, Hinch SG. 2018. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2:1846–53
    [Google Scholar]
  120. 120.
    Winger BM, Pegan TM. 2021. Migration distance is a fundamental axis of the slow-fast continuum of life history in boreal birds. Auk 138:ukab043
    [Google Scholar]
  121. 121.
    Rockwell SM, Wunderle JM, Sillett TS, Bocetti CI et al. 2017. Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia 183:715–26
    [Google Scholar]
  122. 122.
    Lok T, Overdijk O, Piersma T. 2015. The cost of migration: Spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett. 11:20140944
    [Google Scholar]
  123. 123.
    Hewson CM, Thorup K, Pearce-Higgins JW, Atkinson PW. 2016. Population decline is linked to migration route in the Common Cuckoo. Nat. Commun. 7:12296
    [Google Scholar]
  124. 124.
    Bairlein F, Norris DR, Nagel R, Bulte M, Voigt CC et al. 2012. Cross-hemisphere migration of a 25 g songbird. Biol. Lett. 8:505–7
    [Google Scholar]
  125. 125.
    Rappole JH. 1995. The Ecology of Migrant Birds: A Neotropical Perspective Washington, DC: Smithson. Inst. Press
  126. 126.
    Liedvogel M, Delmore K. 2018. (Micro) evolutionary changes and the evolutionary potential of bird migration. Bird Species: How They Arise, Modify and Vanish DT Tietze 109–27 Cham, Switz: Springer
    [Google Scholar]
  127. 127.
    Salewski V, Bruderer B. 2007. The evolution of bird migration—a synthesis. Naturwissenschaften 94:268–79
    [Google Scholar]
  128. 128.
    Winger BM, Barker FK, Ree RH. 2014. Temperate origins of long-distance seasonal migration in New World songbirds. PNAS 111:12115–20
    [Google Scholar]
  129. 129.
    Zink RM, Gardner AS. 2017. Glaciation as a migratory switch. Sci. Adv. 3:e1603133
    [Google Scholar]
  130. 130.
    Ponti R, Arcones A, Vieites DR. 2020. Challenges in estimating ancestral state reconstructions: the evolution of migration in Sylvia warblers as a study case. Integr. Zool. 15:161–73
    [Google Scholar]
  131. 131.
    Feng S, Stiller J, Deng Y, Armstrong J, Fang QI et al. 2020. Dense sampling of bird diversity increases power of comparative genomics. Nature 587:252–57
    [Google Scholar]
  132. 132.
    Milá B, Smith TB, Wayne RK. 2006. Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution 60:2403–9
    [Google Scholar]
  133. 133.
    Somveille M, Wikelski M, Beyer RM, Rodrigues AS, Manica A et al. 2020. Simulation-based reconstruction of global bird migration over the past 50,000 years. Nat. Commun. 11:801
    [Google Scholar]
  134. 134.
    Ponti R, Arcones A, Ferrer X, Vieites DR. 2020. Lack of evidence of a Pleistocene migratory switch in current bird long-distance migrants between Eurasia and Africa. J. Biogeogr. 47:1564–73
    [Google Scholar]
  135. 135.
    Neukom R, Steiger N, Gómez-Navarro JJ, Wang J, Werner JP. 2019. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571:550–54
    [Google Scholar]
  136. 136.
    Jonzén N, Lindén A, Ergon T, Knudsen E, Vik JO et al. 2006. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312:1959–61
    [Google Scholar]
  137. 137.
    Horton KG, La Sorte FA, Sheldon D, Lin TY, Winner K et al. 2020. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10:63–68
    [Google Scholar]
  138. 138.
    Lameris TK, Scholten I, Bauer S, Cobben MM, Ens BJ et al. 2017. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Glob. Change Biol. 23:4058–67
    [Google Scholar]
  139. 139.
    Zurell D, Graham CH, Gallien L, Thuiller W, Zimmermann NE. 2018. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8:992–96
    [Google Scholar]
  140. 140.
    Dufour D, Christophe DF, Paul DV, Frédéric J, Maya G et al. 2021. A new westward migration route in an Asian passerine bird. Curr. Biol. 31:5590–96
    [Google Scholar]
  141. 141.
    Schmaljohann H, Both C. 2017. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7:573–76
    [Google Scholar]
  142. 142.
    Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A et al. 2019. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10:3109
    [Google Scholar]
  143. 143.
    Scotese C. 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. Rep. PALEOMAP Proj. http://www.earthbyte.org/paleomap-paleoatlas-for-gplates/
/content/journals/10.1146/annurev-animal-021122-092239
Loading
/content/journals/10.1146/annurev-animal-021122-092239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error